On the modeling of wrinkling instabilities using isogeometric shell analysis

Hugo Verhelst $^{1,2,\text{@}}$ Matthias Möller 1 Henk den Besten 2

1Numerical Analysis, Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS), Delft University of Technology
2Maritime and Transport Technology, Faculty of Mechanical, Maritime and Materials Engineering (3mE), Delft University of Technology

$^{\text{@}}$h.m.verhelst@tudelft.nl

06-05-2022
Outline

1 Introduction
2 Wrinkling Basics
3 Isogeometric Shell Analysis
4 Path-Following Methods
5 Results
6 Conclusions and Future Work
Outline

1 Introduction
2 Wrinkling Basics
3 Isogeometric Shell Analysis
4 Path-Following Methods
5 Results
6 Conclusions and Future Work
Introduction - Aim

Develop a robust and efficient strategy for the modelling of wrinkles using isogeometric analysis
Introduction - Aim

Membrane Wrinkling Modelling

- Continuation
- Parallel
- Isogeometric Shell Modelling
 - Automatic Exploration
 - Adaptive meshing
- Multi-patch Coupling
- Tension-Field Theory
- Applications
 - Embedded solar panels
- Verhelst et al. Wrinkling instabilities with IGA shells 06-05-2022
Introduction - Aim

Membrane Wrinkling Modelling

- Applications
- Embedded solar panels
- Automatic exploration
- Parallel
- Continuation

Isogeometric Shell Modelling

- Adaptive meshing
- Multi-patch Coupling
- Tension-Field Theory

Applications

- Embeddedsolar panels

Verhelst et al.
Wrinkling instabilities with IGA shells
Outline

1 Introduction

2 Wrinkling Basics

3 Isogeometric Shell Analysis

4 Path-Following Methods

5 Results

6 Conclusions and Future Work
Wrinkling Basics - Energy Balance

Foundation vs Bending

Folding in a floating sheet

Wrinkling in a tensioned sheet

1L. Pocivavsek et al. (2008). “Stress and fold localization in thin elastic membranes”. In: Science. ISSN: 00368075. DOI: 10.1126/science.1154069

2E. Cerda et al. (2002). “Wrinkling of an elastic sheet under tension”. In: Nature. 419.6907, pp. 579–580. ISSN: 0028-0836. DOI: 10.1038/419579b
Wrinkling Basics - Energy Balance

Foundation vs Bending

Folding in a floating sheet

Tension vs Bending

Wrinkling in a tensioned sheet

Wrinkling Basics - Buckling Instabilities

© U.S. Climate Resilience Toolkit

Wrinkling Basics - Buckling Instabilities

Buckling/Wrinkling of a sheared sheet

©U.S. Climate Resilience Toolkit

Outline

1 Introduction
2 Wrinkling Basics
3 Isogeometric Shell Analysis
4 Path-Following Methods
5 Results
6 Conclusions and Future Work
Isogeometric Analysis bridges Computer Aided Design (CAD) and Finite Element Analysis (FEA) by employing the same ('iso') functions for the representation of the geometry and solutions.

\[S(\xi, \eta) = \sum_{i,j} C_{ij} \varphi_{ij}(\xi, \eta) \]

"Let no man ignorant of geometry enter here."
Multi-Patch surface $S = \bigcup_i S_i$

Control Net, $C_k = \bigcup_{ij} C_{ij}$ of patches S_k, $k = 0, 1, \ldots$
Isogeometric Shell Analysis - Isogeometric Kirchhoff-Love Shell

Definition (Kirchhoff Hypothesis)

In the **Kirchhoff hypothesis**, the following is assumed:

1. Straight lines perpendicular to the mid-plane before deformation remain perpendicular to the mid-surface after deformation;
2. The normals rotate such that they remain perpendicular to the mid-surface after deformation;
3. The normals do not experience elongation (i.e. they are inextensible).
Isogeometric Shell Analysis - Variational Formulation

Variational formulation\(^6\)

Find \(u \in \mathcal{V}\) s.t.

\[
\mathcal{N}(u, \phi) = \int_{\Omega} n(u) : \varepsilon'(u, \phi) + m(u) : \kappa'(u, \phi) \, d\Omega - \int_{\Omega} f(u) \cdot \phi \, d\Omega = 0 \quad \forall \phi \in \mathcal{V}
\]

With \(n = n^\alpha{}^\beta \mathbf{g}_\alpha \otimes \mathbf{g}_\beta\) and \(m = m^\alpha{}^\beta \mathbf{g}_\alpha \otimes \mathbf{g}_\beta\) the membrane force and bending moment tensors,

\[
n^\alpha{}^\beta = \int_{[-t/2, t/2]} S^\alpha{}^\beta \, d\theta_3 \quad \quad m^\alpha{}^\beta = \int_{[-t/2, t/2]} \theta_3 S^\alpha{}^\beta \, d\theta_3
\]

With \(S^\alpha{}^\beta\) the stress tensor depending on the (un)deformed geometry \(\mathbf{g}' (\mathbf{S})\), containing linear, hyperelastic\(^7\) or other constitutive models.

Isogeometric Shell Analysis - Isogeometric Kirchhoff-Love Shell

Collapse of a shallow roof. Left: solution + control points; middle: solution; right: control points
Isogeometric Shell Analysis - Trade-off

+ Geometric exactness
 + k-refinement (i.e. arbitrary smoothness across elements)
 +/- No rotational degrees of freedom; but requires C^1 smooth (i.e. quadratic) basis
 - Higher smoothness \implies bigger band-with in (stiffness) matrix
Isogeometric Shell Analysis - Trade-off

+ Geometric exactness
+ k-refinement (i.e. arbitrary smoothness across elements)
+/- No rotational degrees of freedom; but requires C^1 smooth (i.e. quadratic) basis
- Higher smoothness \Rightarrow bigger band-with in (stiffness) matrix
Isogeometric Shell Analysis - Trade-off

- Geometric exactness
- k-refinement (i.e. arbitrary smoothness across elements)
+/- No rotational degrees of freedom; but requires C^1 smooth (i.e. quadratic) basis
- Higher smoothness \implies bigger band-with in (stiffness) matrix
Isogeometric Shell Analysis - Trade-off

- Geometric exactness
- k-refinement (i.e. arbitrary smoothness across elements)
+/- No rotational degrees of freedom; but requires C^1 smooth (i.e. quadratic) basis
- Higher smoothness \Rightarrow bigger band-with in (stiffness) matrix
Isogeometric Shell Analysis - Smooth Multi-Patch Analysis

Requirements

The curvature term in the variational formulation requires C_1-smoothness everywhere; also on patch boundaries.

- Mortar-based methods \(^8\)
- Weak coupling methods (e.g. penalty, Nitsche) \(^9\)
- **Strong coupling methods**, e.g. D-Patch, Almost-C_1, Approximate-C_1, Exact-C_1 \(^{10}\)

\(^8\) Horger et al. 2019; Dornisch et al. 2015

\(^{10}\) Verhelst, H.M. et al. In preparation(b); Toshniwal et al. 2017; Takacs et al. 2022; Weinmüller et al. 2021; Farahat et al. In preparation
Outline

1 Introduction
2 Wrinkling Basics
3 Isogeometric Shell Analysis
4 Path-Following Methods
5 Results
6 Conclusions and Future Work
Arc-Length Methods

Find $G(u, \lambda) = 0$ by steps constrained by equation $f(\Delta u, \Delta \lambda)$

1. Start at (u_i, λ_i), $G(u_i, \lambda_i) = 0$
2. Find $\Delta(u_i, \Delta \lambda_i)$ s.t. $G(u_i, \lambda_i) = 0$ and $f(\Delta u, \Delta \lambda) = 0$
3. $(u_{i+1}, \lambda_{i+1}) = (u_i, \lambda_i) + \Delta(u_i, \Delta \lambda_i)$
4. Set $i = i + 1$ and go to 1
Path-Following Methods - Basics

Arc-Length Methods

Find \(G(u, \lambda) = 0 \) by steps constrained by equation \(f(\Delta u, \Delta \lambda) \)

1. Start at \((u_i, \lambda_i), G(u_i, \lambda_i) = 0\)
2. Find \(\Delta(u_i, \Delta \lambda_i) \) s.t. \(G(u_i, \lambda_i) = 0 \) and \(f(\Delta u, \Delta \lambda) = 0 \)
3. \((u_{i+1}, \lambda_{i+1}) = (u_i, \lambda_i) + \Delta(u_i, \Delta \lambda_i)\)
4. Set \(i = i + 1 \) and go to 1

\[f(\Delta u, \Delta \lambda) = 0 \]
\[G(u, \lambda) = 0 \]

Load \(\lambda \)
Path-Following Methods - Basics

Arc-Length Methods

Find $G(u, \lambda) = 0$ by steps constrained by equation $f(\Delta u, \Delta \lambda)$

1. Start at (u_i, λ_i), $G(u_i, \lambda_i) = 0$
2. Find $\Delta(u_i, \Delta \lambda_i)$ s.t. $G(u_i, \lambda_i) = 0$ and $f(\Delta u, \Delta \lambda) = 0$
3. $(u_{i+1}, \lambda_{i+1}) = (u_i, \lambda_i) + \Delta(u_i, \Delta \lambda_i)$
4. Set $i = i + 1$ and go to 1

![Diagram](image.png)

$f(\Delta u, \Delta \lambda) = 0$

$G(u, \lambda) = 0$

Load λ
Path-Following Methods - Basics

Arc-Length Methods

Find $G(u, \lambda) = 0$ by steps constrained by equation $f(\Delta u, \Delta \lambda)$

1. Start at (u_i, λ_i), $G(u_i, \lambda_i) = 0$
2. Find $\Delta(u_i, \Delta \lambda_i)$ s.t. $G(u_i, \lambda_i) = 0$ and $f(\Delta u, \Delta \lambda) = 0$
3. $(u_{i+1}, \lambda_{i+1}) = (u_i, \lambda_i) + \Delta(u_i, \Delta \lambda_i)$
4. Set $i = i + 1$ and go to 1

![Diagram of path-following methods with steps 1 to 4 explained visually]
Path-Following Methods - Basics

Arc-Length Methods

Find $G(u, \lambda) = 0$ by steps constrained by equation $f(\Delta u, \Delta \lambda)$

1. Start at (u_i, λ_i), $G(u_i, \lambda_i) = 0$
2. Find $\Delta(u_i, \Delta \lambda_i)$ s.t. $G(u_i, \lambda_i) = 0$ and $f(\Delta u, \Delta \lambda) = 0$
3. $(u_{i+1}, \lambda_{i+1}) = (u_i, \lambda_i) + \Delta(u_i, \Delta \lambda_i)$
4. Set $i = i + 1$ and go to 1

Verhelst et al. Wrinkling instabilities with IGA shells 06-05-2022 18 / 32
Path-Following Methods - Basics

Arc-Length Methods

Find $G(u, \lambda) = 0$ by steps constrained by equation $f(\Delta u, \Delta \lambda)$

1. Start at (u_i, λ_i), $G(u_i, \lambda_i) = 0$
2. Find $\Delta(u_i, \Delta \lambda_i)$ s.t. $G(u_i, \lambda_i) = 0$ and $f(\Delta u, \Delta \lambda) = 0$
3. $(u_{i+1}, \lambda_{i+1}) = (u_i, \lambda_i) + \Delta(u_i, \Delta \lambda_i)$
4. Set $i = i + 1$ and go to 1

![Graph showing the path-following methods process](image)
Arc-Length Methods

Find $G(u, \lambda) = 0$ by steps constrained by equation $f(\Delta u, \Delta \lambda)$

1. Start at $(u_i, \lambda_i), G(u_i, \lambda_i) = 0$
2. Find $\Delta(u_i, \Delta \lambda_i)$ s.t. $G(u_i, \lambda_i) = 0$ and $f(\Delta u, \Delta \lambda) = 0$
3. $(u_{i+1}, \lambda_{i+1}) = (u_i, \lambda_i) + \Delta(u_i, \Delta \lambda_i)$
4. Set $i = i + 1$ and go to 1
Path-Following Methods - Basics

Arc-Length Methods

Find $G(u, \lambda) = 0$ by steps constrained by equation $f(\Delta u, \Delta \lambda)$

1. Start at (u_i, λ_i), $G(u_i, \lambda_i) = 0$
2. Find $\Delta(u_i, \Delta \lambda_i)$ s.t. $G(u_i, \lambda_i) = 0$ and $f(\Delta u, \Delta \lambda) = 0$
3. $(u_{i+1}, \lambda_{i+1}) = (u_i, \lambda_i) + \Delta(u_i, \Delta \lambda_i)$
4. Set $i = i + 1$ and go to 1
Path-Following Methods - Within-Branch Parallelization

Parallel Adaptive ALM

1. Compute coarse approximation of the path

- = Main; = Worker;

\[G(u, \lambda) = 0 \]

\[\|u\| \]

\[\Delta s \]

\[s \]

\[\lambda \]

\[\xi \in [0, 1] \]

\[G(u, \lambda) = 0 \]

\[\Delta s \]

\[0 \]

\[1 \]

\[\xi \]

\[\|u\| \]

Verhelst et al.

Wrinkling instabilities with IGA shells

06-05-2022
Path-Following Methods - Within-Branch Parallelization

Parallel Adaptive ALM 11

1. Compute coarse approximation of the path
2. Map the coarse approximation on a parametric domain $\xi \in [0, 1]$

11Verhelst, H.M. et al. (In preparation[a]). "An Adaptive Parallel Arc-Length Method".

\[G(u, \lambda) = 0 \]

\[\Delta s \]

\[\text{Main} \]

\[\text{Load } \lambda \]

\[\text{Curve length } s \]

0 0.25 0.50 0.75 1

Parametric coordinate ξ

\[\|n\| \]

\[\text{Main} \]

\[\text{Workers} \]

\[\bullet \text{ = Main; } \circ \text{ = Worker; } \]

Verhelst et al. Wrinkling instabilities with IGA shells 06-05-2022 19 / 32
Parallel Adaptive ALM\(^{11}\)

1. Compute coarse approximation of the path
2. Map the coarse approximation on a parametric domain \(\xi \in [0, 1]\)
3. Perform fine steps in each coarse subdomain

\(^{11}\) Verhelst, H.M. et al. (In preparation[a]). “An Adaptive Parallel Arc-Length Method”.

\(G(u, \lambda) = 0\)

\(\|u\|\)

\(\xi\)

\(\Delta s\)

\(\Delta \xi\)

\(\lambda\)

\(\xi\)

Main; \(\bullet\) = Worker;
Path-Following Methods - Within-Branch Parallelization

Parallel Adaptive ALM ¹¹

1. Compute coarse approximation of the path
2. Map the coarse approximation on a parametric domain $\xi \in [0, 1]$
3. Perform fine steps in each coarse subdomain

= Main; = Worker;

¹¹ Verhelst, H.M. et al. (In preparation[a]). "An Adaptive Parallel Arc-Length Method".
Path-Following Methods - Within-Branch Parallelization

Parallel Adaptive ALM

1. Compute coarse approximation of the path
2. Map the coarse approximation on a parametric domain $\xi \in [0, 1]$
3. Perform fine steps in each coarse subdomain
4. Check the distance between the fine and coarse approximation (using $f(\Delta u, \Delta \lambda)$)

\bullet = Main; \circ = Worker;

Verhelst, H.M. et al. (In preparation[a]). "An Adaptive Parallel Arc-Length Method".
Path-Following Methods - Within-Branch Parallelization

Parallel Adaptive ALM

1. Compute coarse approximation of the path
2. Map the coarse approximation on a parametric domain $\xi \in [0, 1]$
3. Perform fine steps in each coarse subdomain
4. Check the distance between the fine and coarse approximation (using $f(\Delta u, \Delta \lambda)$)
5. **if** $\varepsilon < \text{TOL}$: Rescale and mark

$L = \text{Main}; \bullet = \text{Worker};$

Parallel Adaptive ALM

1. Compute coarse approximation of the path
2. Map the coarse approximation on a parametric domain $\xi \in [0, 1]$
3. Perform fine steps in each coarse subdomain
4. Check the distance between the fine and coarse approximation (using $f(\Delta u, \Delta \lambda)$)
5. If $\varepsilon < \text{TOL}$: Rescale and mark
6. Go to 2 for marked segments

$\bullet = \text{Main}; \bullet = \text{Worker};$

Verhelst et al. Wrinkling instabilities with IGA shells 06-05-2022 19 / 32
Path-Following Methods - Bifurcations

\[G(u, \lambda) = 0 \]

Effect of initial perturbations to avoid passing bifurcation points.

Arc-Length Method without perturbations
Path-Following Methods - Bifurcations

Effect of initial perturbations to avoid passing bifurcation points.
Path-Following Methods - Bifurcations

Effect of initial perturbations to avoid passing bifurcation points.
Path-Following Methods - Bifurcations

Effect of initial perturbations to avoid passing bifurcation points.

Arc-Length Method without perturbations
Path-Following Methods - Bifurcations

Effect of initial perturbations to avoid passing bifurcation points.
Path-Following Methods - Bifurcations

Effect of initial perturbations to avoid passing bifurcation points.
Path-Following Methods - Bifurcations

Effect of initial perturbations to avoid passing bifurcation points.
Effect of initial perturbations to avoid passing bifurcation points.
Path-Following Methods - Bifurcations

Effect of initial perturbations to avoid passing bifurcation points.

Arc-Length Method without perturbations

$G(u, \lambda) = 0$
Path-Following Methods - Bifurcations

Effect of initial perturbations to avoid passing bifurcation points.
Effect of initial perturbations to avoid passing bifurcation points.

Arc-Length Method without perturbations
Path-Following Methods - Bifurcations

Effect of initial perturbations to avoid passing bifurcation points.

Arc-Length Method without perturbations
Path-Following Methods - Bifurcations

Effect of initial perturbations to avoid passing bifurcation points.

Arc-Length Method without perturbations
Effect of initial perturbations to avoid passing bifurcation points.

Arc-Length Method without perturbations.
Path-Following Methods - Bifurcations

Effect of initial perturbations to avoid passing bifurcation points.

Arc-Length Method without perturbations
Path-Following Methods - Bifurcations

Effect of initial perturbations to avoid passing bifurcation points.

Arc-Length Method without perturbations
Path-Following Methods - Bifurcations

Effect of initial perturbations to avoid passing bifurcation points. Arc-Length Method without perturbations.
Path-Following Methods - Bifurcations

Effect of initial perturbations to avoid passing bifurcation points.

Arc-Length Method without perturbations
Path-Following Methods - Bifurcations

Effect of initial perturbations to avoid passing bifurcation points.

Arc-Length Method without perturbations
Path-Following Methods - Bifurcations

$G(u, \lambda) = 0$

Effect of initial perturbations to avoid passing bifurcation points.

Arc-Length Method without perturbations
Given Bifurcation detection, in addition to bifurcation tangents, multiple branches can be explored in parallel12

\[G(u, \lambda) = 0 \]
Given **Bifurcation detection**, in addition to bifurcation tangents, multiple branches can be explored in parallel\(^\text{12}\).

\[^\text{12}\text{ J. Thies et al. (2021). “Towards Scalable Automatic Exploration of Bifurcation Diagrams for Large-Scale Applications”. In: Lecture Notes in Computational Science and Engineering 139, pp. 981–989. ISSN: 21977100. DOI: 10.1007/978-3-030-55874-1_97/FIGURES/5}\]
Given Bifurcation detection, in addition to bifurcation tangents, multiple branches can be explored in parallel\(^\text{12}\).

\[G(u, \lambda) = 0 \]

\(^{12}\) J. Thies et al. (2021). “Towards Scalable Automatic Exploration of Bifurcation Diagrams for Large-Scale Applications”. In: Lecture Notes in Computational Science and Engineering 139, pp. 981–989. ISSN: 2197-7100. DOI: 10.1007/978-3-030-55874-1_97/FIGURES/5
Path-Following Methods - Across-Branch Parallelism (Exploration)

Given Bifurcation detection, in addition to bifurcation tangents, multiple branches can be explored in parallel12
Outline

1. Introduction
2. Wrinkling Basics
3. Isogeometric Shell Analysis
4. Path-Following Methods
5. Results
6. Conclusions and Future Work
Results - Shear Wrinkling

Numerical results

Experimental results13.

Outline

1 Introduction
2 Wrinkling Basics
3 Isogeometric Shell Analysis
4 Path-Following Methods
5 Results
6 Conclusions and Future Work
Conclusions and Future Work - Conclusions

- **Wrinkling** occurs when in membrane-like\(^{14}\) offshore solar platforms; hence (isogeometric) shell modelling is used
 - Isogeometric Kirchhoff-Love shells require \(C^1\)-smoothness across patch interfaces, but...
 - Provide geometric exactness, arbitrary smoothness in a rotation-free setting.
- **Wrinkling** is a buckling instability, hence continuation methods are important
 - Continuation without a priori perturbations provides robustness, and...
 - Enables automatic exploration for subsequent bifurcations
 - Parallelization in continuation methods can be performed across and within branches

\(^{14}\)With finite bending stiffness because of the energy balance!
Conclusions and Future Work - Conclusions

- Wrinkling occurs when in membrane-like14 offshore solar platforms; hence (isogeometric) shell modelling is used
 - Isogeometric Kirchhoff-Love shells require C^1-smoothness across patch interfaces, but...
 - Provide geometric exactness, arbitrary smoothness in a rotation-free setting.
- Wrinkling is a buckling instability, hence continuation methods are important
 - Continuation without a priori perturbations provides robustness, and...
 - Enables automatic exploration for subsequent bifurcations
 - Parallelization in continuation methods can be performed across and within branches

14With finite bending stiffness because of the energy balance!
Conclusions and Future Work - Conclusions

• Wrinkling occurs when in membrane-like14 offshore solar platforms; hence (isogeometric) shell modelling is used
 • Isogeometric Kirchhoff-Love shells require C^1-smoothness across patch interfaces, but...
 • Provide geometric exactness, arbitrary smoothness in a rotation-free setting.

• Wrinkling is a buckling instability, hence continuation methods are important
 • Continuation without a priori perturbations provides robustness, and...
 • Enables automatic exploration for subsequent bifurcations
 • Parallelization in continuation methods can be performed across and within branches

14With finite bending stiffness because of the energy balance!
Conclusions and Future Work - Conclusions

- Wrinkling occurs when in membrane-like14 offshore solar platforms; hence (isogeometric) shell modelling is used
 - Isogeometric Kirchhoff-Love shells require C^1-smoothness across patch interfaces, but...
 - Provide geometric exactness, arbitrary smoothness in a rotation-free setting.
- Wrinkling is a buckling instability, hence continuation methods are important
 - Continuation without a priori perturbations provides robustness, and...
 - Enables automatic exploration for subsequent bifurcations
 - Paralellization in continuation methods can be performed across and within branches

14With finite bending stiffness because of the energy balance!
Conclusions and Future Work - Conclusions

- Wrinkling occurs when in membrane-like\(^{14}\) offshore solar platforms; hence (isogeometric) shell modelling is used
 - Isogeometric Kirchhoff-Love shells require \(C^1\)-smoothness across patch interfaces, but...
 - Provide geometric exactness, arbitrary smoothness in a rotation-free setting.
- Wrinkling is a buckling instability, hence continuation methods are important
 - Continuation without a priori perturbations provides robustness, and...
 - Enables automatic exploration for subsequent bifurcations
 - Parallelization in continuation methods can be performed across and within branches

\(^{14}\)With finite bending stiffness because of the energy balance!
Conclusions and Future Work - Conclusions

- Wrinkling occurs when in membrane-like14 offshore solar platforms; hence (isogeometric) shell modelling is used
 - Isogeometric Kirchhoff-Love shells require C^1-smoothness across patch interfaces, but...
 - Provide geometric exactness, arbitrary smoothness in a rotation-free setting.
- Wrinkling is a buckling instability, hence continuation methods are important
 - Continuation without a priori perturbations provides robustness, and...
 - Enables automatic exploration for subsequent bifurcations
 - Parallelization in continuation methods can be performed across and within branches

14With finite bending stiffness because of the energy balance!
Conclusions and Future Work - Conclusions

- Wrinkling occurs when in membrane-like14 offshore solar platforms; hence (isogeometric) shell modelling is used
 - Isogeometric Kirchhoff-Love shells require C^1-smoothness across patch interfaces, but...
 - Provide geometric exactness, arbitrary smoothness in a rotation-free setting.
- Wrinkling is a buckling instability, hence continuation methods are important
 - Continuation without a priori perturbations provides robustness, and...
 - Enables automatic exploration for subsequent bifurcations
 - Parallelization in continuation methods can be performed across and within branches

14With finite bending stiffness because of the energy balance!
Conclusions and Future Work - Future Work

Membrane
Wrinkling
Modelling

Applications
Embedded
colar
panels
Isogeometric
Shell
Modelling
Automatic
Exploration
Isogeometric
Shell
Modelling
Multi-patch
Coupling
Tension-
Field
Theory
Adaptive
meshing

Continuation
Parallel

Verhelst et al.
Wrinkling instabilities with IGA shells
06-05-2022
26 / 32
Conclusions and Future Work - Is this open-source?

Geometry + Simulation Modules (G+SMo, pronounced gismo)

YES!

- Isogeometric analysis core: github.com/gismo/gismo
- Thin shell analysis: github.com/gismo/gsKLShell
- Arc-length methods: github.com/gismo/gsStructuralAnalysis
- Almost smooth patch coupling: github.com/gismo/gsUnstructuredSplines, expected Summer 2022
- Automatic exploration: PyNCT, expected Fall 2022
Conclusions and Future Work - Is this open-source?

Geometry + Simulation Modules (G+SMo, pronounced gismo)

- Is this open-source? **YES!**

Isogeometric analysis core github.com/gismo/gismo

Thin shell analysis github.com/gismo/gsKLShell

Arc-length methods github.com/gismo/gsStructuralAnalysis

Almost

Smooth patch coupling

github.com/gismo/gsUnstructuredSplines, expected Summer 2022

Automatic exploration PyNCT, expected fall 2022
Conclusions and Future Work - Is this open-source?

Geometry + Simulation Modules (G+SMo, pronounced gismo)

YES!

- Isogeometric analysis core github.com/gismo/gismo
- Thin shell analysis github.com/gismo/gsKLShell
- Arc-length methods github.com/gismo/gsStructuralAnalysis
- Almost Smooth patch coupling github.com/gismo/gsUnstructuredSplines, expected Summer 2022
- Automatic exploration PyNCT, expected fall 2022
Conclusions and Future Work - Is this open-source?

Geometry + Simulation Modules (G+SMo, pronounced gismo)

YES!

Isogeometric analysis core github.com/gismo/gismo
Thin shell analysis github.com/gismo/gsKLSHELL
Arc-length methods github.com/gismo/gsStructuralAnalysis
Almost
Smooth patch coupling github.com/gismo/gsUnstructuredSplines, expected Summer 2022
Automatic exploration PyNCT, expected fall 2022
Conclusions and Future Work - Is this open-source?

Geometry + Simulation Modules (G+SMo, pronounced gismo)

YES!

- Isogeometric analysis core github.com/gismo/gismo
- Thin shell analysis github.com/gismo/gsKLShell
- Arc-length methods github.com/gismo/gsStructuralAnalysis
- Almost
 - Smooth patch coupling github.com/gismo/gsUnstructuredSplines, expected Summer 2022
 - Automatic exploration PyNCT, expected fall 2022
Conclusions and Future Work - Is this open-source?

YES!

- **Isogeometric analysis core** github.com/gismo/gismo
- **Thin shell analysis** github.com/gismo/gsKLShell
- **Arc-length methods** github.com/gismo/gsSStructuralAnalysis
- **Almost Smooth patch coupling** github.com/gismo/gsUnstructuredSplines, expected Summer 2022
- **Automatic exploration** PyNCT, expected fall 2022
Conclusions and Future Work - Is this open-source?

Geometry + Simulation Modules (G+SMo, pronounced gismo)

YES!

- Isogeometric analysis core github.com/gismo/gismo
- Thin shell analysis github.com/gismo/gsKLShell
- Arc-length methods github.com/gismo/gsStructuralAnalysis
- Almost Smooth patch coupling github.com/gismo/gsUnstructuredSplines, expected Summer 2022
- Automatic exploration PyNCT, expected fall 2022
On the modeling of wrinkling instabilities using isogeometric shell analysis

Hugo Verhelst$^{1,2,\@}$ Matthias Möller1 Henk den Besten2

1Numerical Analysis, Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS), Delft University of Technology
2Maritime and Transport Technology, Faculty of Mechanical, Maritime and Materials Engineering (3mE), Delft University of Technology

@h.m.verhelst@tudelft.nl

06-05-2022

TUDelft
References II

References IV

Verhelst, H.M., M. Möller, and J. Den Besten (In preparation[a]). “An Adaptive Parallel Arc-Length Method”.

Verhelst, H.M., P. Weinmüller, T. Takacs, and D. Toshniwal (In preparation[b]). “A Qualitative Comparison of C^1 Smooth Multipatch Constructions for Isogeometric Analysis”.

