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ASYMPTOTIC STABILITY OF EMPIRICAL PROCESSES AND

RELATED FUNCTIONALS

JOSÉ L. FERNÁNDEZ, ENRICO FERRI, AND CARLOS VÁZQUEZ

Abstract. Let E be a space of observables in a sequence of trials ξn and define
mn to be the empirical distributions of the outcomes. We discuss the almost sure
convergence of the sequencemn in terms of the ψ-weak topology of measures, when
the sequence ξn is assumed to be stationary. In this respect, the limit variable is
naturally described as a certain canonical conditional distribution. Then, given
some functional τ defined on a space of laws, the consistency of the estimators
τ(mn) is investigated. Hence, a criterion for a refined notion of robustness, that
applies when considering random measures, is provided in terms of the modulus of
continuity of τ .

1. Introduction

Let E be a space in which any element encodes an observable in a sequence of trials
ξ1, ξ2, ..., and let EN be the entire space of the sequences of outcomes, endowed with a
background probability measure P. In particular, throughout this paper, we assume that
the observations ξ1, ξ2, ... form a stationary sequence with respect to the measure P.

Define mn , n−1 ∑

i≤n δξi , for any n ≥ 1, to be the empirical distribution generated by

the observations. Given the entire class M1(E) of laws on E, endowed with some proper
measurable structure, each empirical mean mn may be always understood as a random
element of M1(E).

This paper is motived by the study of the asymptotic stability of the random sequence
τn , τ (mn), n ≥ 1, when the variables ξn encode the historical data of a certain financial

risk factor and τ : M1(E) → T is a certain statistic assessing the downside risk of the
related exposure. Indeed, the study of the asymptotic behaviour of the estimators τn
is crucial to gauge the risk properly, see Cont et al. [3], Föllmer and Weber [8] and
Krätschmer et al. [18, 19].

In this respect, a key aspect is whether we have consistency of the risk estimators τn,
i.e. whether such a sequence admits a proper limit in some stochastic sense.

If the variables ξn are independent and with common distribution µ, Varadarajan
theorem guarantees the P-almost sure convergence of the empirical process mn to the law
µ in the weak topology, and the consistency of the estimators τn is directly obtained from
the continuity property of the statistic τ .

Nevertheless, as highlighted by Cont et al. [3] and Kou et al. [17] some commonly
used risk functionals, more precisely the functionals associated to the entire class of law-

invariant convex risk measures, fail to be continuous with respect to the weak topology of
measures. Briefly, the reason lies behind the fact that the weak topology is not sensitive
enough to the tail behaviour of the distributions, which, by the way, is the main issue in
risk analysis.

An approach to overcome this lack of sensitive has been proposed in Krätschmer et
al. [18, 19] and Zähle [25, 26]. Its main ingredient is to introduce a proper refinement
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2 JOSÉ L. FERNÁNDEZ, ENRICO FERRI, AND CARLOS VÁZQUEZ

of the topological structure, fine enough to control the distributions of the tails, via the
subspaces M

ψ
1 (E) of M1(E) defined in terms of gauge functions ψ and the associated

ψ-weak topologies.
Theorem 1 of Section 4 describes the P-almost sure convergence of the empirical process

mn, under the ψ-weak topology. In particular, the limit variable is naturally described as
the random measure obtained as the conditional distribution of ξ1 given the shift-invariant

σ-algebra associated to the variables ξn. We point out that in the specific case when in
addition the variables ξn form an ergodic sequence, the consistency result as described in
our Corollary 1 has been developed by Krätschmer et al. [19].

When assessing the downside risk associated to some financial exposure, besides con-
sistency, robustness is a desirable property of asymptotic stability. Following Hampel, an
estimation is said to be robust if small changes of the law related to the outcomes ξn only
result in small changes of the distribution characterizing the estimators τn. While the
notion of qualitative robustness has been classically developed, cf. [4, 11, 12, 13, 21], by
means of the weak topology of measures, Krätschmer et al. [18, 19] and Zähle [25, 26],
provide a similar version that applies to the ψ-weak topology as the basic topological
background.

The main goal of Section 5 is to develop a criterion for the robustness of the estimators
τn, by exploiting the consistency result discussed in Corollary 1. With this aim in mind,
we formulate there a refined notion of robustness in terms of the modulus of continuity of
the statistic τ . Such a formulation naturally arises when dealing with random measures,
and hence in the particular case of the canonical conditional distribution defined by the
variables ξn, if stationarity holds.

The paper is organized as follows. In Section 2 we describe the topological structure
of the workspace that we consider throughout the paper. In Section 3 we present some
useful measure theoretical results. In section 4 we propose a criterion for consistency that
is exploited in Section 5 in order to assess the robustness of the estimators τn.

2. Background

Let E be a Polish space and let E be its Borel σ-algebra.
We denote by M1(E) the family of Borel probability measures on E and by Cb(E) the

Banach space of bounded continuous functions defined on E, endowed with the supremum
norm.

Here and in the sequel we use the notation µf ,
∫

E
f(x)µ(dx), wherever the measure

µ ∈ M1(E) and the Borel function f are such that
∫

E
|f(x)|µ(dx) < +∞.

The weak topology σ(M1(E),Cb(E)) is the coarsest topology on M1(E) that renders
continuous each map µ ∈ M1(E) 7→ µf , when f runs over Cb(E).

Since E is Polish, the space M1(E) endowed with the weak topology is metrized as a
complete and separable metric space by means of the Prohorov distance

(1)
π(µ, ν) , inf{ε > 0 : µ(B) ≤ ν(Bε) + ε, for any B ∈ E },

for any µ, ν ∈ M1(E),

where Bε , {x ∈ E : infy∈B d(y, x) < ε} stands for the ε-hull of B ∈ E , and d denotes a
consistent distance i.e. a metric on E that is consistent with its topological structure.

2.1. Bounded Lipschitz functions BL(E). Let BL(E) denote the linear space of Lip-
schitz bounded functions on E. For a function f ∈ BL(E) we define

‖f‖BL(E) , ‖f‖∞ + ‖f‖L(E)
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where ‖f‖L(E) is given by ‖f‖L(E) , supx 6=y |f(x)− f(y)|/d(x, y), where d is a consistent
metric on E. The space BL(E) endowed with the norm ‖ · ‖BL(E) is a Banach space, (cf.
[5], Proposition 11.2.1).

The weak topology on M1(E) may be alternatively generated by means of the space
BL(E) of bounded Lipschitz functions on E, instead of the space Cb(E) of bounded contin-
uous functions: the weak topology is also the coarsest topology which renders continuous
each of the mappings µ ∈ M1(E) 7→ µf , when f runs over BL(E).

We recall that

(2) β(µ, ν) , sup{|(µ− ν)f | : ‖f‖BL(E) ≤ 1}, for any µ, ν ∈ M
ψ
1 (E),

defines a metric on M1(E) equivalent to the Prohorov metric (1). Hence, given a sequence
µ0, µ1, ... in M1(E), one has that µn → µ0 in the weak topology if and only if β(µn, µ0) →
0, as n→ +∞, (cf. [5] Theorem 11.3.3).

Remark 1. Observe that the distance β as well as the Prohorov distance π depend on the
distance d. Besides, if d′ is a metric on E equivalent to d, then, with obvious notation,
the corresponding distance π′ is equivalent to π and the same for β′ and β. This allows us
to consider the consistent metric d that turns out to be more useful for our purposes. In
particular, among all the distances consistent with the topology on E, there is one that is
totally bounded, which will be convenient to use later on; see, e.g., Theorem 2.8.2 in [5].
On the other hand, note that the specific choice of the consistent metric d does not affect
the separability of E.

Separability issues. We recall that the space Cb(E) endowed with the supremum norm
‖·‖∞ is, in general, not separable. Likewise, the space BL(E) is, in general, not separable
for the topology induced by the norm ‖ · ‖BL(E).

Let us define BL1(E) to be the unit ball in BL(E), i.e. the set of functions f ∈ BL(E)
such that ‖f‖BL(E) ≤ 1. Recall that the family BL1(E) of BL(E) depends on the actual
distance d on E used in the definition of the norm ‖ · ‖BL(E)

The following proposition will play a relevant role later on in this paper.

Proposition 1. If the consistent distance d on E is totally bounded, then the unit ball

BL1(E) is separable for the supremum norm ‖ · ‖∞.

For the proof of Proposition 1 we shall use the following particular case.

Lemma 1. Assume further that the space E is compact, then BL1(E) is separable for the

supremum norm ‖ · ‖∞.

Note that the consistent metric d in Proposition 1 might fail to be complete in general,
since completeness is not a topological invariant. In the special case, when d is indeed
complete, then E turns out to be compact (cf. [5], Theorem 2.3.1), and Proposition 1
boils down to Lemma 1.

Proof of Lemma 1. The result follows directly from Ascoli-Arzelá theorem, (cf. [5], The-
orem 2.4.7). Indeed, since the family BL1(E) is uniformly bounded and equicontinuous
and E is compact, then the family BL1(E) is compact with respect to the ‖ ·‖∞-topology,
and, consequently, separable. �

The following proof of Proposition 1 is modelled upon ideas contained in the proof of
Thereom 11.4.1 in [5].

Proof of Proposition 1. Let Ē be the completion of E with respect to the metric d, and
define BL1(Ē) to be the unit ball in BL(Ē) defined by the norm ‖ · ‖BL(Ē).
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Fix g ∈ BL1(E) and denote by ḡ the unique extension of g (see, e.g. Proposition
11.2.3 in [5]) defined on the entire Ē such that ‖ḡ‖BL(Ē) = ‖g‖BL(E) and hence so that

ḡ ∈ BL1(Ē).
Note that Ē is compact, since E is assumed to be totally bounded, (cf. [5], Theorem

2.3.1). Lemma 1 gives us a subset N of BL1(Ē) which is countable and dense in BL1(Ē)
with respect to the supremum norm ‖ · ‖∞.

Thus, given g ∈ BL1(E), for any ε > 0 one can find f ∈ N so that ‖ḡ − f‖∞ ≤ ε. On
the other hand, letting f |E be the restriction of f to the domain E, one has ‖g−f |E‖∞ ≤
‖ḡ − f‖∞ ≤ ε. Hence, the family N|E of the functions in N restricted to E provides a
dense and countable subset of BL1(E) in the norm ‖ · ‖∞. �

2.2. Gauges ψ. Let ψ be a continuous function on E, satisfying ψ ≥ 1 everywhere on
E. Throughout the paper, ψ will play the role of gauge function. In particular, following
Follmer and Schied, see [7], and also [18, 19], we associate to such ψ the space of functions
Cψ(E) given by

Cψ(E) , {f ∈ C(E) : ‖f/ψ‖∞ <∞} ,
and the space of probability measures M

ψ
1 (E) defined by

M
ψ
1 (E) , {µ ∈ M1(E) : µψ < +∞} .

Observe that Cb(E) ⊆ Cψ(E) and that M
ψ
1 (E) ⊆ M1(E).

Definition 1 (ψ-weak topology). The ψ-weak topology σ(Mψ
1 (E),Cψ(E)) is the coarsest

topology on M
ψ
1 (E) that renders continuous the maps µ ∈ M

ψ
1 (E) 7→ µf , varying f ∈

Cψ(E).

Besides the ψ-weak topology, in M
ψ
1 (E) we need to consider also the relative weak

topology induced on M
ψ
1 (E) as a subspace of M1(E), endowed with the weak topology

as defined above. This relative weak topology is actually σ(Mψ
1 (E),Cb(E)), the coarsest

topology so that for each f ∈ Cb(E), the mapping µ ∈ M
ψ
1 (E) 7→ µf is continuous, see,

e.g., Lemma 2.53 in [1]. The ψ-weak topology is in general finer than the relative weak
topology.

If ψ ≡ 1 or simply if ψ is bounded above, then Cb(E) = Cψ(E), Mψ
1 (E) = M1(E) and

the ψ-weak topology and the relative weak topology coincide.

We introduce now a distance dψ on M
ψ
1 (E) by

(3) dψ(µ, ν) , π(µ, ν) + |(µ− ν)ψ|, for any µ, ν ∈ M
ψ
1 (E).

The following Proposition combines the results of [7] and [18].

Proposition 2. M
ψ
1 (E) endowed with the ψ-weak topology is a Polish space and its topol-

ogy is generated by the distance dψ.

M
ψ
1 (E) endowed with the relative weak topology is separable.

Proof. Corollary A.45 of [7] gives us that M
ψ
1 (E) endowed with the ψ-weak topology

is Polish, in particular, metrizable. Now, Lemma 3.4 in [18], gives us that a sequence
converges ψ-weakly if and only if it converges in the distance dψ.

If (ej)j≥1 is a sequence dense in E, then the family of convex combinations (with

rational weights) of δej is contained in M
ψ
1 (E) and it is dense in M1(E), with respect to

Prohorov distance. Hence, the space M
ψ
1 (E) is separable when endowed with the relative

weak topology. �
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Remark 2. Note that, given a sequence µ0, µ1, ... in M
ψ
1 (E), then µn → µ0 in the ψ-weak

topology, as n → +∞, if and only if µn → µ0 in the weak topology and µnψ → µ0ψ, as
n→ +∞.

The measurable structure of M
ψ
1 (E). We denote by M the Borel σ-algebra on M1(E)

generated by the weak topology and by M
ψ the Borel σ-algebra on M

ψ
1 (E) generated by

the ψ-weak topology.
Next, we collect some properties of M and M

ψ. We recall that M has the following
characterization.

Lemma 2. The σ-algebra M is generated by the projections πB : µ 7→ µ(B), defined for

µ ∈ M1(E), letting B vary in E .

Proof. See, e.g., Proposition 2.2.2. in [9]. �

Lemma 3. Let H be a family of functions defined on a set H and taking values in

a measurable space (G,G ). Let φ be a H-valued map defined on some set H0, then

φ−1(σ(H)) = σ(H ◦ φ) on H0, where H ◦ φ , {h ◦ φ : h ∈ H}.

Proof. First of all, note that φ−1(σ(H)) is a σ-algebra on H0, since the map φ−1 preserves
all the set operations. Thus, the inclusion σ(H ◦ φ) ⊆ φ−1(σ(H)) is immediate, since h ◦ φ
is φ−1(σ(H))-measurable for any h ∈ H.

Let now H0 be a σ-algebra on H0 with respect to which h ◦ φ is (H0,G )-measurable,
for any h ∈ H. Clearly φ−1(σ(H)) ⊆ H0. Thus, the proof concludes by considering
H0 = σ(H ◦ φ). �

The next lemma tells us that the relative weak topology and the ψ-weak topology
generate the same Borel σ-algebra on M

ψ
1 (E).

Lemma 4. The σ-algebra M
ψ is generated by the relative weak topology σ(Mψ

1 (E),Cb(E)).

Recall that a σ-algebra is said to be (i) countably generated if it is generated by a
countable family of sets and (ii) countably separated if it admits an a countable family
of sets separating points. Moreover, a measurable space is said to be standard if it is
Borel-isomorphic to a Polish space.

Proof of Lemma 4. Let us define B
ψ to be the Borel σ-algebra associated to the rela-

tive weak topology σ(Mψ
1 (E),Cb(E)). Since the ψ-weak topology is finer than the weak

topology on M
ψ
1 (E), one has B

ψ ⊆ M
ψ.

On the other hand, Proposition 2 gives us that M
ψ
1 (E) is separable when endowed

with the relative weak topology. As a result, the σ-algebra B
ψ is countably generated

and countably separated. Indeed, any countable base B
ψ of open sets in σ(Mψ

1 (E),Cb(E))
generates the σ-algebra B

ψ and separates points, (cf. [2], §6.5).

Finally, Proposition 2 again implies that the space (Mψ
1 (E),M ψ) is standard, and thus,

the σ-algebra M
ψ coincides with σ(Bψ), thanks to Theorem 3.3 in [20]. �

The Borel σ-algebra M
ψ admits a characterization in terms of the projections πB

analogous to that of Lemma 2 for M . This is the content of the next proposition.

Proposition 3. The Borel σ-algebra M
ψ is generated by the projections πB : µ 7→ µ(B),

defined for µ ∈ M
ψ
1 (E), letting B vary in E .

Proof. Let φ : Mψ
1 (E) →֒ M1(E) be the inclusion of Mψ

1 (E) into M1(E) and define H to
be the family consisting of the projection maps πB : µ ∈ M1(E) → µ(B), letting B vary

in E . The family H ◦ φ , {πB ◦ φ : B ∈ E } consists of the projections defined on M
ψ
1 (E).
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Let us define B
ψ to be the Borel σ-algebra generated by the restriction σ(Mψ

1 (E),Cb(E))

of the weak topology to M
ψ
1 (E). Equality B

ψ = φ−1(σ(H)) holds true, since σ(H) = M

due to Lemma 2 and B
ψ = φ−1(M ). Hence, applying Lemma 3, one deduces that

B
ψ = σ(H ◦ φ). The stated result now follows from Lemma 4. �

3. Setup

We now introduce our reference probability space (Ω,F ,P) for our asymptotic stability
results.

We let Ω denote the set Ω = EN of all the sequences ω = (ω1, ω2, ...) of elements of E.

The projections ξ1, ξ2, ... are the mappings ω 7→ ξn(ω) , ωn, for ω ∈ Ω and n ≥ 1.
We let F denote the σ-algebra in Ω generated by the projections ξ1, ξ2, .... This family

F is also the Borel σ-algebra associated to the product topology in EN; it also coincides,
since E is separable, with the product σ-algebra E

N, (cf. [23], Theorem 1.10).
We let P be a probability measure defined on (Ω,F ), so that (Ω,F ,P) is a complete

probability space.
Random measures. By a random measure χ on (E, E ) with support in M

ψ
1 (E) we under-

stand a probability kernel

(ω,B) ∈ Ω× E 7→ χ(ω,B) ∈ [0, 1] ,

such that

(i) the assignment B ∈ E 7→ χ(ω,B) defines a probability measure in M
ψ
1 (E), for

each fixed ω ∈ Ω,
(ii) the mapping ω ∈ Ω 7→ χ(ω,B) is F -measurable, for each fixed B ∈ E .

Besides, Proposition 3 allows to understand χ as a random variable on (Ω,F ,P) and

taking values in (Mψ
1 (E),M ψ).

We shall denote by L (χ) the distribution induced by χ on (Mψ
1 (E),M ψ) as a pullback

in the usual way:

L (χ)(M) = P ◦ χ−1(M), for any M ∈ M
ψ.

Empirical process. The empirical process associated to ξ is the sequence m1,m2, ... of
random measures defined, for each n ≥ 1, by

(4) mn(ω,B) ,
1

n

n
∑

i=1

δξi(ω)(B), for any ω ∈ Ω and any B ∈ E .

Moreover, we say that the empirical process m1,m2, ... is directed by the variables ξ1, ξ2, ...
We shall always understand each mn as a random variable defined on (Ω,F ,P) and with

values in (Mψ
1 (E),M ψ).

Statistics and estimators. Let T be a further Polish space endowed with its Borel σ-algebra
T and with a metric dT which induces its topological structure.

Any (M ψ,T )-measurable functional τ : Mψ
1 (E) → T is termed a statistic on M

ψ
1 (E).

The sequence of random variables τ1, τ2, .. from (Ω,F ,P) into (T,T ) obtained by
setting, for each n ≥ 1,

τn , τ (mn),

is called the sequence of estimators induced by τ .
The statistic τ : M

ψ
1 (E) → T is said to be ψ-continuous if it is continuous with

respect to the ψ-weak topology on M
ψ
1 (E) and the topology defined on T . Besides, τ

is said to be uniformly ψ-continuous if for any ε > 0 there exists δ(ε) > 0 such that
dT (τ (µ1), τ (µ2)) < ε if dψ(µ1, µ2) < δ(ε). Note that, given a random measure χ on (E, E )

with support in M
ψ
1 (E) and a ψ-continuous statistic τ on M

ψ
1 (E), the composition τ (χ)

is (F ,T )-measurable.
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Definition 2 (Strong Consistency). Given a statistic τ : Mψ
1 (E) → T and a random

measure χ on (E,E ), we say that τ , or equivalently, the sequence of estimators (τn)n
induced by τ , is strongly consistent for τ (χ) if one has P-almost surely that τn → τ (υ), as
n→ +∞.

4. Consistency

Let (Ω,F ,P) be the complete probability space introduced in the previous section.
Stationarity. We denote by Σ the shift operator on EN, i.e.

Σ(x1, x2, . . .) = (x2, x3, . . .) , for any (x1, x2, . . .) ∈ EN .

The random sequence ξ , (ξ1, ξ2, ...) in (E, E ) given by the canonical projections is
said to be stationary if one has L (ξ) = L (Σξ).

Here and in what follows, L (ξ) , P◦ ξ−1 denotes the distribution on (EN, E N) induced
by the random sequence ξ.
The shift invariant σ-algebra. The shift invariant σ-algebra is defined to be the collection
I of the Borel sets I ∈ E

N such that Σ−1(I) = I .
We denote by ξ−1

I the σ-algebra consisting of the sets ξ−1(I) contained in F , when
I runs over I .

The σ-algebra ξ−1
I will play a crucial role in what follows.

Observe that if the variables ξn are i.i.d, then the σ-algebra ξ−1
I turns out to be

P-trivial, see, e.g., Corollary 1.6 in [16].
Canonical random measure. We now introduce the canonical random measure associated
to the sequence ξ.

Lemma 5. There exists an essentially unique regular version υ of the conditional distri-

bution P[ξ1 ∈ · |ξ−1
I ].

Recall that υ is by definition a ξ−1
I -measurable random probability measure over

(E,E ), i.e. a probability kernel (ω,B) 7→ υ(ω,B) from the probability space (Ω,F ,P) to
(E,E ). In other terms, υ is what we have termed a random measure. We refer to §10.4
of [2] for background and relevance on regular version of conditional distributions.

Proof of Lemma 5. See, e.g., Lemma 10.4.3 and Corollary 10.4.6 in [2]. Recall that E is
Polish and E is Borel, hence countably generated. �

In the remainder of this paper, we refer to υ as the canonical random measure associated
to ξ.

Note that, in the case when the projections ξn are independent with common distribu-
tion µ, so that L (ξn) = µ for each n ≥ 1, then P-almost surely υ = µ. This is so because
ξ−1(I ) is P-trivial and then

(5) P[ξ1 ∈ ·|ξ−1
I ] = P[ξ1 ∈ ·] = µ, P-a.s.

Observe that when L (ξ1) ∈ M
ψ
1 (E), i.e. when

∫

E
ψ(x) P ◦ ξ−1

1 (dx) < +∞, we have

P-almost surely that υ ∈ M
ψ
1 (E).

4.1. Convergence of estimators. When the random variables ξ1, ξ2, ... are independent
and identically distributed, Varadarajan’s theorem (which we record below as Proposition
4) asserts the convergence in the weak topology of the empirical process.

Proposition 4. Assume that the variables ξ1, ξ2, ... are independent with common law

µ ∈ M1(E), then, P-almost surely mn → µ in the weak topology, as n→ ∞.

Proof. See, e.g., Theorem 11.4.1 in [5]. �
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Recall that a family G of Borel functions on E is said to be an universal Glivenko-

Cantelli class if

sup{|(mn − µ)f | : f ∈ G} → 0, P-a.s. as n→ +∞,

whenever the variables ξ1, ξ2, ... that direct the empirical process (mn)n are independent
with common generic distribution µ ∈ M1(E).

Proposition 5. The unit ball BL1(E) constitutes an universal Glivenko-Cantelli class.

Proof. Firstly, if ξ1, ξ2, ... are independent with common generic distribution µ ∈ M1(E),
then, according to Lemma 4, P-almost surely mn → µ in the weak topology as n→ +∞.
Therefore, as discussed in Section 2.1, that β(mn, µ) → 0, as n→ +∞. �

Proposition 6. If ξ is stationary, then P-almost surely mn → υ in the weak topology, as

n→ +∞.

Proof. According to Remark 1, we now use a totally bounded metric on E to define the
norm ‖·‖BL1(E). The unit ball BL1(E) is an uniformly bounded family of Borel functions
on E. Moreover, it is separable for the supremum norm, due to Proposition 1.

Thus, since BL1(E) forms an universal Glivenko-Cantelli class according to Proposition
5, Theorem 1.3 combined to Corollary 1.4 in [24] apply, and in particular we have

(6) sup{|(mn − υ)f | : f ∈ BL1(E)} → 0, P-a.s. as n→ +∞
The proof now concludes since (6) gives that β(mn, υ) → 0 almost surely, as n → +∞,
and so that P-almost surely mn → υ in the weak topology, as n→ +∞. �

Analogously, for the ψ-weak topology in M
ψ
1 (E) we also have a Varadarajan type

theorem.

Theorem 1. If ξ is stationary and such that L (ξ1) ∈ M
ψ
1 (E), then P-almost surely

mn → υ in the ψ-weak topology, as n→ +∞.

Proof. According to Proposition 6, we have that P-almost surely mn → υ in the relative
weak topology, as n→ +∞. Thus, in view of Remark 2, it remains to show that

|mnψ − υψ| → 0, P-almost surely as n→ +∞.

We apply now von Neumann’s version of Birkhoff’s ergodic theorem as stated in [15],

Theorem 9.6. Using the notation therein, consider as space S , Ω = EN, as transformation
T , Σ, the shift operator defined on it, and as measurable function f , ψ ◦ ξ1.

Notice that the shift operator T preserves the measure P since ξ is assumed to be
stationary. If we write µ for the common law µ = L (ξ1), then a change of variables gives
that

∫

S

fdP =

∫

Ω

ψ(ξ1)dP =

∫

E

ψ(x)P ◦ ξ−1
1 (dx) =

∫

E

ψ dµ .

Since by hypothesis L (ξ1) = µ ∈ M
ψ
1 (E), we have

∫

E
ψ dµ = µψ < +∞ and therefore

f ∈ L1(Ω,F ,P).
Hence, we conclude that

mnψ → E[ψ(ξ1)|ξ−1
I ], P-almost surely as n→ +∞.

Finally, according to the disintegration theorem (cf. [15], Theorem 5.4), we may recast
the limit variable and write

E[ψ(ξ1)|ξ−1
I ] =

∫

E

ψ dP[ξ1 ∈ ·|ξ−1
I ] = υψ, P-almost surely.

�
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Remark 3 (Ergodicity). Under the same hypotheses of Theorem 1, but assuming addi-
tionally that ξ is ergodic, or equivalently that its distribution L (ξ) is ergodic with respect
to the shift operator Σ, i.e. P{ξ ∈ I} ∈ {0, 1} for any I ∈ I , we easily get that P-almost
surely the empirical process (mn)n converges to µ = L (ξ1) in the ψ-weak topology, as
n→ +∞, since the σ-field ξ−1

I turns out to be P-trivial in such a case.

The next result is an immediate consequence of Theorem 1.

Corollary 1 (Strong Consistency). If ξ is stationary and τ : Mψ
1 (E) → T is ψ-continuous,

then the sequence of estimators (τn)n is strongly consistent for τ (υ).

Suppose that ξ describes the outcome in a sequence of trials. According to the present
framework, any element of the sample space Ω , EN may be understood as a path of ξ.
On the other hand, the random measure υ is a regular version of the distribution induced
by the single variable within the process ξ, conditioned on the information encoded be the
shift invariant σ-algebra I . In this respect, each ω ∈ Ω completely describes the limit
distribution υ(ω, · ), which may be understood as the best available description of the
outcomes.

5. Robustness

Let θ be a F -measurable endomorphism over Ω and define Pθ , P ◦ θ−1 to be the
image of P under θ. We say that the probability measure P is quasi-invariant under θ if
the measures P and Pθ , P ◦ θ−1 are equivalent. In this case we write Pθ ≃ P.

Let us define

(7) λθ(α) , P{dψ(υ, υ ◦ θ) > α}, for any α > 0,

where the random variable υ ◦ θ is defined by (υ ◦ θ)(ω)(B) , υ(θ(ω),B), for any ω ∈ Ω
and B ∈ E . Note that the function (7) is well defined, since dψ is trivially (M ψ ⊗ M

ψ)-
measurable. Moreover, observe that λθ is a decreasing function in α > 0 and that λθ(α) →
1 as α→ 0 and λθ(α) → 0 as α→ +∞, via monotonicity arguments.

Assume that the statistic τ is uniformly ψ-continuous and that κ is a modulus of
continuity of τ . As κ is continuous, vanishes at zero and is strictly increasing by definition,
one has that λθ(α) < κ(α) for α large enough.

We define

(8) ‖θ‖P,κ , inf{α > 0 : λθ(α) < κ(α)}.

Lemma 6. If τ is uniformly ψ-continuous and it admits κ as modulus of continuity, then

π(P ◦ τ (υ)−1,Pθ ◦ τ (υ)−1) ≤ κ(‖θ‖P,κ).

Proof. Let C ∈ T and fix α > 0 such that λθ(α) < κ(α). Since τ is ψ-continuous, then

τ−1(C) ∈ M
ψ. In particular, for any A ∈ M

ψ, we denote by Aε , {µ ∈ M
ψ
1 (E) :

dψ(µ, ν) ≤ ε, for some ν ∈ A} the ε-hull of A defined in terms of the metric dψ.

Notice that [τ−1(C)]α ⊆ τ−1(Cκ(α)) in M
ψ
1 (E), since τ is uniformly ψ-continuous and

admits κ as modulus of continuity, where the κ(α)-hull Cκ(α) of C is defined in terms of

the metric dT . Hence, υ ◦ θ ∈ [τ−1(C)]α implies υ ◦ θ ∈ τ−1(Cκ(α)), and in particular one

has that P{υ ◦ θ ∈ [τ−1(C)]α} ≤ P ◦ τ (υ ◦ θ)−1(Cκ(α)). Thus,

P ◦ τ (υ)−1(C) ≤ P{dψ(υ, υ ◦ θ) > α}+ P{υ ◦ θ ∈ [τ−1(C)]α}
≤ κ(α) + P ◦ τ (υ ◦ θ)−1(Cκ(α)

)

.

Then, since the choice of C ∈ T is arbitrary, one has that

π
(

P ◦ τ (υ)−1, P ◦ τ (υ ◦ θ)−1) ≤ κ(α).

Hence, since Pθ ◦ τ (υ)−1 = P ◦ τ (υ ◦ θ)−1, the proof is concluded by letting α tend to
‖θ‖P,κ, while invoking the continuity of κ. �
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Remark 4. Note that, if κ is defined to be the identity on (0,+∞), then (8) boils down to
the Ky Fan distance between υ and υ ◦ θ, which are understood as random variables with
values in (Mψ

1 (E),M ψ), (cf. [5], §9.2). In particular, when looking at Lemma 6, this is
the case when τ is a contraction.

Theorem 2 (Robustness). Let ξ be stationary and let P be quasi-invariant under θ. If τ
is uniformly ψ-continuous and it admits κ as modulus of continuity, then

(9) lim sup
n≥1

π(P ◦ τ−1
n ,Pθ ◦ τ−1

n ) ≤ κ(‖θ‖P,κ)

Proof. By the triangle inequality,

(10)

π(P ◦ τ−1
n ,Pθ ◦ τ−1

n ) ≤ π(P ◦ τ−1
n , P ◦ τ (υ)−1)

+ π(P ◦ τ (υ)−1,Pθ ◦ τ (υ)−1)

+ π(Pθ ◦ τ−1
n ,Pθ ◦ τ (υ)−1).

Since τ is uniformly ψ-continuous and admits κ as modulus of continuity, Lemma 6
applies. Thus, we deduce from inequality (10) that

(11)

lim sup
n≥1

π(P ◦ τ−1
n ,Pθ ◦ τ−1

n ) ≤ κ(‖θ‖P,κ)

+ lim sup
n≥1

{π(P ◦ τ−1
n ,P ◦ τ (υ)−1) + π(Pθ ◦ τ−1

n ,Pθ ◦ τ (υ)−1)}.

On the other hand, ξ is assumed to be stationary and τ is ψ-continuous. Then, the
result described in Corollary 1 guarantees that P-almost surely τn → τ (υ), as n → +∞,
and hence also Pθ-almost surely, as P is assumed to be quasi-invariant under θ. Thus,

lim sup
n≥1

{π(P ◦ τ−1
n ,P ◦ τ (υ)−1) + π(Pθ ◦ τ−1

n , Pθ ◦ τ (υ)−1)} = 0.

�

Remark 5. In the case when ξ describes the outcomes in a sequence of trials, we may
understand the action of the endomorphism θ as a perturbation of the available dataset
and the function λθ defined in (7) measures the impact of such a perturbation in terms of
the random measure υ.

In particular, note that ‖θ‖P,κ = 0, when θ is chosen to be the identity over Ω, or more
generally when the action of θ does not affect the distribution of the random measure υ.

It’s easy to realize that, when the perturbation procedure encoded by the action of
the map θ does not change appreciably the random measure υ in the stochastic sense
provided by (7), then one should expect ‖θ‖P,κ to be small. In particular, this form of
continuity is properly assessed in terms of κ. Indeed, in the particular case when τ admits
κ as modulus of continuity, Theorem 2 guarantees that small perturbations at the level
of the dataset only result in small perturbations in terms of the asymptotic law of the
family of estimators associate to the statistic τ . In particular, the impact of the generic
perturbation is precisely gauged by the relation described in (9).

Remark 6 (Robustness and Elicitability). Elicitability provides a widely discussed aspect
in evaluating point forecasts; for background see for instance [6, 10, 22, 27]. In this respect,

assume that the statistic τ is elicitable, relative to the class M
ψ
1 (E), by considering some

strictly consistent scoring function S : T × E → [0,+∞). Moreover assume that τ is

uniformly continuous with respect to the functional (µ, ν) 7→ S̃(µ, ν) ,
∫

E
S(τ (µ), x)ν(dx)

in the sense that

(12) dT (τ (µ), τ (ν)) ≤ κ(S̃(µ, ν)), for any µ, ν ∈ M
ψ
1 (E),

for some non-negative continuous and increasing function κ vanishing at zero.
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Recall that ‖θ‖P,κ as defined in (8) implicitly depends on the metric dψ. In a similar

way, if S̃ is (M ψ ⊗ M
ψ)-measurable, we may define

(13) ‖θ‖(1)
P,κ , inf{α > 0 : P{S̃(υ, υ ◦ θ) > α} < κ(α)}.

Hence, under condition (12) a similar estimate as provided in Lemma 6 may be assessed
in terms of (13), and if in addition τ is assumed to be ψ-continuous, ξ is stationary and P

is quasi-invariant under θ, then, the arguments in the proof of Theorem 2 still remain in
force and give

lim sup
n≥1

π(P ◦ τ−1
n ,Pθ ◦ τ−1

n ) ≤ κ(‖θ‖(1)
P,κ).

As an example, when considering E and T to be the real line endowed with the euclidean
metric and ψ the identity, if τ : µ ∈ M

ψ
1 (E) 7→

∫

R
xµ(dx) defines the mean and S(x, y) ,

(x−y)2, for any (x, y) ∈ R
2, then condition (12) is guaranteed when for instance κ(z) ,

√
z,

for any z ≥ 0.
Observe also that, in the case when ψ is strictly increasing and τ (µ) is defined as the α-

quantile of the law µ ∈ M
ψ
1 (E), for some fixed α ∈ (0, 1), and the related scoring function

is given by S(x, y) , (1{x≥y}−α)(ψ(x)−ψ(y)), (see, e.g., Theorem 3.3 in [10]), condition
(12) fails for any κ.

6. Concluding Remarks

Theorem 1, as well as Corollary 1 and Theorem 2, still remain in force when the
sequence of projections ξ1, ξ2, ... displays some other forms of probabilistic symmetries.

Recall that the random sequence ξ = (ξ1, ξ2, ...) is said to be exchangeable if and only
if L (ξi : i ∈ I) = L (ξπI(i) : i ∈ I), for any finite family I of indices and any permutation
πI on it. A numerable sequence of exchangeable random variables is always stationary,
(cf. [14], Proposition 2.2). In particular, we get that P-almost surely ξ−1

I = σ(υ), (cf.
[16], Corollary 1.6). In addition, each of the previous σ-algebras turns out to be P-trivial
in the independence setup. In this respect, we are allowed to recast the limit random
variable in Theorem 1 by writing υ = P[ξ1 ∈ · |υ], where the equality shall be intended
in the P-almost surely sense. On the other hand, according to de Finetti’s Theorem (cf.
[16], Theorem 1.1), when dealing with a numerable random sequence ξ = (ξ1, ξ2, ...) in E,
the notion of exchangeability equals a conditional form of independence, i.e. one has that
P-almost surely P[ξ ∈ · |υ] = υN.

Exchangeability provides the main pillar of the Bayesian approach to the inferential
analysis. More precisely, when dealing with the non parametric setup, the law induced by
the random measure υ over the space (Mψ

1 (E),M ψ) may be regarded as the prior distri-

bution of the statistical model ξ1, ξ2, ...|υ ∼iid υ, where the latter form of independence is
to be understood in terms of de Finetti’s theorem.

According to such a formulation, Theorem 2 may be regarded as a form of stability
obtained when the prior distribution of the model is forced to change in such a way that
the quasi-invariance of the measure P is guaranteed.
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