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Abstract. Various valuation adjustments, or XVAs, can be written in terms of non-linear PIDEs equivalent to FB-4

SDEs. In this paper we develop a Fourier-based method for solving FBSDEs in order to efficiently and5

accurately price Bermudan derivatives, including options and swaptions, with XVA under the flexible6

dynamics of a local Lévy model: this framework includes a local volatility function and a local jump7

measure. Due to the unavailability of the characteristic function for such processes, we use an asymptotic8

approximation based on the adjoint formulation of the problem.9
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1. Introduction. After the financial crisis in 2007, it was recognized that Counterparty Credit12

Risk (CCR) poses a substantial risk for financial institutions. In 2010 in the Basel III framework an13

additional capital charge requirement, called Credit Valuation Adjustment (CVA), was introduced14

to cover the risk of losses on a counterparty default event for over-the-counter (OTC) uncollateral-15

ized derivatives. The CVA is the expected loss arising from a default by the counterparty and can16

be defined as the difference between the risky value and the current risk-free value of a derivatives17

contract. CVA is calculated and hedged in the same way as derivatives by many banks, therefore18

having efficient ways of calculating the value and the Greeks of these adjustments is important.19

One common way of pricing CVA is to use the concept of expected exposure, defined as the20

mean of the exposure distribution at a future date. Calculating these exposures typically involve21

computationally time-consuming Monte Carlo procedures, like nested Monte Carlo schemes or22

the more efficient least squares Monte Carlo method (LSM)([19]). Recently the Stochastic Grid23

Bundling method (SGBM) was introduced as an improvement of the standard LSM ([15]). This24

method was extended to pricing CVA for Bermudan options in [10]. Another recently introduced25

alternative is the so-called finite-differences Monte Carlo method (FDMC), see [7]. The FDMC26

method uses the scenario generation from the Monte Carlo method combined with finite-difference27

option valuation.28

Besides CVA, many other valuation adjustments, collectively called XVA, have been introduced29
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in option pricing in the recent years, causing a change in the way derivatives contracts are priced.30

For instance, a companies own credit risk is taken into account with a debt value adjustment (DVA).31

The DVA is the expected gain that will be experienced by the bank in the event that the bank32

defaults on its portfolio of derivatives with a counterparty. To reduce the credit risk in a derivatives33

contract, the parties can include a credit support annex (CSA), requiring one or both of the parties34

to post collateral. Valuation of derivatives under CSA was first done in [23]. A margin valuation35

adjustment (MVA) arises when the parties are required to post an initial margin. In this case the36

cost of posting the initial margin to the counterparty over the length of the contract is known as37

MVA. Funding value adjustments (FVA) can be interpreted as a funding cost or benefit associated38

to the hedge of market risk of an uncollateralized transaction through a collateralized market.39

While there is still a debate going on about whether to include or exclude this adjustment, see [14],40

[13] and [5] for an in-depth overview of the arguments, most dealers now seem to indeed take into41

account the FVA. The capital value adjustment (KVA) refers to the cost of funding the additional42

capital that is required for derivative trades. This capital acts as a buffer against unexpected losses43

and thus, as argued in [12], has to be included in derivative pricing.44

For pricing in the presence of XVA, one needs to redefine the pricing partial differential equation45

(PDE) by constructing a hedging portfolio with cashflows that are consistent with the additional46

funding requirements. This has been done for unilateral CCR in [23], bilateral CCR and XVA in47

[2] and extended to stochastic rates in [17]. This results in a non-linear PDE.48

Non-linear PDEs can be solved with e.g. finite-difference methods or the LSM for solving49

the corresponsing backward stochastic differential equation (BSDE). In [24] an efficient forward50

simulation algorithm that gives the solution of the non-linear PDE as an optimum over solutions of51

related but linear PDEs is introduced, with the computational cost being of the same order as one52

forward Monte Carlo simulation. The downside of these numerical methods is the computational53

time that is required to reach an accurate solution. An efficient alternative might be to use Fourier54

methods for solving the (non-)linear PDE or related BSDE, such as the COS method, as was55

introduced in [8], extended to Bermudan options in [9] and to BSDEs in [25]. In certain cases the56

efficiency of these methods is further increased due the ability to the use the fast Fourier transform57

(FFT).58

In this paper we consider an exponential Lévy-type model with a state-dependent jump mea-59

sure and propose an efficient Fourier-based method to solve for Bermudan derivatives, including60

options and swaptions, with XVA. We derive, in the presence of jumps, a non-linear partial integro-61

differential equation (PIDE) and its corresponding BSDE for an OTC derivative between the bank62

B and its counterparty C in the presence of CCR, bilateral collateralization, MVA, FVA and KVA.63

We extend the Fourier-based method known as the BCOS method, developed in [25], to solve the64
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BSDE under Lévy models with non-constant coefficients. As this method requires the knowledge65

of the characteristic function of the forward process, which, in the case of the Lévy process with66

variable coefficients, is not known, we will use an approximation of the characteristic function ob-67

tained by the adjoint expansion method developed in [21], [20] and extended to the defaultable68

Lévy process with a state-dependent jump measure in [1]. Compared to other state-of-the-art69

methods for calculating XVAs, like Monte Carlo methods and PDE solvers, our method is both70

more efficient and multipurpose. Furthermore we propose an alternative Fourier-based method for71

explicitly pricing the CVA term in case of unilateral CCR for Bermudan derivatives under the local72

Lévy model. The advantage of this method is that is allows us to use the FFT, resulting in a73

fast and efficient calculation. The Greeks, used for hedging CVA, can be computed at almost no74

additional cost.75

The rest of the paper is structured as follows. In Section 2 we introduce the Lévy models with76

non-constant coefficients. In Section 3 we derive the non-linear PIDE and corresponding BSDE for77

pricing contracts under XVA. In Section 4 we propose the Fourier-based method for solving this78

BSDE and in Section 5.1 this method is extended to pricing Bermudan contracts. In Section 5.279

an alternative FFT-based method for pricing and hedging the CVA term is proposed and Section80

6 presents numerical examples validating the accuracy and efficiency of the proposed methods.81

2. The model. We consider a defaultable asset St whose risk-neutral dynamics are given by82

St = 1{t<ζ}e
Xt ,83

dXt = µ(t,Xt)dt+ σ(t,Xt)dWt +

∫
R
qdÑt(t,Xt−, dq),84

dÑt(t,Xt−, dq) = dNt(t,Xt−, dq)− a(t,Xt−)ν(t, dq)dt,(1)85

ζ = inf{t ≥ 0 :

∫ t

0
γ(s,Xs)ds ≥ ε},86

87

where dÑt(t,Xt−, dq) is a compensated random measure with state-dependent Lévy measure

ν(t,Xt−, dq) = a(t,Xt−)ν(dq).

The default time ζ of St is defined in a canonical way as the first arrival time of a doubly stochastic88

Poisson process with local intensity function γ(t, x) ≥ 0, and ε ∼ Exp(1) and is independent of89

Xt. This way of modeling default is also considered in a diffusive setting in [4] and for exponential90

Lévy models in [3]. Thus our model includes a local volatility function, a local jump measure, and91

a default probability which is dependent on the underlying. We define the filtration of the market92

observer to be G = FX ∨FD, where FX is the filtration generated by X and FDt := σ({ζ ≤ u}, u ≤93

t), for t ≥ 0, is the filtration of the default. Using this definition of default, the probability of94
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default is95

PD(t) := P(ζ ≤ t) = 1− e−
∫ t
0 γ(s,x)ds.(2)96

97

We assume furthermore98

∫
R
e|q|a(t, x)ν(dq) <∞.99

If we were to impose that the discounted asset price S̃t := e−rtSt is a G-martingale under the

risk-neutral measure, we get the following restriction on the drift coefficient:

µ(t, x) = γ(t, x) + r − σ2(t, x)

2
− a(t, x)

∫
R
ν(dq)(eq − 1− q),

with r being the risk-free (collateralized) rate. In the whole of the paper we assume deterministic,100

constant interest rates, while the derivations can easily be extended to time-dependent rates. The101

integro-differential operator of the process is given by (see e.g. [22])102

Lu(t, x) =∂tu(t, x) + µ(t, x)∂xu(t, x)− γ(t, x)u(t, x) +
σ2(t, x)

2
∂xxu(t, x)103

+ a(t, x)

∫
R
ν(dq)(u(t, x+ q)− u(t, x)− q∂xu(t, x)).104

105

3. XVA computation. Consider the bank B and its counterparty C, both of whom might

default. Assume the dynamics of the underlying as in (1) with γ(t, x) = 0. Define û(t, x) to be the

value to the bank of the (default risky) portfolio with valuation adjustments referred to as XVA

and u(t, x) to be the risk-free value. Note that the difference between these two values,

TVA := û(t, x)− u(t, x),

is called the total valuation adjustment and in our setting this consists of106

TVA = CVA + DVA + KVA + MVA + FVA.(3)107
108

The risk-free value u(t, x) solves a linear PIDE:109

Lu(t, x) = ru(t, x),(4)110

u(T, x) = φ(x),111
112

where L is given in (2) with γ(t, x) = 0 . Assuming the dynamics in (1), this linear PIDE can be113

solved with the methods presented in [1].114
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3.1. Derivative pricing under CCR and bilateral CSA agreements. In [2], the authors derive115

an extension to the Black-Scholes PDE in the presence of a bilateral counterparty risk in a jump-to-116

default model with the underlying being a diffusion, using replication arguments that include the117

funding costs. In [17] this derivation is extended to a multivariate diffusion setting with stochastic118

rates in the presence of CCR, assuming that both parties B and C are subject to default. To119

mitigate the CCR, both parties exchange collateral consisting of the initial margin and the variation120

margin. The parties are obliged to hold regulatory capital, the cost of which is the KVA and face the121

costs of funding uncollateralized positions, known as FVA. Both [2] and [17] extend the approach122

of [23], in which unilateral collateralization was considered. We extend their approach to derive123

the value of û(t, x) when the underlying follows the jump-diffusion defined in (1). We assume a124

one-dimensional underlying diffusion and consider all rates to be deterministic and, for ease of125

notation, constant. As it is unrealistic to assume that market participants can freely borrow and126

lend at a single risk-free interest rate, we specify different rates, defined in 3.1, for different types127

of lending.128

Rate Definition

r the risk-free rate

rR the rate received on funding secured by the underlying asset

rD the dividend rate in case the stock pays dividends

rF the rate received on unsecured funding

rB the yield on a bond of the bank B

rC the yield on the bond of the counterparty C

λB λB := rB − r
λC λC := rC − r
λF λF := rF − r
RB the recovery rate of the bank

RC the recovery rate of the counterparty
Table 3.1

Definitions of the rates used throughout this chapter.

Assume that the parties B and C enter into a derivatives contract on the spot asset that pays129

the bank B the amount φ(Xt) at maturity T . The value of this derivative to the bank at time t130

is denoted by û(t, x, JB, JC) and depends on the value of the underlying X and the default states131

JB and JC of the bank B and counterparty C.132

The cashflows are viewed from the perspective of the bank B. At the default time of either133

the counterparty or the bank, the value of the derivative to the bank û(t, x) is determined with134
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a mark-to-market rule M , which may be equal to either the derivative value û(t, x, 0, 0) prior to135

default or the risk-free derivative value u(t, x), depending on the specifications in the ISDA master136

agreement. Denote by τB and τC the random default times of the bank and the counterparty137

respectively. Define ITC to be the initial margin posted by the bank to the counterparty, IFC the138

initial margin posted by the counterparty to the bank and IV (t) to be the variation margin on139

which a rate rI is paid or received. The initial margin is constant throughout the duration of the140

contract and K(t) is the regulatory capital on which a rate of rK is paid/received. We will use the141

notation x+ = max(x, 0) and x− = min(x, 0). In a situation in which the counterparty defaults,142

the bank is already in the possession of IV + IFC . If the outstanding value M − (IV + IFC) is143

negative, the bank has to pay the full amount (M−IV −IFC)−, while if the contract has a positive144

value to the bank, it will recover only RC(M − IV − IFC)+. Using a similar argument in case the145

bank defaults, we find the following boundary conditions:146

θB := u(t, x, 1, 0) = IV − ITC + (M − IV + ITC)+ +RB(M − IV + ITC)−,147

θC := u(t, x, 0, 1) = IV + IFC +RC(M − IV − IFC)+ + (M − IV − IFC)−,148
149

so that the portfolio value at default is given by

θτ = 1τC<τBθ
C
τ + 1τB<τCθ

B
τ ,

with τ = min(τB, τC). Further we introduce the default risky, zero-recovery bonds (ZCBs) PB and150

PC with respective maturities TB and TC and face value one if the issuer has not defaulted, and151

zero otherwise. The dynamics of PB and PC are given by152

dPBt = rBP
B
t dt− PBt−dJBt ,153

dPCt = rCP
C
t dt− PCt−dJCt ,154

155

where JBt = 1τB≤t and JCt = 1τC≤t. Both counting processes JB, JC are two independent point156

processes that jump from zero to one on default of B and C with intensities γB and γC , respectively.157

We construct a hedging portolio consisting of the shorted derivative, ∆ units of X, g units of

cash, αC units of PC and αB units of PB:

Π(t) = −û(t, x) + ∆(t)Xt + αB(t)PBt + αC(t)PCt + g(t).

The shares position provides a dividend income of rD∆(t)Xtdt and requires a financing cost of158

rR∆(t)Xtdt. The seller will short the counterparty bond through a repurchase agreement and incur159

the financing costs of −rαC(t)PCt , assuming no haircut. The cashflows from the collateralization160

follow from the rate rTC received and rFC paid on the initial margin and the rate rI paid or received161
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on the collateral, depending on whether IV > 0 and the bank receives collateral or IV < 0 and the162

bank pays collateral repectively. From holding the regulatory capital we incur a cost of rKK(t).163

Finally, the rates r and rF are respectively received or paid on the surplus cash in the account:164

−û(t, x)− IV (t) + ITC − αB(t)PBt . Thus, the change in the cash account is given by165

dg(t) =[(rD − rR)∆(t)Xt − rαC(t)PCt + rTCITC − rFCIFC − rIIV (t)− rKK(t)166

+ r(−û(t, x)− IV (t) + ITC − αB(t)PBt ) + λF (−û(t, x)− IV (t) + ITC − αB(t)PBt )−]dt.167
168

Assuming the portfolio is self-financing we have169

dΠ(t) =− dû(t, x) + ∆(t)dXt + αB(t)dPBt + αC(t)dPCt + dg(t)170

=− dû(t, x) + ∆(t)µ(t, x)dt+ ∆(t)σ(t, x)dWt + ∆(t)

∫
R
qdÑt(t,Xt−, dq)171

+ αB(t)dPBt + αC(t)dPCt + dg(t).172
173

Applying Itô’s Lemma to û(t, x) gives us:174

dû(t, x) =Lû(t, x)dt+ σ(t, x)∂xû(t, x)dWt +

∫
R

(û(t, x+ q)− û(t, x))dÑ(t, x, dq)175

− (θB − û(t, x))dJBt − (θC − û(t, x))dJCt .176
177

Thus, we find,178

dΠ =− Lû(t, x)dt− σ(t, x)∂xû(t, x)dWt −
∫
R

(û(t, x+ q)− û(t, x))dÑ(t,Xt−, dq)179

+ (θB − û(t, x))dJBt + (θC − û(t, x))dJCt180

+ ∆(t)σ(t, x)dWt + ∆(t)

∫
R
qdÑt(t,Xt−, dq)− αB(t)PBt−dJ

B
t − αC(t)PCt−dJ

C
t181

+ [∆(t)(µ(t, x) + (rD − rR)x) + αB(t)λBP
B
t + αC(t)λCP

C
t182

+ (rTC + r)ITC − rFCIFC − (rI + r)IV (t)− rKK(t) + rû(t, x)183

+ λF (−û(t, x)− IV (t) + ITC − αB(t)PBt )−]dt.184
185

By choosing186

∆ = ∂xu(t, x), αB = −θ
B − û(t, x)

PB
, αC = −θ

C − û(t, x)

PC
,187

188

we hedge the Brownian motion and jump-to-default risk in the hedging portfolio, i.e.,189

dΠ =− Lû(t, x)dt−
∫
R

(û(t, x+ q)− û(t, x))dÑ(t,Xt−, dq) + ∂xû(t, x)

∫
R
qdÑt(t,Xt−, dq)190

+ [∂xû(t, x)(µ(t, x) + (rD − rR)x)− (θB − û(t, x))λB − (θC − û(t, x))λC191

+ (rTC + r)ITC − rFCIFC − (rI + r)IV (t)− rKK(t) + rû(t, x)192

+ λF (θB − IV (t) + ITC)−]dt.193
194
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Notice that we are in an incomplete market, as it is not possible to choose ∆(t) such that the195

portfolio is risk-free (due to the presence of the state-dependent jumps). Following standard ar-196

guments, see e.g. [11] and [6], we assume that an investor holds a diversified portfolio of several197

hedging portfolios and that the jumps for the different portfolios are uncorrelated. The variance of198

this ‘portfolio of portfolios’ will then be small and the expected return on the portfolio is given by199

E[dΠ] = 0.200
201

The assumption of the jump risk being diversifiable is valid if the jump parameters are adjusted202

to contain the so-called market price of risk, as can be done by e.g. fitting them from the market.203

We find the pricing PIDE to be204

Lû(t, x) =f(t, x, û(t, x), ∂xû(t, x)),(5)205
206

where we have defined207

f(t, x, û(t, x), ∂xû(t, x)) =∂xû(t, x)(µ(t, x) + (rD − rR)x)− (θB(t)− û(t, x))λB208

− (θC(t)− û(t, x))λC + (rTC + r)ITC − rFCIFC − (rI + r)IV (t)209

− rKK(t) + rû(t, x) + λF (θB − IV (t) + ITC)−,210
211

and used212

E
[∫

R
(û(t, x+ q)− û(t, x)− q∂xû(t, x))dÑ(t,Xt−, q)

]
= 0,213

214

due to the jump measure being compensated.215

3.2. BSDE representation. In this section we will cast the PIDE in (5) in the form of a216

Backward Stochastic Differential Equation. We begin by recalling the non-linear Feynman-Kac217

theorem in the presence of jumps, see e.g. [16].218

Theorem 1 (Non-linear Feynman-Kac Theorem). Consider Xt as in (1) and the BSDE219

Yt = φ(XT ) +

∫ T

t
f

(
s,Xs, Ys, Zs, a(s,Xs−)

∫
R
Vs(q)δ(s, q)ν(dq)

)
ds−

∫ T

t
ZsdWs220

−
∫ T

t

∫
R
Vs(q)dÑs(s,Xs, q),(6)221

222

where δ(t, q) is a non-negative function such that
∫
R |δ(s, q)|

2ν(dq) < ∞, T is the time horizon, f223

is the generator and φ is the terminal condition. The functions µ, σ, a and the generator f are224

assumed to be uniformly Lipschitz continuous in the space variables, for all t ∈ [0, T ]. Consider the225
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non-linear PIDE226 Lu(t, x) = f(t, x, u(t, x), ∂xu(t, x)σ(t, x), a(t, x)
∫
R(u(t, x+ q)− u(t, x))δ(t, q)ν(dq)),

u(T, x) = ψ(x).
(7)227

228

If the PIDE in (7) has a solution u(t, x) ∈ C1,2, the solution (Yt, Zt, Vt) of the FBSDE in (6) can229

be represented as230

Y t,x
s = u(s,Xt,x

s ),231

Zt,xs = ∂xu(s,Xt,x
s )σ(s,Xt,x

s ),232

V t,x
s (q) = u(s,Xt,x

s + q)− u(s,Xt,x
s ), q ∈ R,233

234

for all s ∈ [t, T ], where Y is a continuous, real-valued and adapted processes and where Z and V235

are continuous, real-valued and predictable processes.236

In our case, the BSDE corresponding to the PIDE in (5) is given by237

Yt = φ(XT ) +

∫ T

t
f(s,Xs, Ys, Zs)ds−

∫ T

t
ZsdWs −

∫ T

t

∫
R
Vs(q)dÑ(s,Xs, dq),(8)238

239

where we have defined the driver function to be240

f(t, x, y, z) =zσ(t, x)−1(µ(t, x) + (rD − rR)x)− λB(θB − y)− λC(θC − y)241

+ (rTC + r)ITC − rFCIFC − (rI + r)IV (t)− rKK(t) + ry242

+ λF (θB − IV (t) + ITC)−.243
244

3.2.1. Close-out value M = û(t, x). We derive, for completion, the driver function in the245

scenario in which the close-out value has a mark-to-market rule M equal to û, the risky portfolio246

value. Then the driver function has the following form247

f(t, x, y, z) =zσ(t, x)−1(µ(t, x) + (rD − rR)x)− rKK(t)248

+ (rTC + rB)ITC − (rFC + λC)IFC − (rI + rB + λC)IV (t)249

+ (rB + λC)y − λB((y − IV (t) + ITC)+ +RB(y − IV (t) + ITC)−)250

− λC(RC(y − IV (t)− IFC)+ + (y − IV (t)− IFC)−)251

− λF (y − IV (t) + ITC)−,252
253

where we have used (y − IV (t) + ITC)+ +RB(y − IV (t) + ITC)+ = (y − IV (t) + ITC)−.254
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3.2.2. Close-out value M = u(t, x). We also consider the case of the close-out value being255

equal to u, the risk-free portflio value. This convention is most often used in the industry. In this256

case the driver function becomes257

f(t, x, y, z) =zσ(t, x)−1(µ(t, x) + (rD − rR)x) + (rB + λC)y258

− rKK(t)− (rTC + rB)ITC − (rFC + λC)IFC − (rI + rB + λC)IV (t)259

− λB((u− IV (t) + ITC)+ +RB(u− IV (t) + ITC)−)260

− λC(RC(u− IV (t)− IFC)+ + (u− IV (t)− IFC)−)261

− λF (u− IV (t) + ITC)−,262
263

where u(t, x) is the solution to the linear PIDE given in (4) so that the driver function is linear in264

y. This results in a linear PIDE which can be solved with the method in [1], without the use of265

BSDEs.266

3.2.3. A simplified driver function. Following [12], one can derive that the KVA is a function267

of trade properties (i.e. maturity, strike) and/or the exposure at default, which in turn is a function268

of the portfolio value, so that the cost of holding the capital can be rewritten as269

rKK(t) = rKc1û(t, x),270
271

with c1 being a function of the trade properties. The collateral is paid when the portfolio has a272

negative value, and received when the collateral has a positive value. Assuming the collateral is a273

multiple of the portfolio value we have274

IV (t) = c2û(t, x),275
276

where c2 is some constant. Then, the driver function is simply a function of the portfolio value and277

its first derivative.278

Remark 2. Note that in the case of ‘no collateralization’ or ‘perfect collateralization’, the driver279

function reduces to f(t, û(t, x)) = ru(t) max(û(t, x), 0), for a function ru here left unspecified. In280

this case the BSDE is similar to the one considered in [24].281

4. Solving FBSDEs. In this section we extend the BCOS method from [25] to solving FBSDEs282

under local Lévy models with variable coefficients and jumps. The conditional expectations result-283

ing from the discretization of the FBSDE are approximated using the COS method. This requires284

the characteristic function, which we approximate using the Adjoint Expansion Method of [21] and285

[1].286
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4.1. Discretization of the BSDE. Consider the forward process Xt as in (1) and the BSDE287

Yt as in (8). Define a partition 0 = t0 < t1 < ... < tN = T of [0, T ] with a fixed time step288

∆t = tn+1 − tn, for n = N − 1, ...0. Rewriting the set of FBSDEs we find,289

Xn+1 =Xn +

∫ tn+1

tn

µ(s,Xs)ds+

∫ tn+1

tn

σ(s,Xs)dWs +

∫ tn+1

tn

∫
R
qdÑs(s,Xs−, dq),290

Yn =Yn+1 +

∫ tn+1

tn

f (s,Xs, Ys, Zs) ds−
∫ tn+1

tn

ZsdWs −
∫ tn+1

tn

∫
R
Vs(q)dÑs(s,Xs−, dq).(9)291

292

One can obtain an approximation of the process Yt by taking conditional expectations with respect293

to the underlying filtration Gn, using the independence of Wt and Ñt(t,Xt−, dq) and by approxi-294

mating the integrals that appear with a theta method, as first done in [26] and extended to BSDEs295

with jumps in [25]:296

Yn ≈ En[Yn+1] + ∆tθ1f (tn, Xn, Yn, Zn) + ∆t(1− θ1)En [f (tn+1, Xn+1, Yn+1, Zn+1)] .297
298

Let ∆Ws := Ws−Wn for tn ≤ s ≤ tn+1. Multiplying both sides of equation (9) by ∆Wn+1, taking299

conditional expectations and applying the theta-method gives300

Zn ≈ −θ−12 (1− θ2)En[Zn+1] +
1

∆t
θ−12 En[Yn+1∆Wn+1]301

+ θ−12 (1− θ2)En [f (tn+1, Xn+1, Yn+1, Zn+1) ∆Wn+1] .302
303

Since in our scheme the terminal values are functions of time t and the Markov process X, it is304

easily seen that there exist deterministic functions y(tn, x) and z(tn, x) so that305

Yn = y(tn, Xn), Zn = z(tn, Xn).306
307

The functions y(tn, x) and z(tn, x) are obtained in a backward manner using the following scheme308

y(tN , x) =φ(x), z(tN , x) = ∂xφ(x)σ(tN , x),309

for n = N − 1, ..., 0:310

y(tn, x) =En[y(tn+1, Xn+1)] + ∆tθ1f (tn, x) + ∆t(1− θ1)En [f(tn+1, Xn+1)] ,(10)311

z(tn, x) =− 1− θ2
θ2

En[z(tn+1, Xn+1)] +
1

∆t
θ−12 En[y(tn+1, Xn+1)∆Wn+1](11)312

+
1− θ2
θ2

En [f(tn+1, Xn+1)∆Wn+1] ,313
314

where we have simplified notations with315

f(t,Xt) := f (t,Xt, y(t,Xt), z(t,Xt)) .316
317

In the case θ1 > 0 we obtain an implicit dependence on y(tn, x) in (10) and we use P Picard318

iterations starting with initial guess En[y(tn+1, Xn+1)] to determine y(tn, x). Note that due to the319

independence of the driver function on Vs(q), we choose not to calculate Vn(q) = v(tn, Xn, q) in the320

interation. This simplifies the computation and reduces the computational time.321
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4.2. The characteristic function. Is it well-known (see, for instance, [18, Section 2.2]) that the322

price V of a European option with maturity T and payoff Φ(ST ) is given by323

Vt = 1{ζ>t}e
−r(T−t)E

[
e−

∫ T
t γ(s,Xs)dsφ(XT )|Xt

]
, t ≤ T,324

325

in the measure corresponding to the dynamics in (1) and where we have defined φ(x) := Φ(ex).326

Thus, in order to compute the price of an option, we must evaluate functions of the form327

v(t, x) := E
[
e−

∫ T
t γ(s,Xs)dsφ(XT )|Xt = x

]
.(12)328

329

Under standard assumptions, by the Feynman-Kac theorem, v can be expressed as the classical330

solution of the following Cauchy problem331 Lv(t, x) = 0, t ∈ [0, T [, x ∈ R,

v(T, x) = φ(x), x ∈ R,
332

333

with L as in (2).334

The function v in (12) can be represented as an integral with respect to the transition distri-335

bution of the defaultable log-price process logSt:336

v(t, x) =

∫
R
φ(y)Γ(t, x;T, dy).337

338

Here we notice explicitly that Γ(t, x;T, dy) is not necessarily a standard probability measure because

its integral over R can be strictly less than one; nevertheless, with a slight abuse of notation, we

say that its Fourier transform

Γ̂(t, x;T, ξ) := F(Γ(t, x;T, ·))(ξ) :=

∫
R
eiξyΓ(t, x;T, dy), ξ ∈ R,

is the characteristic function of logS. Following [21] and [1] we expand the state-dependent coeffi-

cients

s(t, x) :=
σ2(t, x)

2
, µ(t, x), γ(t, x), a(t, x),

around some point x̄. The coefficients s(t, x), γ(t, x) and a(t, x) are assumed to be continuously339

differentiable with respect to x up to order n ∈ N.340

Introduce the nth-order approximation of L in (2):341

Ln = L0 +

n∑
k=1

(
(x− x̄)kµk(t) + (x− x̄)ksk(t)∂xx − (x− x̄)kγk(t)342

+

∫
R

(x− x̄)kak(t)ν(dq)(eq∂x − 1− q∂x)
)
,343

344
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where345

L0 = ∂t + µ0(t)∂x + s0(t)∂xx − γ0(t) +

∫
R
a0(t)ν(dq)(eq∂x − 1− q∂x),346

347

and348

sk =
∂kxs(·, x̄)

k!
, γk =

∂kxγ(·, x̄)

k!
, µk(dq) =

∂kxµ(·, x̄)

k!
, ak =

∂kxa(·, x̄)

k!
k ≥ 0.349

350

The basepoint x̄ is a constant parameter which can be chosen freely. In general the simplest choice351

is x̄ = x (the value of the underlying at initial time t).352

Assume for a moment that L0 has a fundamental solution G0(t, x;T, y) that is defined as the

solution of the Cauchy problemL0G
0(t, x;T, y) = 0 t ∈ [0, T [, x ∈ R,

G0(T, ·;T, y) = δy.

In this case we define the nth-order approximation of Γ as

Γ(n)(t, x;T, y) =
n∑
k=0

Gk(t, x;T, y),

where, for any k ≥ 1 and (T, y), Gk(·, ·;T, y) is defined recursively through the following Cauchy

problem 
L0G

k(t, x;T, y) = −
k∑

h=1

(Lh − Lh−1)Gk−h(t, x;T, y) t ∈ [0, T [, x ∈ R,

Gk(T, x;T, y) = 0, x ∈ R.

Notice that353

Lk − Lk−1 =(x− x̄)kµh(t)∂x + (x− x̄)ksk(t)∂xx − (x− x̄)kγk(t)354

+

∫
R

(x− x̄)kak(t)ν(dq)(eq∂x − 1− q∂x).355
356

Correspondingly, the nth-order approximation of the characteristic function Γ̂ is defined to be357

Γ̂(n)(t, x;T, ξ) =

n∑
k=0

F
(
Gk(t, x;T, ·)

)
(ξ) :=

n∑
k=0

Ĝk(t, x;T, ξ), ξ ∈ R.358

Now, by transforming the simplified Cauchy problems into adjoint problems and solving these in359

the Fourier space we find360

Ĝ0(t, x;T, ξ) = eiξxe
∫ T
t ψ(s,ξ)ds,361

Ĝk(t, x;T, ξ) = −
∫ T

t
e
∫ T
s ψ(τ,ξ)dτF

(
k∑

h=1

(
L̃
(s,·)
h (s)− L̃(s,·)

h−1(s)
)
Gk−h(t, x; s, ·)

)
(ξ)ds,362

363
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14 A. BOROVYKH, A. PASCUCCI, C.W. OOSTERLEE

with364

ψ(t, ξ) = iξµ0(t) + s0(t)ξ
2 +

∫
R
a0ν(t, dq)(eizξ − 1− izξ),365

L̃
(t,y)
h (t)− L̃(t,y)

h−1(t) = µh(t)h(y − x̄)h−1 + µh(t)(y − x̄)h∂y − γh(t)(y − x̄)h366

+ sh(t)h(h− 1)(y − x̄)h−2 + sh(t)(y − x̄)h−1 (2h∂y + (y − x̄)∂yy)367

+

∫
R
ah(t)ν̄(dq)

(
(y + q − x̄)heq∂y − (y − x̄)h − q

(
h(y − x̄)h−1 − (y − x̄)h∂y

))
,368

369

where ν̄(dq) = ν(−dq).370

Remark 3. After some algebraic manipulations it can be shown, see [1], that the characteristic371

function approximation of order n is a function of the form372

(13) Γ̂(n)(t, x;T, ξ) := eiξx
n∑
k=0

(x− x̄)kgn,k(t, T, ξ),373

where the coefficients gn,k, with 0 ≤ k ≤ n, depend only on t, T and ξ, but not on x. The approx-374

imation formula can thus always be split into a sum of products of functions depending only on ξ375

and functions that are linear combinations of (x− x̄)meiξx, m ∈ N0.376

4.3. The COS formulae. The conditional expectations are approximated using the COS method,377

which was developed in [9] and applied to FBSDEs with jumps in [25]. The conditional expectations378

arising in the equations (10)-(11)are all of the form En[h(tn+1, Xn+1)] or En[h(tn+1, Xn+1)∆Wn+1].379

The COS formula for the first conditional expectation reads380

Exn[h(tn+1, Xn+1)] ≈
J−1∑′

j=0

Hj(tn+1)Re

(
Γ̂

(
tn, x; tn+1,

jπ

b− a

)
exp

(
ijπ
−a
b− a

))
,381

382

where
∑′

denotes an ordinary summation with the first term weighted by one-half, J > 0 is the383

number of Fourier-cosine coefficients we use, Hj(tn+1) denotes the jth Fourier-cosine coefficients of384

the function h(tn+1, x) and Γ̂ (tn, x; tn+1, ξ) is the conditional characteristic function of the process385

Xn+1 given Xn = x. For the second conditional expectation, using integration by parts, we obtain386

Exn[h(tn+1, Xn+1)∆Wn]387

≈ ∆tσ(tn, x)

J−1∑′

j=0

Hj(tn+1)Re

(
i
jπ

b− a
Γ̂

(
tn, x; tn+1,

jπ

b− a

)
exp

(
ijπ
−a
b− a

))
.388

389

See [25] for the full derivations.390
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Remark 4. Note that these formulas are obtained by using an Euler approximation of the forward391

process and using the 2nd-order approximation of the characteristic function of the actual process.392

We have found this to be more exact than using the characteristic function of the Euler process,393

which is equivalent to using just the 0th-order approximation of the characteristic function.394

Finally we need to approximate the Fourier-cosine coefficients Hj(tn+1) of h at time points tn,395

where n = 0, ..., N . The Fourier-cosine coefficient of h at time tn+1 is defined by396

Hj(tn+1) =
2

b− a

∫ b

a
h(tn+1, x) cos

(
jπ
x− a
b− a

)
dx.397

398

Due to the structure of the approximated characteristic function of the local Lévy process, see (13),

the coefficients of the functions z(tn+1, x) and the explicit part of y(tn+1, x) can be computed using

a FFT algorithm, as we do in Appendix A, because of the matrix in (20) being of a certain form.

In order to determine Fj(tn+1), the Fourier-Cosine coefficient of the function

f (tn+1, x, y(tn+1, x), z(tn+1, x)) ,

due to the intricate dependence on the functions z and y we choose to approximate the integral in399

Fj with a discrete Fourier-Cosine transform (DCT). For the DCT we compute the integrand, and400

thus the functions z(tn+1, x) and y(tn+1, x), on an equidistant x-grid. Note that in this case we can401

easily approximate all Fourier-Cosine coefficients with a DCT (instead of the FFT). If we take J402

grid points defined by xi := a+ (i+ 1
2) b−aJ and ∆x = b−a

J we find using the mid-point integration403

rule the approximation404

Hj(tn+1) ≈
2

J

J−1∑′

i=0

h(tn+1, xi) cos

(
jπ

2i+ 1

2G

)
,405

406

which can be calculated using a DCT algorithm, with the computational time being O(J log J).407

Remark 5. We define the truncation range [a, b] as follows:

[a, b] :=

[
c1 − L

√
c2 +

√
c4, c1 + L

√
c2 +

√
c4

]
,

where cn is the nth cumulant of log-price process logS, as proposed in [8]. The cumulants are408

calculated using the 0th-order approximation of the characteristic function.409

5. XVA computation for Bermudan derivatives. The method in Section 4 allows us to com-410

pute the XVA as in (3), consisting of CVA, DVA, MVA, KVA and FVA. In this section, we apply411

this method to computing Bermudan derivative values with XVA. For the CVA component in the412

XVA we develop an alternative method, which due to the ability to use the FFT results in a413

particularly efficient computation.414
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16 A. BOROVYKH, A. PASCUCCI, C.W. OOSTERLEE

5.1. XVA computation. Consider an OTC derivative contract between the bank B and the415

counterparty C with a Bermudan-type exercise possibility: there is a finite set of so-called exercise416

moments {t1, ..., tM} prior to the maturity, with 0 ≤ t1 < t2 < · · · < tM = T . The payoff from the417

point-of-view of bank B is given by Φ(tm, Xtm). Denote û(t, x) to be the risky Bermudan option418

value and c(t, x) the so-called continuation value. By the dynamic programming approach, the419

value for a Bermudan derivative with XVA and M exercise dates t1, ..., tM can be expressed by a420

backward recursion as421

û(tM , x) = Φ(tM , x),422
423

and the continuation value solves the non-linear PIDE defined in (5)424 
Lc(t, x) = f(t, x, c(t, x), ∂xc(t, x)), t ∈ [tm−1, tm[

c(tm, x) = û(tm, x)

û(tm−1, x) = max{Φ(tm−1, x), c(tm−1, x)}, m ∈ {2, . . . ,M}.

425

426

The derivative value is set to be û(t, x) = c(t, x) for t ∈]tm−1, tm[, and, if t1 > 0, also for t ∈ [0, t1[.427

The payoff function might take on various forms:428

1. (Portfolio) Following [24], we can consider Xt to the process of a portfolio which can take429

on both positive and negative values. Then, when exercised at time tm, bank B receives430

the portfolio and Φ(tm, x) = x.431

2. (Bermudan option) In case the Bermudan contract is an option, the option value to the432

bank can not have a negative value for the bank. At the same time, in case of default of433

the bank itself, the counterparty loses nothing. In this case the framework simplifies to one434

with unilateral collateralization and default risk and the payoff at time tm, if exercised, is435

given by Φ(tm, x) = (K − ex)+ for a put and Φ(tm, x) = (ex −K)+ for a call with K being436

the strike price.437

3. (Bermudan swaptions) A Bermudan swaption is an option in which the holder, bank B,438

has the right to exercise and enter into an underlying swap with fixed end date tM+1.439

If the swaption is exercised at time tm the underlying swap starts with payment dates440

Tm = {tm+1, ..., tM+1}. Working under the forward measure corresponding to the last reset441

date tM , the payoff function is given by442

Φ(tm, x) = NS

(
M∑
k=m

P (tm, tk+1, x)

P (tm, tM )
∆t

)
max(cp(S(tm, Tm, x)−K), 0),443

444

where NS is the notional, cp = 1 for a payer swaption and cp = −1 for a receiver swaption,445

P (tm, tk, x) is the price of a ZCB conditional on Xtm = x and S(tm, Tm, x) is the forward446
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swap rate given by447

S(tm, Tm, x) =

(
1− P (tm, tm+1, x)

P (tm, tM , x)

)/( M∑
k=m

P (tm, tk+1, x)

P (tm, tM , x)
∆t

)
.448

449

To solve for the continuation value we define a partition with N steps tm−1 = t0,m < t1,m <450

t2,m < ... < tn,m < ... < tN,m = tm between two exercise dates tm−1 and tm, with fixed time step451

∆tn := tn+1,m − tn,m. Applying the method developed in Section 4, we find the following time452

iteration for the continuation value and its derivative453

c(tN,m, x) = û(tm, x), z(tN,m, x) = ∂xû(tm, x)σ(tN,m, x)454

for n = N − 1, ..., 0455

c(tn,m, x) ≈ ∆tnθ1f(tn,m, x, c(tn,m, x), z(tn,m, x))456

+

J−1∑′

j=0

Ψj(x)(Cj(tn+1,m) + ∆tn(1− θ1)Fj(tn+1,m)),(14)457

z(tn,m, x) ≈
J−1∑′

j=0

−1− θ2
θ2

Zj(tn+1,m)Ψj(x)458

+

(
1

∆tnθ2
Cj(tn+1,m) +

1− θ2
θ2

Fj(tn+1,m)

)
σ(tn+1,m, x)∆tnΨ̄j(x)(15)459

460

where we have defined461

Ψj(x) = Re

(
Γ̂

(
tn,m, x; tn+1,m,

jπ

b− a

)
exp

(
ijπ
−a
b− a

))
,462

Ψ̄j(x) = Re

(
i
jπ

b− a
Γ̂

(
tn,m, x; tn+1,m,

jπ

b− a

)
exp

(
ijπ
−a
b− a

))
,463

464

and the Fourier-cosine coefficients are given by465

Cj(tn+1,m) =
2

b− a

∫ b

a
c(tn+1,m, x) cos

(
jπ
x− a
b− a

)
dx,466

Zj(tn+1,m) =
2

b− a

∫ b

a
z(tn+1,m, x) cos

(
jπ
x− a
b− a

)
dx,467

Fj(tn+1,m) =
2

b− a

∫ b

a
f(tn+1,m, x, c(tn+1,m, x), ∂xc(tn+1,m, x)) cos

(
jπ
x− a
b− a

)
dx.468

469

In order to determine the function c(tn, x), we will perform P Picard iterations. To evaluate the470

coefficients with a DCT we need to compute the integrand f(tn+1,m, x, c(tn+1,m, x), z(tn+1,m, x)) on471

the equidistant x-grid with xi, for i = 0, ..., J − 1. In order to compute this at each time step tn,m472

we thus need to evaluate c(tn,m, x) and z(tn+1,m, x) on the x-grid with J equidistant points using473

formula (14)-(15). This matrix-vector product results in a computational time of order O(J2).474
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The total algorithm for computing the value of a Bermudan contract with XVA can be sum-475

marised as in Algorithm 1 in Figure 5.1. The total computational time for the algorithm is476

O(M · N(J2 + PJ + J log J + J)), consisting of the computation for M · N times the compu-477

tation of the characteristic function on the x-grid, initialization of the Picard method, computation478

of the P Picard approximations for c(tn,m, x) and computing the Fourier coefficients Fj(tn) and479

Cj(tn).480

1. Define the x-grid with J grid points given by xi = a+ (i+ 1
2) b−aJ for i = 0, ..., J − 1.

2. Calculate the final exercise date values c(tN,M , x) = û(tM , x) and z(tN,M , x) =

∂xû(tM , x)σ(tN,M , x) on the x-grid and compute the terminal coefficients Cj(tM ),

Zj(tM ) and Fj(tM ) using the DCT.

3. Recursively for the exercise dates m = M − 1, ..., 0 do:

(a) For time steps n = N − 1, ..., 0 do:

i. Compute c(tn,m, x), z(tn,m, x) using formula (14)-(15) and use these to de-

termine f(tn,m, x, c(tn,m, x), z(tn,m, x)) on the x-grid.

ii. Subsequently, use these to determine Fj(tn,m), Zj(tn,m) and Cj(tn,m) using

the DCT.

(b) Compute the new terminal conditions c(tN,m−1, x) = max{φ(t0,m, x), c(t0,m, x)}
and z(tN,m−1, x) = ∂x max{φ(t0,m, x), c(t0,m, x)}σ(tN,m−1, x) (either analyti-

cally or numerically) and the corresponding Fourier-cosine coefficients.

4. Finally v(t0, x0) = c(t0,0, x0).

Figure 5.1. Algorithm 1: Bermudan derivative valuation with XVA

5.2. An alternative for CVA computation. In this section we present an efficient alternative

way of calculating the CVA term in (3) in the case of unilateral CCR using a Fourier-based method.

Due to the ability of using the FFT this method is considerably faster for computing the CVA than

the method presented in Section 5.1. We use the definition of CVA at time t given by

CVA(t) = û(t,Xt)− u(t,Xt),

where u(t,Xt) is as usual the default-free value of the Bermudan option, while û(t,Xt) is the value481

including default. We consider the model as defined in (1). We will compute u(t,Xt) and û(t,Xt)482

using the COS method and the approximation of the characteristic function (as derived in Section483

4.3), without default (γ(t, x) = 0) and with default respectively. In case of a default the payoff484

becomes zero. Note that the risky option value û(t, x) computed with the characteristic function485
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for a defaultable underlying corresponds exactly to the option value in which the counterparty486

might default with the probablity of default, PD(t), defined as in (2). Thus, in this case we have487

unilateral CCR and ζ = τC , the default time of the counterparty.488

Using the definition of the defaultable St, it is well-known (see, for instance, [18, Section 2.2])489

that the risky no-arbitrage value of the Bermudan option on the defaultable asset St at time t is490

û (t,Xt) = 1{ζ>t} sup
τ∈Tt

E
[
e−

∫ τ
t (r+γ(s,Xs))dsφ(τ,Xτ )|Xt

]
.491

492

493

Remark 6 (Wrong-way risk). By allowing the dependence of the default intensity on the under-494

lying, a simplified form of wrong-way risk is incorporated into the CVA valuation.495

Note that the option value at time t becomes 0 if default occurs prior to time t. For a Bermudan496

put option with strike price K, we simply have φ(t, x) = (K − x)+. By the dynamic programming497

approach, the option value can be expressed by a backward recursion as498

û(tM , x) = 1{ζ>tM}max(φ(tM , x), 0),499
500

and501

c(t, x) = E
[
e
∫ tm
t (r+γ(s,Xs))dsû(tm, Xtm)|Xt = x

]
, t ∈ [tm−1, tm[502

û(tm−1, x) = 1{ζ>tm−1}max{φ(tm−1, x), c(tm−1, x)}, m ∈ {2, . . . ,M}.(16)503
504

Thus to find the risky option price û(t,Xt) one uses the defaultable asset and in order to get505

the default-free value u(t,Xt) one uses the default-free asset by setting γ(t, x) = 0 and the CVA506

adjustment is calculated as the difference between the two. Both û(t, x) and u(t, x) are calculated507

using the approximated characteristic function and the COS method applied to the continuation508

value, as is done in [1]. Due to the characteristic function being of the form (13), we are able to509

use a FFT in the matrix-vector multiplication. For more details, refer to Appendix A.510

5.2.1. Hedging CVA. In practice CVA is hedged and thus practitioners require efficient ways511

to compute the sensitivity of the CVA with respect to the underlying. The widely used bump-512

and revalue- method, while resulting in precise calculations, might be slow to compute. Using the513

Fourier-based approach we find the following explicit formulas allowing for an easy computation of514
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the first- and second-order derivatives of the CVA with respect to the underlying:515

∆̂ = e−r(t1−t0)
J−1∑′

j=0

Re

(
eijπ

x−a
b−a

(
ijπ

b− a
gdn,0

(
t0, t1,

jπ

b− a

)
+ gdn,1

(
t0, t1,

jπ

b− a

)))
V̂ d
j (t1)516

− e−r(t1−t0)
J−1∑′

j=0

Re

(
eijπ

x−a
b−a

(
ijπ

b− a
grn,0

(
t0, t1,

jπ

b− a

)
+ grn,1

(
t0, t1,

jπ

b− a

)))
V̂ r
j (t1),517

Γ̂ = e−r(t1−t0)
J−1∑′

j=0

Re

(
eijπ

x−a
b−a

(
− ijπ

b− a
gdn,0

(
t0, t1,

jπ

b− a

)
− gdn,1

(
t0, t1,

jπ

b− a

)
518

+ 2
ijπ

b− a
gdn,1

(
t0, t1,

jπ

b− a

)
+

(
ijπ

b− a

)2

gdn,0

(
t0, t1,

jπ

b− a

)
+ 2gdn,2

(
t0, t1,

jπ

b− a

)))
V̂ d
j (t1)519

− e−r(t1−t0)
J−1∑′

j=0

Re

(
eijπ

x−a
b−a

(
− ijπ

b− a
grn,0

(
t0, t1,

jπ

b− a

)
− grn,1

(
t0, t1,

jπ

b− a

)
520

− 2
ijπ

b− a
grn,1

(
t0, t1,

jπ

b− a

)
+

(
ijπ

b− a

)2

grn,0

(
t0, t1,

jπ

b− a

)
+ 2grn,2

(
t0, t1,

jπ

b− a

)))
V̂j(t1)

r,521
522

where V d
k and V r

k are the Fourier-cosine coefficients with the defaultable and default-free charac-523

teristic functions terms, gdn,h and grn,h, respectively.524

6. Numerical experiments. In this Section we present numerical examples to justify the accu-525

racy of the methods in practice. We compute the XVA with the method presented in Section 5.1526

and the CVA in the case of unilateral CCR with the method from Section 5.2, which we show is527

more efficient for cases in which one only needs to compute the CVA.528

The computer used in the experiments has an Intel Core i7 CPU with a 2.2 GHz processor.529

We use the second-order approximation of the characteristic function. We have found this to be530

sufficiently accurate by numerical experiments and theoretical error estimates. The formulas for531

the second-order approximation are simple, making the methods easy to implement.532

6.1. A numerical example for XVA. In this section we check the accuracy of the method from533

Section 5.1. We will compute the Bermudan option value with XVA using a simplified drivers534

function f(t, û(t, x)) = −rmax(û(t, x), 0). Out method is easily extendible to the drivers functions535

in Section 3.2. Consider Xt to be a portfolio process and the payoff, if exercised at time tm, to be536

given by Φ(tm, x) = x. In this case the value we can receive at every exercise date is the value of537

the portfolio.538

Consider the model in Section 2 without default, with a local jump measure and a local volatility539
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function with CEV-like dynamics and Gaussian jumps defined by540

σ(x) = beβx,(17)541

ν(x, dq) = λeβx
1√

2πδ2
exp

(
−(q −m)2

2δ2

)
dq.(18)542

543

We assume the following parameters in equations (17)-(18), unless otherwise mentioned: b =544

0.15, β = −2, λ = 0.2, δ = 0.2, m = −0.2, r = 0.1, K = 1 and X0 = 0. In the LSM the number545

of time steps is taken to be 100 and we simulate 105 paths. In the COS method we take L = 10,546

J = 256, θ1 = 0.5 and N = 10, M = 10, making the total number of time steps N ·M = 100.547

The results of the method compared to a LSM are presented in Table 6.1. These results show548

that our method is able to solve non-linear PIDEs accurately. The CPU time of the approximating549

method depends on the number of time steps M · N and is approximately 5 · (N ·M) ms. The550

effects of the non-linear part become clear when we compare the option value with and without551

XVA. The results are presented in Figure 6.1. In Figure 6.2 we present the convergence results for552

the parameters in the COS approximation. The number of Fourier-cosine terms in the summation553

is given by J = 2d, d = 1, ..., 8, the number of exercise dates is fixed, M = 10, and the number of554

time steps between each exercise date is set at N = 1, 10.

maturity T X0 MC value with XVA COS value with XVA

0.5 0 0.03998-0.04051 0.04169

0.2 0.2326-0.2330 0.23504

0.4 0.4251-0.4254 0.4265

0.6 0.6169-0.6171 0.6172

0.8 0.8077-0.8079 0.8074

1 1.000-1.000 1.0000

1 0 007703-0.07785 0.07878

0.2 0.2611-0.2617 0.2660

0.4 0.4461-0.4465 0.4493

0.6 0.6288-0.6291 0.6311

0.8 0.8126-0.8129 0.8120

1 1.001-1.001 1.000
Table 6.1

A Bermudan put option with XVA (10 exercise dates, expiry T = 1) in the CEV-like model for the 2nd-order

approximation of the characteristic function, and a LSM.

555
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Figure 6.1. Values for a Bermudan portfolio at time t = 0 with and without XVA as a function of x. The payoff

function is Φ(tm, x) = x and the process is the CEV-like model.

Figure 6.2. Convergence of the absolute error for a Bermudan portfolio under the CEV-like model with payoff

function Φ(tm, x) = x for varying N and J .

6.2. A numerical example for CVA. In this section we validate the accuracy of the method556

presented in Section 5.2 and compute the CVA in the case of unilateral CCR under the model557

dynamics given in Section 2 with a local jump measure, a local default function and a local volatility558

function with CEV-like dynamics and Gaussian jumps defined by defined as in (18) and a local559

default function γ(x) = ceβx. We assume the same parameters as in 6.2, except r = 0.05 and we560

take c = 0.1 in the default function. In the LSM the number of time steps is taken to be 100 and561

we simulate 105 paths. In the COS method we take L = 10 and J = 100.562

The results for the CVA valuation with the FFT-based method and with LSM are presented in563

Table 6.2. The CPU time of the LSM is at least 5 times the CPU time of the approximating method,564

which for M exercise dates is approximately 3 ·M ms, thus more efficient then the computation565

of the XVA with the method in 5.1. The optimal exercise boundary in Figure 6.3 shows that the566

exercise region becomes larger when the probability of default increases; this is to be expected: in567

case of the default probability being greater, the option of exercising early is more valuable and568
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used more often.569

maturity T strike K MC CVA COS CVA

0.5 0.6 4.200 · 10−4 − 4.807 · 10−4 1.113 · 10−4

0.8 0.001525-0.001609 9.869·10−4

1 0.01254-0.01273 0.01138

1.2 0.005908-0.005931 0.005937

1.4 0.006657-0.06758 0.006898

1.6 0.007795-0.008008 0.007883

1 0.6 8.673 · 10−4 − 9.574 · 10−4 4.463 · 10−4

0.8 0.005817-0.006040 0.003535

1 0.02023-0.02054 0.01882

1.2 0.01221-0.01222 0.1272

1.4 0.01378-0.01391 0.01360

1.6 0.01532-0.01502 0.01554
Table 6.2

CVA for a Bermudan put option (10 exercise dates, expiry T = 0.5, 1) in the CEV-like model for the 2nd-order

approximation of the characteristic function, and a LSM.

Figure 6.3. Optimal exercise boundary for a Bermudan put option (10 exercise dates, expiry T = 1) in the

CEV-like model with varying default c = 0, 0.1, 0.2.

7. Conclusion. In this paper we considered pricing Bermudan derivatives under the presence570

of XVA, consisting of CVA, DVA, MVA, FVA and KVA. We derived the replicating portfolio with571
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cashflows corresponding to the different rates for different types of lending. This resulted in the572

PIDE in (5) and its corresponding BSDE (8). We propose to solve the BSDE using a Fourier-cosine573

method for the resulting conditional expectations and an adjoint expansion method for determining574

an approximation of the characteristic function of the local Lévy model in (1). This approach is575

extended to Bermudan option pricing in Section 5.1. In Section 5.2 we present an alternative576

for computing the CVA term in the case of unilateral collateralization (as is the case when the577

derivative is an option) without the use of BSDEs. This results in an even more efficient method578

due to the ability of using the FFT. We verify the accuracy of both methods in Sections 6.1 and 6.2579

by comparing it to a LSM and conclude that the method from Section 5.1 is able to price Bermudan580

options with XVA accurately and the alternative method for CVA computation from Section 5.2 is581

indeed more efficient than the BSDE method for computing just the CVA term.582

Acknowledgments. This research is supported by the European Union in the the context of583

the H2020 EU Marie Curie Initial Training Network project named WAKEUPCALL.584

Appendix A. The COS formulae. Remembering that the expected value c(t, x) in (16) can585

be rewritten in integral form, we have586

c(t, x) = e−r(tm−t)
∫
R
v(tm, y)Γ(t, x; tm, dy), t ∈ [tm−1, tm[,587

588

where, v(tm, y) can be either u(tm, y) or û(tm, y). Then we use the Fourier-cosine expansion to get589

the approximation:590

ĉ(t, x) = e−r(tm−t)
J−1∑′

j=0

Re

(
e−ijπ

a
b−a Γ̂

(
t, x; tm,

jπ

b− a

))
Vj(tm), t ∈ [tm−1, tm[(19)591

Vj(tm) =
2

b− a

∫ b

a
cos

(
jπ
y − a
b− a

)
max{φ(tm, y), c(tm, y)}dy,592

593

with φ(t, x) = (K − ex)+.594

We can recover the coefficients (Vj(tm))j=0,1,...,J−1 from (Vj(tm+1))j=0,1,...,J−1. To this end, we

split the integral in the definition of Vj(tm) into two parts using the early-exercise point x∗m, which

is the point where the continuation value is equal to the payoff, i.e. c(tm, x
∗
m) = φ(tm, x

∗
m); this

point can easily be found by using the Newton method. Thus, we have

Vj(tm) = Fj(tm, x
∗
m) + Cj(tm, x

∗
m), m = M − 1,M − 2, ..., 1,

where595

Fj(tm, x
∗
m) :=

2

b− a

∫ x∗m

a
φ(tm, y) cos

(
jπ
y − a
b− a

)
dy,

Cj(tm, x
∗
m) :=

2

b− a

∫ b

x∗m

c(tm, y) cos

(
jπ
y − a
b− a

)
dy,

596
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and Vj(tM ) = Fj(tM , logK).597

The coefficients Fj(tm, x
∗
m) can be computed analytically using x∗m ≤ logK, and by inserting598

the approximation (19) for the continuation value into the formula for Cj(tm, x
∗
m) have the following599

coefficients Ĉj for m = M − 1,M − 2, ..., 1:600

Ĉj(tm, x
∗
m) =

2e−r(tm+1−tm)

b− a
601

·
N−1∑′

k=0

Vk(tm+1)

∫ b

x∗m

Re

(
e−ikπ

a
b−a Γ̂

(
tm, x; tm+1,

kπ

b− a

))
cos

(
jπ
x− a
b− a

)
dx.602

603

From (13) we know that the nth-order approximation of the characteristic function is of the form:604

Γ̂(n)(tm, x; tm+1, ξ) = eiξx
n∑
h=0

(x− x̄)hgn,h(tm, tm+1, ξ),605

606

where the coefficients gn,h(t, T, ξ), with 0 ≤ k ≤ n, depend only on t, T and ξ, but not on x.607

Remark 7 (The defaultable and default-free characteristic functions). To find u(t, x) we use

Γ̂r(tm, x; tm+1, ξ) := eiξx
n∑
h=0

(x− x̄)hgrn,h(tm, tm+1, ξ),

the characteristic function with γ(t, x) = 0. For û(t, x) we use

Γ̂d(tm, x; tm+1, ξ) := eiξx
n∑
h=0

(x− x̄)hgdn,h(tm, tm+1, ξ),

where γ(t, x) is chosen to be some specified function.608

Using (13) we can write the Fourier coefficients of the continuation value in vectorized form as:609

Ĉ(tm, x
∗
m) =

n∑
h=0

e−r(tm+1−tm)Re
(
V(tm+1)Mh(x∗m, b)Λ

h
)
,610

611

where V(tm+1) is the vector [V0(tm+1), ..., VJ−1(tm+1)]
T andMh(x∗m, b)Λ

h is a matrix-matrix prod-612

uct with Mh a matrix with elements {Mh
k,j}

J−1
k,j=0 defined as613

Mh
k,j(x

∗
m, b) :=

2

b− a

∫ b

x∗m

eijπ
x−a
b−a (x− x̄)h cos

(
kπ
x− a
b− a

)
dx,(20)614

615

and Λh is a diagonal matrix with elements

gn,h

(
tm, tm+1,

jπ

b− a

)
, j = 0, . . . , J − 1.

One can show, see [1], that the resulting matrixMh is a sum of a Hankel and Toeplitz matrix and616

thus the resulting matrix vector product can be calculated using a FFT.617
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