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The problems to solve

We aim at developing a much faster solution method for risk
quantification and allocation under the factor-copula model.
Examples of such problems include:

▶ Economic Capital (EC) and Risk-adjusted Return on Capital
(ROROC) for the banking books;

▶ Incremental Risk Charge (IRC) and Default Risk Charge
(DRC) for the trading books;

▶ Collteralized Debt Obligation (CDO);

▶ Wrong way risk of the correlation between exposure and
default in credit valuation adjustment (CVA).



Existing methods

▶ Monte-Carlo simulation:

- Easy to implement and flexible in coping with exotic features;
- But slow convergence, especially low accuracy at standard high
quantiles;

- Risk allocation is particularly time consuming;
- The computational complexity is linear in the number of
obligors, meaning slow speed for large portfolios.

▶ Faster alternatives:

- Asymptotic approximations based on simplified model
assumptions, which might not be realistic in practice;

- FFT-based methods: the computation is still heavy.
- Wavelets-based methods: no thorough error analysis was
provided and is difficult for the industry to embrace due to
interpretability...



Why revisting Fourier methods? (1/3)

▶ In the discussion of pricing CDO tranches, O’kane (2008)
states that ”there has been a general trend away from Fourier
methods towards recursion methods”; and ”recursion is
generally faster than Fourier methods” (i.e., methods based
on the Fast Fourier Transform (FFT) algorithm).

▶ To speed up it is natural to consider the Fourier cosine
method (COS) instead of FFT; COS can directly sample the
Fourier coffiecients from the Fourier transform.



Why revisiting Fourier methods? (2/3)

▶ In the literature there have been applications of COS to solve
the credit loss distributions under the factor copula models.
E.g., [2].

▶ However, a solid theory is lacking for the error convergence,
since the portoflio loss distribution is discrete and Gibbs
phenomenon appears.



Why revisiting Fourier methods? (3/3)

▶ What is also missing in the literature, is a Fourier-based
method to allocate the portfolio-level risk measure, e.g.,
Expected Shortfal (ES), across sub-portfolio or single credits.

▶ The existing approach to risk allocation is the importance
sampling method; however how to find the alternative
sampling distribution can be a problem numerically difficult to
sovle when the portfolio is not homogeneous and reported
uncertain is high based on simulated confidence intervals.



The contribution of this work

In this work, we

▶ provide the theoretical convergence proof of applying the COS
method to recover the distribution of discrete random
variables.

▶ derive the COS formula for risk allocation via conditional VaR,
which is lacking in literature.

▶ as a by-product of the derivations, we yield a fast alternative
to MC for risk quantification.



Multifactor Gaussian Copula
The random variables xn,1≤n≤N represent the creditworthiness of
the obligors in a reference portfolio of N risky obligors, and xn’s
are correlated via a standard d−variate Gaussian random vector
Z = [Z1,Z2, · · · ,Zd ]

d . I.e., for n = 1, · · · ,N:

xn = βT
n Z+ bnεn, (1)

where

▶ βn = [βn,1, βn,2, · · · , βn,d ]T , bn =
√

1−
∑d

i=1 β
2
n,i , and

εn ∼ N(0, 1).

▶ Z ⊥ εn, and, Z and εn represent the systematic factors and
idiosyncratic factors, respectively.

▶ The obligor n defaults if and only if xn is less than the default
threshold, given as the inverse of the CDF of the standard
normal random variable at the default probability pn, i.e.

ξn = N−1(pn).



Factor Copulas with Mixed Distributions

There are factor copula models where the systematic factors and
the idiosyncratic factors follow different distributions (e.g. Oh and
Patten 2017 and the recent ECB Guide to Internal Models).
Particularly, we consider that the systematic factors follow a
d-variate t distribution. The idiosyncratic factors remain Gaussian.

Re-parametrize the equation in the Gaussian copula as

xn =
√
WβT

n Z+ bnεn. (2)

where W has an inverse gamma distribution, i.e,
W ∼ Ig (ν/2, ν/2). ν is the degrees of freedom.



The COS Method

The essence of the COS method is that, a probability density
function can be recovered from a truncated Fourier cosine series,
of which the coefficients can be extracted from the characteristics
function (ch.f), and thus, are readily available.

▶ That is, within the truncation range [a, b] of a density
function f , we have

f (x) ≈
∑′K

k=0
Ak cos

(
kπ

x − a

b − a

)
, (3)

where

Ak =
2

b − a
Re

{
φ

(
kπ

b − a

)
· exp

(
−i

kaπ

b − a

)}
with φ(·) being the ch.f. of f (x), and

∑′ indicates that the
first term in the sum is weighted by one-half.



The COS Method - Contd.

To apply COS to the portfolio loss distribution of a multifactor
copula model, we

1. first numerically evaluate the ch.f at a grid of points in the
Fourier domain, i.e., kπ x−a

b−a , 0 ≤ k ≤ K .

2. then reconstruct the CDF function of the loss by COS, i.e.

F (y) =

∫ y

a
f (x)dx =

A0

2
(y−a)+

K∑
k=1

Ak
b − a

kπ
sin

(
kπ

y − a

b − a

)
(4)

It does not reply on the assumption of Gaussian distributions!



Characteristic Function of the Portfolio Loss

1. Conditional on the common factors, defaults of the obligors
are independent Bernoulli random variables. Thus the
conditional ch.f of the total loss L =

∑
ln1xn≤ξn is

E [φL(ω)|Z ] = ΠN
n=1E

[
e iωln·1εn≤αn(zn)

]
(5)

where αn(zn) =
ξn−βT

n z
bn

2. Each expectation E
[
e iωln·1εn≤αn(zn)

]
in the product is simply

given by the analytical expression of the Bernoulli ch.f.

3. Finally, the ch.f of the portfolio loss distribution can be
obtained from the conditional ch.f E [φL(ω)|Z ] by numerically
integrating out the common factors Z.



Risk Measures via the COS Method

▶ VaR : Very simple! Given the recovered CDF of the portfolio
loss, the q-th quantile can be solved numerically, e.g., solving
P(L ≤ θ) = q via a root-searching algorithm

▶ ES: An analytical expression for ES is available, by integrating
the loss with respect to the Fourier series expansion of CDF.



Risk Allocation

Risk allocation helps identify risk concentration, e.g., identifying
the top contributors of a risk measure and quantifying their
contribution, or measuring risk contributions of all the obligors in a
specific industrial sector.

Some properties of the Euler risk allocation principle:

▶ A risk measure is decomposed as the sum of risk contributions
of the obligors/sub-portfolios in the reference portfolio.

▶ Homogenous: scaling the risk measure by a constant changes
the risk decomposition by the same scale. E.g., increasing the
loss-at-default of all the obligors by 10% would increase
VaR/ES by 10% and the risk contribution of a certain obligor
should also increase by 10%.



Euler Risk Allocation of ES

Conditional ES decomposes the ES by the Euler principle for risk
allocation. We consider the following definition:

CESn = E [1xn≤ξn · ln| L ≥ VaRα] .

Such that

ES = E

[∑
n

1xn≤ξn · ln

∣∣∣∣∣ L ≥ VaRα

]
=

∑
n

CESn



Euler Risk Allocation of ES

It then follows that

CESn = ln · P (xn ≤ ξn |L ≥ VaRα )

= ln ·
P (xn ≤ ξn, L ≥ VaRα)

P (L ≥ VaRα)

=
ln · pn
α

· P (L ≥ VaRα| xn ≤ ξn) . (6)

P (L ≥ VaRα| xn ≤ ξn) can be solved by the COS Method!



Euler Risk Allocation of ES

The coding of the COS calculation for P (L ≥ VaRα| xn ≤ ξn) can
be easily integrated into the coding of the COS calculation for the
portfolio loss distribution.

φn,L(ω) = E
[
e iωL

∣∣∣ xn ≤ ξn

]
=

E
[
e iωL · 1xn≤ξn

]
P (xn ≤ ξn)

=
1

pn
E
[
E
[
e iωL · 1xn≤ξn

∣∣∣Z = z
]]

=
1

pn
E
[(

Πj ̸=nE
[
e
iωlj ·1εj≤αj (zj )

∣∣∣Z = z
])

· E
[
e iωln·1εn≤αn(zn) · 1εn≤αn(zn)

∣∣∣Z = z
]]

(7)



Euler Risk Allocation of VaR

Conditional VaR decomposes the VaR by the Euler principle for
risk allocation.

CVaRn = E [1xn≤ξn · ln| L = VaRα] .

Such that

VaR = E

[∑
n

1xn≤ξn · ln

∣∣∣∣∣ L = VaRα

]
=

∑
n

CVaRn

The rest of the calculation follows the same steps as for the Euler
risk allocation of ES, except that we need to evaluate the
expectation conditional on a small neighborhood around VaRα.



Conditional VaR
Similar to Conditional ES, Conditional VaR decomposes the VaR
by the Euler principle for risk allocation. We consider the following
similar definition:

CVaRn = E [1xn≤ξn · ln| L = VaRα] .

So that

VaR = E

[∑
n

1xn≤ξn · ln

∣∣∣∣∣ L = VaRα

]
=

∑
n

CVaRn

It then follows that

CVaRn = ln · P (xn ≤ ξn |L = VaRα )

= ln ·
P (xn ≤ ξn, L = VaRα)

P (L = VaRα)

≈ ln ·
P (xn ≤ ξn,VaRα − ϵ ≤ L ≤ VaRα + ϵ)

P (VaRα − ϵ ≤ L ≤ VaRα + ϵ)

= ln · pn ·
P (VaRα − ϵ ≤ L ≤ VaRα + ϵ| xn ≤ ξn)

P (VaRα − ϵ ≤ L ≤ VaRα + ϵ)
(8)



Gibb’s Phenomenon and the Solution

▶ Gibb’s phenomenon: very slow or no convergence of the series
due to discontinuities in the function.

▶ Appears as overshooting and undershooting close to the
discontinuous points.

▶ It is an issue for all eigen decomposition based methods.
▶ Solutions:

▶ Fourier space filters: enhancing the decay rate of the given
Fourier coefficients without reducing the accuracy.

▶ The Lanczos filter: σ(η) = sin(πη)
πη

▶ Higher order filters, such as raised cosine filter, exponential
filter, Daubechics filter, etc.

▶ Filters in physical space: localizing the information that
determines the Fourier coefficients by means of convolution.

▶ In essence, these two types of solutions are equivalent.



Example of Bernoulli Distribution



Adjusted Formulas with Filters

▶ Portfolio loss density function is a discrete function and the
CDF is a piece-wise constant function. Thus, Gibb’s
phenomenon can have impact on the accruacy when VaR level
is close to the discountinuous points.

▶ We chose Fourier space filters, as the only modification
needed is on the Fourier coefficients.

▶ The adjusted COS formula for CDF of portfolio loss:

F (y) ≈ A0

2
(y −a)+

K∑
k=1

Akσ

(
k

K

)
b − a

kπ
sin

(
kπ

y − a

b − a

)
(9)



Error Analysis - 1/7

▶ Denote the possible realizations of L by
{0 ≤ L0 ≤ L1, · · · , Lm, · · · ,≤ LM ≤ π}.

▶ Applying the COS expansion to have

fL(x) =
∑′∞

k=0
Ak cos kx

with

Ak =
2

π
Re {φ(k)} =

2

π
Re

{
M∑

m=0

e ikLmpm

}

=
2

π

M∑
m=0

cos(kLm)pm (10)

where pm is the probability of L = Lm.



Error Analysis - 2/7

▶ Thus the Fourier cosine expansion of the probability density of
L is

fL(x) =
∑′∞

k=0

2

π

M∑
m=0

cos(kLm)pm cos kx

=
M∑

m=0

pm
∑′∞

k=0

2

π
cos(kLm) cos kx

=
M∑

m=0

pmfm(x) (11)

where

fm(x) =
∑′∞

k=0

2

π
cos(kLm) cos kx



Error Analysis - 3/7

▶ Integrating fL from 0 gives the COS CDF of L

FL(x) =
M∑

m=0

pm

[
1

π
x +

∞∑
k=1

2

kπ
cos(kLm) sin kx

]

=
M∑

m=0

pmFm(x) (12)

where

Fm(x) =
1

π
x +

∞∑
k=1

2

kπ
cos(kLm) sin kx



Error Analysis - 4/7

Then we truncate the number of series term to K and modify the
series coefficients by the filter to have

f σL (x) =
M∑

m=0

pmf
σ
m(x) (13)

and

F σ
L (x) =

M∑
m=0

pmF
σ
m(x) (14)

where

f σm(x) =
∑′K

k=0

2

π
σ(k/K ) cos(kLm) cos kx

and

F σ
m(x) =

1

π
x +

K∑
k=1

2

kπ
σ(k/K ) cos(kLm) sin kx



Error Analysis - 4/7
The key insight here is that on [−π, π],

F0(x) =
1

π
x +

∞∑
k=1

2

kπ
sin kx

is the Fourier series expansion of the function

H0(x) =

{
1 if 0 ≤ x ≤ π

−1 if − π ≤ x < 0

and that

Fm(x) =
1

π
x +

∞∑
k=1

2

kπ
cos(kLm) sin kx

is the Fourier series expansion of the function

Hm(x) =


1 if Lm ≤ x ≤ π

0 if− Lm < x < Lm

−1 if − π ≤ x < Lm



Error Analysis - 6/7

The convergence speed of the Fourier series expansion with
spectral filter for a piecewise constant function is governed by the
convergence order of the filter, as proven in [Vandeven 1991]:

▶ If we have a function f /∈ Cp−1, ie, if f (y) has a jump
discontinuity at one or more points of order smaller than, or
equal to, p − 1, the following estimate holds:

f σN (y)− f (y) ∼ O
(
N1/2−p

)
.

Given that the CDF of L is a linear combination of Hm,
weighted by pm, it follows that F

σ
L converges to the true CDF

of L at the speed as described above.



Error Analysis - 7/7

Recall that there is one extra layer of approximation: the cosine
coefficients Ak is obtained via numerical integration based on
Clenshaw-Curtis rule after we truncate the integration range with a
truncation error at the level of TOL. Let us denote the error term
from this numerical integration part as ϵ(N,TOL), which depends
on the the number of integration points N and the range
truncation tolerance TOL. Then it can be shown that this error
term propogates in our approximation of the CDF as follows:

F̂ σ
m(x) = F σ

m(x) + O(K ) · ϵ(N,TOL).



Numerical Example 1: A Small portfolio

To observe the behavior of the COS method, we first constructed a
simple portfolio with 10 obligors, one of which creates name
concentration. We consider a two-factor Gaussian copula, and a
hybrid copula with Student-t distribution for the systematic factors
and Gaussian distribution for the idiosyncratic factors.

▶ Number of obligors: 10

▶ βn,1 = 0.8, βn,2 = 0.4

▶ p1 = 0.01, pn = 0.001, n = 2, · · · ,N
▶ l1 = 10, ln = 1, n = 2, · · · ,N
▶ Degree of freedom in the t Copula: 8.



CDF Conditional on Default of One Name



Numerical Example 2: A Large portfolio

▶ Number of obligors: 1000

▶ Ratings are uniformly sampled from AAA, AA, A, BBB, BB,
B and CCC.

▶ SP PDs.

▶ Losses are uniformly sampled from [10, 1000].

▶ Create a few name concentration of CCC obligors by
multiplying the losses by a factor of 50 or 10.

▶ Factor loadings βn,1, βn,2 are randomly drawn from [0, 1].

▶ Degree of freedom in the t copula: 8



CDF of Portfolio Loss

50 60 70 80 90 100 110
COS_terms

0.10

1.00

L2
 n

or
m

L2 Norm error for CDF 
  with integration points=400 & trunc bound=1e-09

Gaussian Lanczos
Gaussian exp. p=2
Gaussian exp. p=4

50 60 70 80 90 100 110
COS_terms

0.10

1.00

L2
 n

or
m

L2 Norm error for CDF 
  with integration points=400 & trunc bound=1e-09

T Lanczos
T exp. p=2
T exp. p=4

Left: Gaussian copula. Right: T copula.



VaR of Portfolio Loss
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ES of Portfolio Loss
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CES of Portfolio Loss
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Performance



Conclusions

▶ Key insight - we can solve the problem in the Fourier domain
with the help of the COS method.

▶ For dimension less than 4, this method is possible for
real-time calculation usage, such as loan pricing.

▶ Current and future research: Tackle the curse of dimension via
various techniques.
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