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COMPUTATIONAL ILLUMINATION OPTICS AT TU/E

@ computational illumination optics group in Math. Department
@ research tracks

- Nonimaging freeform optics
- Imaging optics
- Improved direct methods

@ collaboration with local high-tech industry

@ https://www.win.tue.nl/~martijna/Optics
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2024 WOUDSCHOTEN CONFERENCE

Computational Optics is a theme
Speakers

- Martijn Anthonissen (TU Eindhoven)
- Boris Thibert (U. Grenoble Alpes)
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ILLUMINATION OPTICS

@ optics for illumination purposes
@ geometrical optics
@ two branches: nonimaging vs. imaging optics

@ our goal: develop simulation tools for optical design
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GEOMETRICAL OPTICS

@ describes light propagation in terms of rays, ray optics

e Fermat's principle: the optical path length (OPL)
OPL = f nds
C

of a ray connecting two points attains a stationary value
@ laws of reflection/refraction
@ Euler-Lagrange equations: ray equation

@ alternative description: Hamiltonian system

TU/e
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NONIMAGING OPTICS

transfer of light between source and target

not concerned with image formation

devices: reflectors, lenses, TIR-collimator, light guides etc.
mathematics: optimal transport

application: lighting — Signify

related problem: antenna design
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IMAGING OPTICS

goal is to form a precise image of an object
study and reduce aberrations (imperfections in image)
devices: reflectors, lenses

mathematics: Lie transformations

application: EUV lithography systems — ASML

—> Lens rays
— opti

> — —— Best focus point

axis
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IMAGING OPTICS

@ typical mathematical model
ql = —[H, -]q, pl = _[H7 ']p
q(z) = exp(—z[H,-])q(0), p(z) = exp(—z[H,])p(0)

q= Q+C(Q)\/712p_7|p|27 p=p+V((q@)vn?—|pl?

etc.

@ promising alternative to classical aberration theory
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NOVEL SIMULATION TECHNIQUES

@ current standard: Monte Carlo ray tracing

@ alternative description based on phase space (space and
direction coordinates)

@ light ray = ‘point’ moving in phase space, light beam = ‘flow’
in phase space

@ governing equation: Liouville’s eq.

dp 0H dp H dp

62+%'6q 8q.8p_
@ numerical methods from CFD available

e outperforms standard ray tracing (in 2D)
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NOVEL SIMULATION TECHNIQUES

Real space Phase space: p(z,q,p) at z = 0.7

. ‘sour(‘:e . . . .
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FREEFORM OPTICAL DESIGN

@ given: source and target distributions
e ideal source: parallel, point (zero-étendue)
@ goal: design optical surface(s) (reflector/lens)

o freeform surfaces, no symmetries
Optical system

Light N N D'eS|red !lght
source distribution
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THREE MODEL SYSTEMS

@ parallel-to-far-field reflector
o parallel-to-parallel lens

@ point-to-near-field reflector
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NOMENCLATURE

e ray direction vectors: § € S? (emitted), £ € S? (transmitted)

e ray coordinates at source/target: q € R? (position), p € R?

(momentum)
@ parametrization optical system: x € S (source), y € T
(target)
STEREOGRAPHIC PROJECTIONS
@ source

- planar & = g

- point x = S[§]
@ target

- screen Yy =g

- far field y = S[¢]

e optical map y = m(x) T~
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PARALLEL-TO-FAR-FIELD REFLECTOR

e parametrization: = = qs, y = S[{]

R:z=u(x), €S8

. t
@ optical map g5 — p; = (tl)
2

@ Hamilton's mixed characteristic

Wi(gs,pt) = V(as,qt) — q¢ - Pt
V(gs,qi) = u(x) +d
d=1/|gi — =z + (L — u(z))>?

@ condition at source

oW
0qs

=0 = W=W(yy)

TU/e ©ignif
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PARALLEL-TO-FAR-FIELD REFLECTOR x = qs,y = S[t]

e W independent of L
e geometrical equation (u; = u,ug = f(W))
u(z) +up(y) = -y
@ separation of variables in LHS, quadratic cost function x - y
e multiple solution pairs (u1(x), uz(y))
@ possible solution: Legendre transform

uy () = glgg(w Y —ua(y), u(y) = max(z -y —u(z))

@ necessary condition: stationary point

Yy — Vuy (CC) =0
TU/e
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PARALLEL-TO-FAR-FIELD REFLECTOR

@ conservation of luminous flux (A c §), far-field approximation
f M(z) dA(z) = J I(F) dS()
A (A

e transform to stereographic coordinates, substitute y = m(x)

o differential form, assume det(Dm) > 0

M (x)
det(Dm) = L (Im(z)? +1)* 2 = F(x,m(x
(Dm) = (@) +1)° 7 < F(a.m(a)
y—t
@ transport boundary condition m(0S) = 0T
TU/e
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PARALLEL-TO-PARALLEL LENS

double freeform lens z

parametrization: * = qs, Yy = qs

L1:z=ui(x), €S
Lo:z2=L—-us(y), yeT

optical map gs — q;

Hamilton's point characteristic (OPL)

V(gs, qr) = u1(qs) +nd + uz(qt)
d=+/]g; — as|> + (L — uz(qy) — u1(gs))?

@ conditions at source and target
oV ov
— =0, —=0
0gs oqt TU/e
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PARALLEL-TO-PARALLEL LENS T =4dqs,Y = Qqt

OPL is constant, V(gs, ;) = Const

geometrical equation

ui(x) + u2(y) = c(x,y)

separation of variables  and y in LHS
cost function (5 =V — L)

V —n2L n
C(CE,y) = - n2_1 - 722—1\//82_ (n2—1)|y—m|2

multiple solution pairs (uj(x), u2(y))

TU/e
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PARALLEL-TO-PARALLEL LENS

@ possible solution: c-transform

(@) = max(c(@,y)—ua(y),  ua(y) = max(clz.y) v ()

@ necessary condition: stationary point
Vac(x,y) — Vui(z) =0 ()
@ substitute y = m(x) in (*), take gradient with respect to x

C(x,m(x))Dm(x) = P(x)
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PARALLEL-TO-PARALLEL LENS

@ conservation of luminous flux

@ integral form, Ac S
| M@ as@ = [ B daw)
A m(A)
f E(m(x))|det(Dm(x))| dA(x)

o differential form, assume det(Dm) > 0

det(Dm) = E?frEZ')) =: F(x,m(x))

@ transport boundary condition m(0S) = 0T

TU/e
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POINT-TO-NEAR FIELD REFLECTOR

@ parametrization: = S|[3], y = g
R:r =u(x)é,, xS
@ optical map ps = (2;) — q
@ second mixed Hamilton's characteristic function

W*(ps, @) = V(qs, qt) + gs - Ps
V(gs, @) = u(8) +d, d=+/|q. —u(8)ps|? + (L — u(8)s3)>

TU/e
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POINT-TO-NEAR FIELD REFLECTOR ’ x=S[s],y = qt‘

@ condition at source
oW

-0 W* = W*
D, = (y)

e geometrical equation (u; = u,us = W*)

uz(y) = H(z,y, u1(x))
H(x,y,2) = 2+ /|y — zps(x)|? + (L — zs3(x))2

@ no separation of variables  and y in expression for H
e for fixed x and y, H invertible: H Y(z,y,-) = G(x,y,")

TU/e
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POINT-TO-NEAR FIELD REFLECTOR

e generating function G = G(x, vy, 2)

@ location of reflector

e multiple solution pairs (u1(x), uz(y))

TU/e
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POINT-TO-NEAR FIELD REFLECTOR

@ possible solution: G-convex, H-concave pair

uy () = max G(@,y,u2(y)), wu2(y) = minH(x,y, ui(z))

e necessary condition, H(x,y) := H(x,y, ui(x))
vmﬁ[(way) =0 (*)
@ substitute y = m(x) in (*), take gradient with respect to x

C(x,m(x),u(x))Dm(x) = P(x,ui(x))
0 H
8xi8yj

~

), P(z,u1(x)) = —DapH (z, m(z))

C(z,y) = (

TU/e
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POINT-TO-NEAR FIELD REFLECTOR ’ x = S[3],y = qt‘

@ conservation of luminous flux

o integral form, e Ac 2,z e AC S

L 1(8)dS(s) = J E(y) dA(y)

m(A)

e transform to stereographic coordinates, substitute y = m(x)

o differential form, assume det(Dm) > 0

4 I(x
det(Dm) = TErRE E(n(z(zv)) =: F(x, m(x))
%A_/

@ transport boundary condition m(0S) = 0T
TU/e
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SUMMARY OF MATHEMATICAL MODELS

@ optical systems

- parallel-to-far-field reflector (Pa2FFR)
- parallel-to-parallel lens (Pa2PalL)
- point-to-near-field reflector (Po2NFR)

@ geometrical equation

Pa2FFR ui(x) +us(y) =x -y
Pa2Pal ur(x) + u2(y) = c(z, y)
Po2NFR  us(y) = H(z,y,u1(z)) <

TU/e
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SUMMARY OF MATHEMATICAL MODELS

@ matrix equation optical map: CDm = P

stationary point C P
Pa2FFR m — Vu; =0 I D?u,
Pa2Pal  Vgc(-,m) —Vu; =0 Dgye  D?up — Dgge
Po2NFR Vi H(-,m) =0 DpyH —DgoH

@ constraint: conservation of luminous flux

det(Dm) = F(xz, m(x))

TU/e
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NUMERICAL SOLUTION METHODS

@ least-squares algorithm for quadratic cost function

@ two-stage algorithm

compute optical map m : S — 7T from
det(Dm) = F(-,m), m(dS) =0T

compute optical surface from m — Vu; =0

e requirement: Dm = P with PT = P and det(P) = F

TU/e
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NUMERICAL SOLUTION METHODS

e functionals (0 < o < 1)
Ji[m, P] = ;J |IDm — P|} dz
S
Jglm,b] = 1 fﬁ |m — bl2ds
oS

J[m, P,b] = aJi[m, P] + (1 — o) Jg[m, b]

I[ui] = 3 L |m — Vu; |3 dz

TU/e
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NUMERICAL SOLUTION METHODS

@ iteration scheme to compute m

prl = argminpep(mk)JI[mk, P
bl = argmingg5.Jg[m", b

m*! = argmin,, ¢ v J[m, PP B

@ computation optical surface: u; = argmin, g,/ [v]

@ function spaces

P(m) = {P e CY(S)*?|P" = P,det(P) = F}
B ={be C(0S)*|b(zx) € 0T}
M = C?*(S)?
U=C*S)
TU/e
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NUMERICAL SOLUTION METHODS

@ computation P

- point-wise constrained minimization
- constraints on det(P) and tr(P)
- exact solution possible

@ computation b
- point-wise projection of m on 07

e computation m: set 6J|m, P,b](n) =0
e resulting BVP (I =1,2)

V2ml=V-pl, xeS
I—aym+aVm-n=(1—a)by+ap;-n, xedS

TU/e
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NUMERICAL SOLUTION METHODS

@ computation u;: set 0I[u1](v) =0

@ resulting Neumann BVP

V2u1:V-m, rxeS

Vur-n=m-n, xe€dsS
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NUMERICAL SOLUTION METHODS

@ least-squares algorithm, modifications for non-quadratic cost
function

@ two-stage algorithm

compute optical map m : S — 7T from
CDm = P, det(P)=det(C)F, m(dS) =0T

compute optical surface from V,c(-,m) —Vu; =0
e functionals (0 < a < 1)
Ji[m, P] = ;J |CDm — P|}da

Iu1] = J |V ze( — V|3 de

TU/e
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NUMERICAL SOLUTION METHODS

e function space for P
P(m) = {P e C'(S)*?|PT = P,det(P) = det(C)F}
@ computation m, coupled BVP for m
V.- (CTCDm)=V.(C'P), zeS
(1-—a)ym+a(CTCDmM)A = (1 —a)b+aC'Pn, xedS

@ space discretization: FVM

@ computation uq, Neumann BVP for u;

V2u; =V -Vye(,m), zeS
Vui-n=Vyce(-,m)-n, xedS

TU/e

JAN TEN THIJE BOONKKAMP INVERSE METHODS FOR FREEFORM OPTICAL DESIGN 34 /41



NUMERICAL SOLUTION METHODS

@ least-squares algorithm, modification for generating function

@ algorithm

compute optical map from
CDm = P, det(P)=det(C)F, m(dS)=27T
note: C = C(x,m,u,), F = F(x,m,u;)

compute optical surface from
VeH(-,m,u)+ H,(-,m,u;)Vu; =0

e functional
I[ulam] = %J ‘va(ama Ul) + HZ('7m>u1)vu1‘§dx
S

TU/e

JAN TEN THIJE BOONKKAMP INVERSE METHODS FOR FREEFORM OPTICAL DESIGN

35/41



NUMERICAL SOLUTION METHODS

@ iteration scheme

Pl = argmin pep (k) Ji [m*, P]

o
ol
+
—
|

= argming.zJp[m", b]
m*t! = argmin,, ¢ v J[m, P*TL bR

— : k+1
wy" " = argmin, g J[v, m |

@ computation uq included in iteration
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NUMERICAL EXAMPLE

double freeform lens for laser beam shaping

Source emittance distribution

Target illuminance distribution

source emittance (left), target illuminance (middle) and ray-traced
target illuminance (right)

TU/e
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NUMERICAL EXAMPLE

double freeform lens for laser beam shaping

o~
X0 <0

A p

2,

2 2,

2
o
X, X
1.
2 o 5 10 15 2 0 5 10 15
z z

convex (left) and concave entrance surface (right)
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PARALLEL-TO-NEAR-FIELD REFLECTOR

uniform source and SIAM logo target distribution

my

W Incooperation with
M®

Society for Industrial and
Applied Mathematics

o
=
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CONCLUSIONS

mathematical /numerical methods for freeform optical design
based on Hamilton’s characteristic functions

combine optical map with conservation of luminous flux
solution method: iteration scheme with least-squares solvers
complicated source/target distributions possible, high contrast

code rewritten to production code
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COMPUTATIONAL ILLUMINATION OPTICS GROUP

@ 4 vacancies for PhD students this year
@ 5 more in 2025

@ see: https://www.win.tue.nl/~martijna/Optics
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