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Introduction - Aim

Develop a robust and efficient strategy for the modelling of wrinkles using isogeometric
analysis
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Wrinkling Basics - Energy Balance

Foundation vs Bending

Folding in a floating sheet 1

Tension vs Bending

Wrinkling in a tensioned sheet 2

1L. Pocivavsek et al. (2008). “Stress and fold localization in thin elastic membranes”. In: Science. issn: 00368075. doi: 10.1126/science.1154069

2E. Cerda et al. (2002). “Wrinkling of an elastic sheet under tension”. In: Nature 419.6907, pp. 579–580. issn: 0028-0836. doi: 10.1038/419579b

Verhelst et al. Wrinkling instabilities with IGA shells 06-05-2022 7 / 32

https://doi.org/10.1126/science.1154069
https://doi.org/10.1038/419579b


Wrinkling Basics - Energy Balance

Foundation vs Bending

Folding in a floating sheet 1

Tension vs Bending

Wrinkling in a tensioned sheet 2

1L. Pocivavsek et al. (2008). “Stress and fold localization in thin elastic membranes”. In: Science. issn: 00368075. doi: 10.1126/science.1154069

2E. Cerda et al. (2002). “Wrinkling of an elastic sheet under tension”. In: Nature 419.6907, pp. 579–580. issn: 0028-0836. doi: 10.1038/419579b

Verhelst et al. Wrinkling instabilities with IGA shells 06-05-2022 7 / 32

https://doi.org/10.1126/science.1154069
https://doi.org/10.1038/419579b


Wrinkling Basics - Buckling Instabilities

©U.S. Climate Resilience Toolkit

≡
Buckling/Wrinkling of a sheared sheet3

3W. Wong et al. (2006). “Wrinkled membranes I: experiments”. In: Journal of Mechanics of Materials and Structures 1.1, pp. 3–25. issn: 1559-3959. doi: 10.2140/jomms.2006.1.3
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Isogeometric Shell Analysis - Isogeometric Analysis

Isogeometric Analysis4 bridges Computer Aided Design
(CAD) and Finite Element Analysis (FEA) by employing the
same (‘iso’) functions for the representation of the geometry
and solutions.

S(ξ, η) =
∑
i,j

Cijϕij(ξ, η)

“Let no man ignorant of geometry enter here.” 5

4T. Hughes et al. (2005). “Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement”. In: Comput. Methods Appl. Mech. Eng. 194.39-41,
pp. 4135–4195

5J. A. Cottrell et al. (2009). Isogeometric Analysis: Toward Integration of CAD and FEA. Wiley, pp. 1–335. isbn: 9780470748732. doi: 10.1002/9780470749081
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Isogeometric Shell Analysis - Isogeometric Analysis

Multi-Patch surface S =
⋃

i Si
Control Net, Ck =

⋃
ij Cij of patches Sk ,

k = 0, 1, ...
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Isogeometric Shell Analysis - Isogeometric Kirchhoff-Love Shell

Definition (Kirchhoff Hypothesis)

In the Kirchhoff hypothesis, the following is
assumed

1 Straight lines perpendicular to the mid-plane
before deformation remain perpendicular to
the mid-surface after deformation;

2 The normals rotate such that they remain
perpendicular to the mid-surface after
deformation;

3 The normals do not experience elongation
(i.e. they are inextensible).

Verhelst et al. Wrinkling instabilities with IGA shells 06-05-2022 12 / 32



Isogeometric Shell Analysis - Variational Formulation

Variational formulation6

Find u ∈ V s.t.

N(u,φ) =

∫
Ω

n(u) : ε′(u,φ) +m(u) : κ′(u,φ)dΩ−
∫

Ω

f(u) · φ dΩ = 0 ∀φ ∈ V

With n = nαβ g̊α ⊗ g̊β and m = mαβ g̊α ⊗ g̊β the membrane force and bending moment tensors,

nαβ =

∫
[−t/2,t/2]

Sαβ dθ3 mαβ =

∫
[−t/2,t/2]

θ3S
αβ dθ3

With Sαβ the stress tensor depending on the (un)deformed geometry S̊ (S), containing linear,
hyperelastic 7 or other constitutive models.

6J. Kiendl et al. (2009). “Isogeometric shell analysis with Kirchhoff–Love elements”. In: Computer Methods in Applied Mechanics and Engineering 198.49-52, pp. 3902–3914. issn:
0045-7825. doi: 10.1016/J.CMA.2009.08.013

7J. Kiendl et al. (2015). “Isogeometric collocation methods for the Reissner–Mindlin plate problem”. In: Computer Methods in Applied Mechanics and Engineering 284, pp. 489–507.
issn: 0045-7825. doi: 10.1016/J.CMA.2014.09.011; Verhelst, H.M. et al. (2021). “Stretch-Based Hyperelastic Material Formulations for Isogeometric Kirchhoff–Love Shells with
Application to Wrinkling”. In: Computer-Aided Design 139, p. 103075. issn: 00104485. doi: 10.1016/j.cad.2021.103075
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Isogeometric Shell Analysis - Isogeometric Kirchhoff-Love Shell

Collapse of a shallow roof. Left: solution + control points; middle: solution; right: control points
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Isogeometric Shell Analysis - Trade-off

+ Geometric exactness

+ k-refinement (i.e. arbitrary smoothness across elements)

+/- No rotational degrees of freedom; but requires C 1 smooth (i.e. quadratic) basis

- Higher smoothness =⇒ bigger band-with in (stiffness) matrix
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Isogeometric Shell Analysis - Smooth Multi-Patch Analysis

Requirements

The curvature term in the variational formulation requires C1-smoothness everywhere; also on patch
boundaries.

• Mortar-based methods 8

• Weak coupling methods (e.g. penalty, Nitsche) 9

• Strong coupling methods, e.g. D-Patch, Almost-C1, Approximate-C1, Exact-C1
10

8Horger et al. 2019; Dornisch et al. 2015

9Guo et al. 2019; Coox et al. 2017; Liu et al. 2019; Herrema et al. 2019; “Coupling of non-conforming trimmed isogeometric Kirchhoff-Love shells via a projected super-penalty
approach”; Leonetti et al. 2020; Zhao et al. 2022

10Verhelst, H.M. et al. In preparation(b); Toshniwal et al. 2017; Takacs et al. 2022; Weinmüller et al. 2021; Farahat et al. In preparation
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Path-Following Methods - Basics

Arc-Length Methods

Find G (u, λ) = 0 by steps constrained
by equation f (∆u,∆λ)

1 Start at (ui , λi ), G (ui , λi ) = 0

2 Find ∆(ui ,∆λi ) s.t. G (ui , λi ) = 0
and f (∆u,∆λ) = 0

3 (ui+1, λi+1) =
(ui , λi ) + ∆(ui ,∆λi )

4 Set i = i + 1 and go to 1

Load λ
‖u
‖

G (u, λ) = 0f (∆u,∆λ) = 0
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Path-Following Methods - Within-Branch Parallelization

Parallel Adaptive ALM 11

1 Compute coarse approximation of
the path

2 Map the coarse approximation on
a parametric domain ξ ∈ [0, 1]

3 Perform fine steps in each coarse
subdomain

4 Check the distance between the
fine and coarse approximation
(using f (∆u,∆λ))

5 if ε <TOL: Rescale and mark

6 Go to 2 for marked segments

= Main; = Worker;

Load λ

‖u
‖

Curve length s

Parametric coordinate ξ

0 1

G (u, λ) = 0

∆s

0.25 0.50 0.75

∆s
2

∆s
2

X

X
!

∆s
2

∆s
2

Main

WorkersMain

11Verhelst, H.M. et al. (In preparation[a]). “An Adaptive Parallel Arc-Length Method”.
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Path-Following Methods - Bifurcations

Response

L
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Effect of initial perturbations to avoid passing bifurcation points.
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Path-Following Methods - Across-Branch Parallelism (Exploration)

Given Bifurcation detection, in addition to
bifurcation tangents, multiple branches can be
explored in parallel12
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12J. Thies et al. (2021). “Towards Scalable Automatic Exploration of Bifurcation Diagrams for Large-Scale Applications”. In: Lecture Notes in Computational Science and Engineering
139, pp. 981–989. issn: 21977100. doi: 10.1007/978-3-030-55874-1_97/FIGURES/5
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Results - Shear Wrinkling
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Conclusions and Future Work - Conclusions

• Wrinkling occurs when in membrane-like14 offshore solar platforms; hence (isogeometric) shell
modelling is used

• Isogeometric Kirchhoff-Love shells require C 1-smoothness across patch interfaces, but...
• Provide geometric exactness, arbitrary smoothness in a rotation-free setting.

• Wrinkling is a buckling instability, hence continuation methods are important
• Continuation without a priori perturbations provides robustness, and...
• Enables automatic exploration for subsequent bifurcations
• Paralellization in continuation methods can be performed across and within branches

14With finite bending stiffness because of the energy balance!
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Conclusions and Future Work - Is this open-source?

Geometry + Simulation Modules
(G+SMo, pronounced gismo)

YES!

Isogeometric analysis core github.com/gismo/gismo

Thin shell analysis github.com/gismo/gsKLShell

Arc-length methods github.com/gismo/gsStructuralAnalysis

Almost

Smooth patch coupling
github.com/gismo/gsUnstructuredSplines,
expected Summer 2022

Automatic exploration PyNCT, expected fall 2022
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