Robust error bounds for ultrasonic models in the inviscid limit

Vanja Nikolić

Department of Mathematics, Radboud University joint work with Benjamin Dörich (KIT)

2024 SCS Springmeeting Rijksuniversiteit Groningen, May 2024

Based on

• Robust fully discrete error bounds for the Kuznetsov equation in the inviscid limit

with Benjamin Dörich (KIT), arXiv:2401.06492, 2024.

[Naugol'nykh, Romanenko 1958]

High amplitude-to-wavelength ratio ~> Nonlinear behavior

Ultrasound applications

Diagnostic ultrasound

• Therapeutic ultrasound

[Sapozhnikov et al. 2019]

[Kennedy 2005]

Modeling

The Kuznetsov wave equation

$$u_{tt} - c^2 \Delta u - \beta \Delta u_t = \left(\kappa u_t^2 + \ell \nabla u \cdot \nabla u\right)_t$$

[Kuznetsov 1973]

u ... acoustic velocity potential, c > 0 ... sound speed $\kappa, \ell \in \mathbb{R}$... nonlinearity coefficients

Modeling

The Kuznetsov wave equation

$$u_{tt} - c^2 \Delta u - \beta \Delta u_t = \left(\kappa u_t^2 + \ell \nabla u \cdot \nabla u\right)_t$$

[Kuznetsov 1973]

u ... acoustic velocity potential, c > 0 ... sound speed $\kappa, \ell \in \mathbb{R}$... nonlinearity coefficients $\beta \ge 0$... sound diffusivity The Kuznetsov wave equation

$$(1 - 2\kappa u_t)u_{tt} - c^2 \Delta u - \beta \Delta u_t = 2\ell \nabla u \cdot \nabla u_t$$

- Quasilinear wave evolution
- Needed to avoid degeneracy:

$$0 < \underline{\mathfrak{a}} \leq 1 - 2\kappa u_t \leq \overline{\mathfrak{a}} \quad \text{in } \Omega \times (0, T)$$

• Strongly damped if $\beta > 0$

Central question: Stability as $\beta \searrow 0$

Stability in the inviscid limit

Preserving asymptotics

Continuous setting: [Kaltenbacher & N., SIMA 2022]

Conforming FE approximation

• $\Omega \subset \mathbb{R}^d$ is a polygonal/polyhedral convex domain, $d \in \{1, 2, 3\}$

•
$$\Omega = \bigcup_{K \in \mathcal{T}_h} K$$
, K triangles/tetrahedrons

•
$${\mathcal{T}_h}_{h\in(0,\bar{h})}$$
 regular family of quasi-uniform partitions

$$V_h = \{u_h \in H^1_0(\Omega): u_h|_{\mathcal{K}} \in P_k(\mathcal{K}), \forall \mathcal{K} \in \mathcal{T}_h\}, \ k \geq 2$$

• Useful: Inverse estimates and discrete Sobolev embeddings

$$\left\|\Delta_h arphi_h
ight\|_{L^2(\Omega)} \leq Ch^{-1} \left\|
abla arphi_h
ight\|_{L^2(\Omega)}, \ \left\|arphi_h
ight\|_{L^\infty(\Omega)} \leq C \left\|\Delta_h arphi_h
ight\|_{L^2(\Omega)}$$

$$\begin{split} ((1 - 2\kappa\partial_t u_h)\partial_t^2 u_h, \varphi_h)_{L^2} - (c^2\Delta_h u_h, \varphi_h)_{L^2} - (\beta\Delta_h\partial_t u_h, \varphi_h)_{L^2} \\ - 2\ell(\nabla u_h \cdot \nabla\partial_t u_h, \varphi_h)_{L^2} = 0 \\ \end{split}$$
for all $\varphi_h \in V_h$, with $(u_h, \partial_t u_h)|_{t=0} = (\mathsf{R}_h u_0, \mathsf{R}_h v_0)$

• Needed to avoid degeneracy:

$$0 < \underline{\mathfrak{a}} \leq 1 - 2\kappa \partial_t u_h \leq \overline{\mathfrak{a}} \quad \text{in } \Omega \times (0, T)$$

Existence is first proven on an *h*-dependent interval $[0, t_h^*]$ and then extended to [0, T].

[Hochbruck, Maier, IMAJNA 2022], [Dörich, Found. Comput. Math. 2023]

Main steps

- **1** Local existence on $[0, t_h^*]$ via the Picard–Lindelöf theorem
- **2** Uniform estimate for $e_h = u_h R_h u$

Approach in the analysis

$$(1-2\kappa u_t)u_{tt}-c^2\Delta u-\beta\Delta u_t=2\ell\nabla u\cdot\nabla u_t$$

• Problematic term:

$$\ldots = 2\ell(\nabla u_h \cdot \nabla u_{h,tt}, u_{h,tt})_{L^2}$$

• Idea: Set up the analysis to exploit

$$2\ell(\nabla u \cdot \nabla e_{htt}, e_{htt})_{L^2} = -\ell(\Delta u, e_{htt}^2)_{L^2}$$

with $e_h = u_h - R_h u$

Approach in the analysis

$$(1-2\kappa u_t)u_{tt}-c^2\Delta u-\beta\Delta u_t=2\ell\nabla u\cdot\nabla u_t$$

• Testing strategy:

$$(P_{e_h}) \cdot (-\Delta_h e_h) + (P_{e_h})_t \cdot e_{h,tt}$$

• Smooth exact solution u needed and $k \ge 2$

10 / 16

Robust FE error bounds

• Set $\partial_t^2 u_h(0)$ as the solution to

$$\begin{aligned} &((1-2\kappa\partial_t u_h(0))\partial_t^2 u_h(0),\varphi_h)_{L^2} - (c^2\Delta_h u_h(0),\varphi_h)_{L^2} \\ &- (\beta\Delta_h\partial_t u_h(0),\varphi_h)_{L^2} - 2\ell(\nabla u_h(0)\cdot\nabla\partial_t u_h(0),\varphi_h)_{L^2} = 0 \end{aligned}$$

Then there exists $h_0 > 0$ and C > 0, independent of h and β , such that for all $h \le h_0$

$$\left\|\partial_t^2 u(t) - \partial_t^2 u_h(t)\right\|_{L^2(\Omega)}^2 + \left\|\nabla \partial_t u(t) - \nabla \partial_t u_h(t)\right\|_{L^2(\Omega)}^2 \leq C h^{2k}$$

for all $t \in [0, T]$.

Limiting behavior

The difference
$$\bar{u}_h = u_h^{\beta=0} - u_h$$
 solves
 $((1 - 2\kappa\partial_t u_h^{\beta=0})\partial_t^2 \bar{u}_h - 2\kappa\partial_t \bar{u}_h \partial_t^2 u_h - c^2 \Delta_h \bar{u}_h - 2\ell \nabla \bar{u}_h \cdot \nabla \partial_t u_h - 2\ell \nabla u_h^{\beta=0} \cdot \nabla \partial_t \bar{u}_h, \varphi_h)_{L^2} = -\beta (\Delta_h \partial_t u_h, \varphi_h)_{L^2}$

Limiting behavior

The difference
$$\bar{u}_h = u_h^{\beta=0} - u_h$$
 solves
 $((1 - 2\kappa\partial_t u_h^{\beta=0})\partial_t^2 \bar{u}_h - 2\kappa\partial_t \bar{u}_h \partial_t^2 u_h - c^2 \Delta_h \bar{u}_h - 2\ell \nabla \bar{u}_h \cdot \nabla \partial_t u_h - 2\ell \nabla u_h^{\beta=0} \cdot \nabla \partial_t \bar{u}_h, \varphi_h)_{L^2} = -\beta (\Delta_h \partial_t u_h, \varphi_h)_{L^2}$

Main steps

- **1** Testing the difference equation with $\phi_h = \partial_t \bar{u}_h$
- 2 Relying on the obtained uniform bounds and

$$\beta \int_0^t (\nabla \partial_t u_h, \nabla \partial_t \bar{u}_h)_{L^2} \, \mathrm{d}s$$

= $\beta (\nabla \partial_t u_h(t), \nabla \bar{u}_h(t))_{L^2} - \int_0^t (\nabla \partial_t^2 u_h, \nabla \bar{u}_h)_{L^2} \, \mathrm{d}s$

Theorem. [Dörich & N., 2024] Under the previous assumptions, for $h \in (0, h_0]$, the family $\{u_h\}_{\beta \in (0,\bar{\beta}]}$ converges in the energy norm to $u_h^{\beta=0}$ at a linear rate as $\beta \to 0$:

$$\|\partial_t u_h - \partial_t u_h^{\beta=0}\|_{L^{\infty}(L^2(\Omega))} + \|\nabla(u_h - u_h^{\beta=0})\|_{L^{\infty}(L^2(\Omega))} \leq C\beta,$$

where the constant C > 0 is independent of β and h.

A fully discrete problem

• Semi-implicit time discretization

$$((1 - 2\kappa\partial_{\tau}u_{h}^{n})\partial_{\tau}^{2}u_{h}^{n+1},\varphi_{h})_{L^{2}} - c^{2}(\Delta_{h}u_{h}^{n+1},\varphi_{h})_{L^{2}} - \beta(\Delta_{h}\partial_{\tau}u_{h}^{n+1},\varphi_{h})_{L^{2}} - 2(\ell\nabla u_{h}^{n}\cdot\nabla\partial_{\tau}u_{h}^{n+1},\varphi_{h})_{L^{2}} = 0$$

for all $arphi_h \in V_h$, $1 \leq n \leq N$, where

$$\partial_{ au} a^n = rac{1}{ au} (a^n - a^{n-1}), \ n \geq 1, \qquad \qquad \partial^{k+1}_{ au} a^n = \partial_{ au} \partial^k_{ au} a^n, \ k \geq 0$$

$$((1 - 2\kappa\partial_{\tau}u_{h}^{n})\partial_{\tau}^{2}u_{h}^{n+1},\varphi_{h})_{L^{2}} - c^{2}(\Delta_{h}u_{h}^{n+1},\varphi_{h})_{L^{2}} - \beta(\Delta_{h}\partial_{\tau}u_{h}^{n+1},\varphi_{h})_{L^{2}} - 2(\ell\nabla u_{h}^{n}\cdot\nabla\partial_{\tau}u_{h}^{n+1},\varphi_{h})_{L^{2}} = 0$$

- Analogous strategy in the analysis
- The estimates are derived for the fully discrete error

$$e_h^n = \mathsf{R}_h \widehat{u}^n - u_h^n, \quad \widehat{u}^n = u(t_n)$$

• Under the CFL condition

$$\tau \leq \mathit{Ch}^{1+d/6+2\varepsilon}$$

Preserving asymptotics on a fully discrete level

Theorem [Dörich & N., 2024] Under previous assumptions, for $h \in (0, \overline{h}]$ and $n \in \{2, ..., N + 1\}$ fixed, the following bound holds:

$$E(t_n) := \|\partial_{\tau} u_{h,\beta}^n - \partial_{\tau} u_{h,\beta=0}^n\|_{L^2(\Omega)} + \|\nabla(u_{h,\beta}^n - u_{h,\beta=0}^n)\|_{L^2(\Omega)} \leq C\beta,$$

for all n = 1, ..., N + 1, where the constant C > 0 is independent of β , h, and τ .

- 1 Robust error bounds in the inviscid limit
- **2** Convergence rates in the vanishing β limit

Thank you!