

Scaling the Memory Wall for Sparse Iterative Solvers

Jonas Thies Delft High Performance Computing Center

Christie Alappatt, Gerhard Wellein & Georg Hager University of Erlangen-Nuremberg

1m resolution (4M grid cells)

1m resolution (4M grid cells)

Actuator-Line Model

1m resolution (4M grid cells)

Actuator-Line Model

Implicit Time-Stepping

1m resolution (4M grid cells)

Actuator-Line Model

Implicit Time-Steppine

Two Sparse Systems per Time-Step

Build orthogonal basis of a Krylov subspace

$$\mathcal{K}_m(A, r_0) = \operatorname{span}\{q_1, q_2, \ldots, q_m\}$$

Using the Arnoldi process

$$AQ_k = Q_{k+1}H_k.$$

Build orthogonal basis of a Krylov subspace

$$\mathcal{K}_m(A, r_0) = \operatorname{span}\{q_1, q_2, \ldots, q_m\}$$

Using the Arnoldi process

$$AQ_k = Q_{k+1}H_k.$$

One vector requires 64MB of RAM

Build orthogonal basis of a Krylov subspace

$$\mathcal{K}_m(A, r_0) = \operatorname{span}\{q_1, q_2, \ldots, q_m\}$$

Using the Arnoldi process

$$AQ_k = Q_{k+1}H_k.$$

One vector requires 64MB of RAM Needs only 20-40 Iterations

DFLF

DFLFT

- Partially use polynomial with constant coefficients
- Fewer orthogonalization operations
- More compute-intensive 'tall&skinny' operations
- Bundle reductions
- Glue SpMV's together (Matrix-Power Kernel):

$$y^k = \sum_{k=1}^s \alpha_k A^k x$$

e polynomial with constant coefficients

- onron Oin 1 Ati nalization operations
- More nsive 'tall&skinny' operations
- Bundle rev
- Glue Sphers together (Matrix-Power Kernel):

$$y^k = \sum_{k=1}^s \alpha_k A^k x$$

- e polynomial with cor cients
- Chronie polynoma Oinie pnalization operni Inie ation insive 'Com Fev
- More my' operations
- Bundle rev
- Glue Sphers together (Matrix-Power Kernel):

$$y^k = \sum_{k=1}^s \alpha_k A^k x$$

- re polynomial with consication cients
- Fev of the polynomial with control of the polynomial with cont
- Bundle rev

s-step

her (Matrix-Power Kernel): $y^k = \sum \alpha_k A^k x$ methods k=1

- Nony' operations

her

Bundle rev

s-step methods

Polynomial preconditioners

el):

Simple Example: Neumann Polynomial Preconditioner

DELFT BLUE

Simple Example: Neumann Polynomial Preconditioner

Neumann series
$$\frac{1}{x} \approx \sum_{k=1}^{s} (1-x)^k$$

Simple Example: Neumann Polynomial Preconditioner

Neumann series
$$\frac{1}{x} \approx \sum_{k=1}^{s} (1-x)^k$$

Jacobi splitting
$$A = D - (L + U)$$

Simple Example: Neumann Polynomial Preconditioner

Jacobi splitting
$$A = D - (L + U)$$

Degree-s preconditioner

$$(D^{-1}A)^{-1}v \approx [D^{-1}(L+U)]^{s}D^{-1}v$$

TUDelft

fuDelft

TUDelft

TUDelft

TUDelft

ŤUDelft

ŤUDelft

ŤUDelft

Alappat et al, "Level-Based Blocking for Sparse Matrices: Sparse Matrix-Power-Vector Multiplication," in *IEEE Transactions on Parallel and Distributed Systems*, 2023, doi: 10.1109/TPDS.2022.3223512.

Wavefront passing through matrix.

More complicated than the Regular example seen here!

Sparse Matrix 🖾 Graph

Sparse Matrix

Example of 2D-7 Point stencil

DFLFT

IE.

Sparse Matrix 🖾 Graph

Sparse Matrix

Graph Example of 2D-7 Point stencil

DELFT

BLUE

Example of 2D-7 Point stencil

BLU

IE.

Example of 2D-7 Point stencil

DELFT

E

Example of 2D-7 Point stencil

DFI.

BLL

Example of 2D-7 Point stencil

DFI.

BLL

Preconditioner Iter. #effective SpMVs Solve time (s) Time (s)

Preconditioner	lter.	#effective SpMVs	Solve time (s)	Time (s)
None	43	43	3.72	3.83

、 、

Preconditioner	lter.	#effective SpMVs	Solve time (s)	Time (s)
None	43	43	3.72	3.83
Jacobi	24	24	1.73	1.83

、 、

Preconditioner	lter.	#effective SpMVs	Solve time (s)	Time (s)
None	43	43	3.72	3.83
Jacobi	24	24	1.73	1.83
GS	13	26	1.73	1.83

• •

Preconditioner	lter.	#effective SpMVs	Solve time (s)	Time (s)
None	43	43	3.72	3.83
Jacobi	24	24	1.73	1.83
GS	13	26	1.73	1.83
Polv(5)	6	30	1.76	2.24

、 、

Preconditioner	lter.	#effective SpMVs	Solve time (s)	Time (s)
None	43	43	3.72	3.83
Jacobi	24	24	1.73	1.83
GS	13	26	1.73	1.83
Poly(5)	6	30	1.76	2.24
RACE + Poly(5)	6	30	1.16	1.64

、 、

~

Preconditioner	lter.	#effective SpMVs	Solve time (s)	Time (s)
None	43	43	3.72	3.83
Jacobi	24	24	1.73	1.83
GS	13	26	1.73	1.83
Poly(5)	6	30	1.76	2.24
RACE + Poly(5)	6	30	1.16	1.64
Jacobi(5)	5	25	1.29	1.40

~

Preconditioner	lter.	#effective SpMVs	Solve time (s)	Time (s)
None	43	43	3.72	3.83
Jacobi	24	24	1.73	1.83
GS	13	26	1.73	1.83
Poly(5)	6	30	1.76	2.24
RACE + Poly(5)	6	30	1.16	1.64
Jacobi(5)	5	25	1.29	1.40
RACE + Jacobi(5)	5	25	0.60	0.70

ŤUDelft

Alappat et al.: A Recursive Algebraic Coloring Technique for Hardware-efficient Symmetric Sparse Matrix-vector Multiplication, ACM TOPC 7 (3), 2020

Alappat et al.: Level-based blocking for Sparse Matrices: Sparse Matrix-Power-Vector Multiplication. IEEE TPDS 34(2), 2023

Alappat et al.: Algebraic Temporal Blocking for Iterative Solvers on Multi-Core CPUs. To be submitted, will be on arXiv soon.

DCSE Summerschool next week: Linear Algebra on High Performance Computers

Paolo Bientinesi (Umeå University)

Delft

Gerhard Wellein (U. Erlangen)

Laura Grigori (EPFL)

Few places available: https://www.aanmelder.nl/143287

