Upscaling of two-phase porous-media flows with solute-dependent surface tension effects.

Sohely Sharmin¹ Manuela Bastidas¹, Carina Bringedal² and Sorin Pop¹

¹Hasselt University ²Stuttgart University

2022 Spring Meeting Dutch-Flemish Scientific Computing Society

UHASSELT

KNOWLEDGE IN ACTION

Motivation

Pore/Micro Scale

- ★ Size of nm-mm.
- \star Modelling is possible.
- \star Simulations are complicated/impossible?

Darcy/Macro Scale

- ★ Size of cm-km.
- $\star\,$ Modelling is complicated.
- $\star\,$ Simulations are possible.

2/25 Upscaling of Two-Phase Porous-Media Flows Sohely Sharmin (sohely.sharmin@uhasselt.be)

▶▶ UHASSELT

Motivation

Pore-scale models:

- $\star\,$ Flow of two immiscible and incompressible fluids.
- \star Interface separating two fluids: free boundary problem.
- \star Soluble surfact ant present in one fluid phase.
- \star Concentration-dependent surface tension.

 $\checkmark\,$ Main interest: Averaged behaviour of the system at the Darcy scale.

 $\checkmark\,$ Goal: Derive Darcy-scale models incorporating pore-scale information.

3/25 Upscaling of Two-Phase Porous-Media Flows Sohely Sharmin (sohely.sharmin@uhasselt.be)

►► UHASSELT

 S. Sharmin, M. Bastidas, C. Bringedal, I.S. Pop, Upscaling a Navier-Stokes-Cahn-Hilliard model for two-phase porous-media flow with solute-dependent surface tension effects, Appl. Anal., 2022.

4/25 Upscaling of Two-Phase Porous-Media Flows Sohely Sharmin (sohely.sharmin@uhasselt.be)

►► UHASSELT

The pore-scale model (thin strip)

Two-phase flow and transport:

- \star i = 1, 2-fluid phases.
- \star **v**⁽ⁱ⁾-fluid i velocity.
- $\star~p^{(\texttt{i})}\text{-} \text{pressure inside fluid }\texttt{i}.$
- $\star~c\text{-surfactant}$ concentration.

- $\Omega_P^{(i)}(t)$ -pore space occupied by fluid i (time dependent).
- If constant viscosity and density, momentum and mass conservation:

$$\rho^{(\mathbf{i})}\partial_t \mathbf{v}^{(\mathbf{i})} + \rho^{(\mathbf{i})} \left(\mathbf{v}^{(\mathbf{i})} \cdot \nabla \right) \mathbf{v}^{(\mathbf{i})} = -p^{(\mathbf{i})} \mathbf{I} + \mu^{(\mathbf{i})} \nabla^2 \mathbf{v}^{(\mathbf{i})}, \quad \text{in } \Omega_P^{(\mathbf{i})}(t),$$
$$\nabla \cdot \mathbf{v}^{(\mathbf{i})} = 0, \qquad \qquad \text{in } \Omega_P^{(\mathbf{i})}(t),$$
$$\partial_t c + \nabla \cdot (\mathbf{v}^{(2)}c) = D \nabla \cdot (\nabla c), \qquad \qquad \text{in } \Omega_P^{(2)}(t).$$

5/25 Upscaling of Two-Phase Porous-Media Flows Sohely Sharmin (sohely.sharmin@uhasselt.be)

▶▶ UHASSELT

The pore-scale model (thin strip)

Evolving fluid-fluid interfaces (sharp-interface formulation):

 $\star d(x, t)$ -thickness of the fluid 2 layer.

*
$$\sigma^{(i)} := -p^{(i)}\mathbf{I} + \mu^{(i)}\left(\left(\nabla \mathbf{v}^{(i)}\right) + \left(\nabla \mathbf{v}^{(i)}\right)^T\right)$$
-stress tensor.

- * $\Gamma_f(t) := \{(x, y) \in \mathbb{R}^2 | 0 < x < L, y = -l + d(x, t)\}$ -fluid-fluid interface (model unknown).
- $\Gamma_f(t)$ evolves due to flow and surface tension:

$$\begin{split} \mathbf{v}^{(\mathbf{i})} \cdot \mathbf{n} &= v_n, \\ \left[\sigma^{(\mathbf{i})} \cdot \mathbf{n}\right] \cdot \mathbf{n} &= \gamma(c) (\nabla \cdot \mathbf{n}), \\ \left[\sigma^{(\mathbf{i})} \cdot \mathbf{n}\right] \cdot \mathbf{t} &= -\mathbf{t} \cdot \nabla \gamma(c). \end{split}$$

The upscaling (thin strip)

The dimensionless analysis:

 $\begin{array}{l} \star \ \epsilon = \frac{l}{L} > 0 \text{-scale separation parameter.} \\ \star \ \nabla = (\partial_x, \frac{1}{\epsilon} \partial_y) \text{-scaling of local variable.} \\ \star \ \mathrm{M} = \frac{\mu^{(2)}}{\mu^{(1)}} \text{-viscosity ratio.} \\ \star \ \mathrm{Ca} = \frac{\mu^{(2)} \mathbf{v}_{\mathrm{ref}}}{\gamma_{\mathrm{ref}}} \text{-Capillary number.} \end{array}$

UHASSEL'

$$\begin{aligned} \epsilon^{2} \left(\partial_{t} \mathbf{v}_{\epsilon}^{(1)} + \left(\mathbf{v}_{\epsilon}^{(1)} \cdot \nabla \right) \mathbf{v}_{\epsilon}^{(1)} \right) + \nabla p_{\epsilon}^{(1)} - \frac{\epsilon^{2}}{M} \nabla^{2} \mathbf{v}_{\epsilon}^{(1)} = 0, \text{ in } \Omega_{\epsilon,P}^{(1)}(t), \\ \left[\sigma_{\epsilon}^{(1)} \cdot \mathbf{n}_{\epsilon} \right] \cdot \mathbf{n}_{\epsilon} = \frac{\epsilon^{2}}{Ca} \gamma(c_{\epsilon}) \nabla \cdot \mathbf{n}_{\epsilon}, \text{ on } \Gamma_{\epsilon,f}(t), \\ \left[\sigma_{\epsilon}^{(1)} \cdot \mathbf{n}_{\epsilon} \right] \cdot \mathbf{t}_{\epsilon} = -\frac{\epsilon^{2}}{Ca} \left(\mathbf{t}_{\epsilon} \cdot \nabla \gamma(c_{\epsilon}) \right), \text{ on } \Gamma_{\epsilon,f}(t). \end{aligned}$$

The upscaling (thin strip)

Asymptotic expansion method:

★ Assume homogenization ansatz: $v_{\epsilon}^{(\mathbf{i},\mathbf{k})}(x,y,t) = v_0^{(\mathbf{i},\mathbf{k})}(x,y,t) + \epsilon v_1^{(\mathbf{i},\mathbf{k})}(x,y,t) + \mathcal{O}(\epsilon^2).$

★ Insert expansions, equate terms of same order in ϵ and use transversal integration $\bar{v}_0^{(1,1)}(x,t) := \int_{-1+d_0}^0 v_0^{(1,1)}(x,y,t) \, dy.$

★ Derive Darcy-scale 1D model for different regimes $Ca = e^{\beta} \overline{Ca}, \beta = 0, 1, 2, 3.$

The Darcy-scale model (thin strip)

Two-phase flow with solute-dependent surface tension:

 $9/25 \quad \begin{array}{c} Upscaling \ of \ Two-Phase \ Porous-Media \ Flows \\ Sohely \ Sharmin \ (sohely.sharmin @uhasselt.be) \end{array}$

►► UHASSELT

The Darcy-scale model (thin strip)

Two-phase flow with constant surface tension:

• Capillary pressure depends on second-order derivative (curvature) of the saturation d_0 .

The numerical validation (thin strip)

Test cases:

case(i): corresponds to negative gradient of c_0 . case(ii): constant concentration. case(iii): positive gradient of c_0 .

The numerical validation (thin strip)

Comparison of the pressure (left) and the saturation (right) of the upscaled mode for the Marangoni flow.

UHASSELT

The pore-scale model (periodic porous medium)

Evolving fluid-fluid interfaces (diffuse-interface formulation):

- * $Q = (0, \infty) \times \Omega_P$ -fixed domain.
- $\star \ \phi: Q \rightarrow \mathbb{R}\text{-phase indicator.}$
- $\star \gamma(c)$ -concentration-dependent surface tension.
- * $I(\phi) = \frac{1}{2}(1+\phi)$ -characteristic function.

$$\begin{aligned} \partial_t \phi + \nabla \cdot (\mathbf{v}\phi) &= m \; \lambda \; \Delta \psi, & \text{in } Q, \\ \psi &= -\nabla \cdot (\mathcal{C}\lambda\gamma(c)\nabla\phi) + \gamma(c) \left(\frac{\mathcal{C}P'(\phi)}{\lambda} + \frac{I'(\phi)}{\beta}\right), & \text{in } Q. \end{aligned}$$

13/25 Upscaling of Two-Phase Porous-Media Flows Sohely Sharmin (sohely.sharmin@uhasselt.be)

▶ UHASSELT

The pore-scale model (periodic porous medium)

Modified flow and transport equations:

* $\rho(\phi) = \frac{\rho^{(1)} \cdot (1+\phi)}{2} + \frac{\rho^{(2)} \cdot (1-\phi)}{2}$ -density of the mixture.

 $\star~$ **v**-velocity of the mixture (volume averaged).

$$\begin{aligned} \partial_t (I(\phi)c) &+ \nabla \cdot (I(\phi)\mathbf{v}c) = \nabla \cdot (D \ I(\phi)\nabla c) , \text{in } Q, \\ \nabla \cdot \mathbf{v} &= 0, \text{in } Q, \\ \partial_t \left(\rho(\phi)\mathbf{v}\right) &+ \nabla \cdot (\rho(\phi)\mathbf{v}\otimes\mathbf{v}) - \nabla \cdot (-p\mathbf{I} + 2\mu(\phi)\mathcal{E}(\mathbf{v}) + \mathbf{v}\otimes\rho'(\phi)\lambda \ m \ \nabla\psi) \\ &= \left(\frac{\mathcal{C}}{\lambda}\gamma(c)P'(\phi) - \nabla \cdot (\mathcal{C}\lambda\gamma(c)\nabla\phi)\right)\nabla\phi + \left(\frac{\mathcal{C}\lambda}{2}|\nabla\phi|^2 + \frac{\mathcal{C}}{\lambda}P(\phi)\right)\nabla\gamma(c), \text{in } Q. \end{aligned}$$

14/25 Upscaling of Two-Phase Porous-Media Flows Sohely Sharmin (sohely.sharmin@uhasselt.be)

►► UHASSELT

The upscaling (periodic porous medium)

- \star Ω-porous media (Darcy scale).
- * $Y = (P \cup G \cup \Gamma_g)$ -Pore scale.

- Rapidly changing characteristics (at the pore scale).
- Two-scale model: separation between Darcy-scale variable **x** and Pore-scale variable $\mathbf{y} = \frac{\mathbf{x}}{\epsilon}$.

16/25 Upscaling of Two-Phase Porous-Media Flows Sohely Sharmin (sohely.sharmin@uhasselt.be)

▶ UHASSELT

The pore scale (periodic porous medium)

For every $\mathbf{x} \in \Omega$ and t > 0:

$$\nabla_{\mathbf{y}} \cdot (\mathbf{v}\phi) = \overline{\mathbf{A}_{\phi}} \lambda \Delta_{\mathbf{y}} \psi, \qquad \text{in } P,$$

$$\psi = \overline{\mathbf{A}_{\psi}}\gamma(c) \left(\frac{\mathcal{C}P'(\phi)}{\lambda} + \frac{I'(\phi)}{\beta} - \mathcal{C}\lambda\Delta_{\mathbf{y}}\phi\right), \quad \text{in } P,$$

 ϕ and ψ are Y-periodic, no flux on $\Gamma_g, \frac{1}{\Phi} \int_P \phi \, d\mathbf{y} = 2S - 1.$

The effective parameters (periodic porous medium) $(i, j \in \{1, 2\})$

$$\begin{split} \mathcal{K}_{\mathbf{i},\mathbf{j}} &:= \int_{P} \mathbf{w}_{\mathbf{i},\mathbf{j}} \, d\mathbf{y} \\ \mathcal{K}_{\mathbf{i},\mathbf{j}}^{\phi} &:= \int_{P} \mathbf{w}_{\mathbf{i},\mathbf{j}} \phi \, d\mathbf{y} \\ \mathcal{B}_{\mathbf{i},\mathbf{j}} &:= \int_{P} I(\phi) \left(\delta_{\mathbf{i}\mathbf{j}} + \partial_{y_{\mathbf{i}}} \chi_{\mathbf{j}} \right) \, d\mathbf{y} \end{split} \qquad \begin{aligned} \mathcal{M}_{\mathbf{i}}^{\phi} &:= \int_{P} \mathbf{w}_{\mathbf{i},0} \, d\mathbf{y} \\ \mathcal{H}_{\mathbf{i}} &:= \int_{P} I(\phi) \partial_{y_{\mathbf{i}}} \chi_{0} \, d\mathbf{y} \end{aligned}$$

ı.

Cell problems: For every $\mathbf{x} \in \Omega$ and t > 0

$$\begin{split} \overline{\operatorname{Eu}} \nabla_{\mathbf{y}} \Pi_0 &= -\frac{1}{\overline{\operatorname{Re}}} \nabla_{\mathbf{y}} \cdot \left(2\mu(\phi) \mathcal{E}_y(\mathbf{w}_0) \right) + \frac{1}{\overline{\operatorname{Re}} \overline{\operatorname{Ca}}} \left(\frac{\mathcal{C}}{\lambda} P'(\phi) - \mathcal{C} \lambda \Delta_{\mathbf{y}} \phi \right) \nabla_{\mathbf{y}} \phi, & \text{in } P, \\ \nabla_{\mathbf{y}} \cdot \mathbf{w}_0 &= 0, & \text{in } P, \\ \mathbf{w}_0 &= \mathbf{0}, & \text{on } \Gamma_g, \\ \Pi_0, \mathbf{w}_0 \text{ are } Y \text{-periodic and } \int_P \Pi_0 \, d\mathbf{y} = 0. \end{split}$$

UHASSELT

Sohely Sharmin (sohely.sharmin@uhasselt.be)

UHASSELT

The explicit two-scale scheme

20/25Sohely Sharmin (sohely.sharmin@uhasselt.be)

The numerical solution (periodic porous medium)

Test case 1 and 2 correspond to constant and variable surface tension, respectively.

ASSEL

The numerical solution (periodic porous medium)

Decrease in saturation due to effective parameters which depends on the phase field.

UHASSEL1

The numerical solution (periodic porous medium)

The evolution of the pore-scale phase field in the test case 1 (left) and the difference of the phase field $\delta\phi$ between the two test cases (right).

Conclusions and future work

- $\checkmark\,$ Thin strip and periodic homogenization for two-phase flow model with evolving interfaces.
- $\checkmark\,$ Rational derivation of the upscaled model from pore-scale model.
- \checkmark For thin-strip model:

Darcy type laws with Marangoni effect. Capillary pressure involving second order derivative of the

saturation.

 $\checkmark\,$ For periodic porous media:

Darcy type laws involving effective parameters. Two-scale numerical solution for two-phase flow.

Conclusions and future work

- $\checkmark\,$ Thin strip and periodic homogenization for two-phase flow model with evolving interfaces.
- $\checkmark\,$ Rational derivation of the upscaled model from pore-scale model.
- \checkmark For thin-strip model:

Darcy type laws with Marangoni effect.

Capillary pressure involving second order derivative of the saturation.

 $\checkmark\,$ For periodic porous media:

Darcy type laws involving effective parameters. Two-scale numerical solution for two-phase flow.

- \star Different flow regimes.
- $\star\,$ More robust numerical solutions (iterations and adaptive computations).

BASTIDAS OLIVARES, M. ET AL. APPL. MATH. COMPUT (2021).

▶▶ UHASSELT

Thank you for your attention!

Opening new horizons

