

Stochastic optimization for tokamak fusion reactor divertor design

Emil Løvbak, Giovanni Samaey, Stefan Vandewalle KU Leuven, Department of Computer Science, NUMA Section WSC Spring Meeting, 6 May 2022

Application: nuclear fusion in tokamaks

Research Foundation Flanders Opening new horizons

Divertor

- Confine plasma in reactor
- Regulate heat
- Remove waste products: "Ash", Helium
- Recycle recombined ions as neutrals

A simplified 1D problem¹

 f_n neutral position-velocity

1: W. Dekeyser, Optimal Plasma Edge Configurations for Next-Step Fusion Reactors. PhD thesis, 2014

A simplified 1D problem¹

 f_n neutral position-velocity

1: W. Dekeyser, Optimal Plasma Edge Configurations for Next-Step Fusion Reactors. PhD thesis, 2014

Forward simulation

• Plasma
$$\Rightarrow$$
 Finite volume

$$\frac{\partial}{\partial x} \left(\rho b u \right) = \frac{S_{\rho} - C_n \rho}{\frac{\partial}{\partial x} \left(m \rho b u^2 - \eta^i \frac{\partial u}{\partial x} \right)} = \frac{S_u}{\delta u} - b \frac{\partial p}{\partial x}$$

 $S_{\psi} = \int f_n(x,v) \Psi(x,v) \mathrm{d}v, \quad \psi \in \{\rho/u\} \quad \Rightarrow \quad \text{Low-dimensinal}$

 $\blacktriangleright \text{ Neutrals} \Rightarrow \text{Monte Carlo}$

$$v\frac{\partial}{\partial x}f_n(x,v) + R_i f_n(x,v) = S_{f_n}(\rho,u) + R_{cx} \int f_n(x,v') C(v' \to v) \mathrm{d}v'$$

Computational challenges

High collision rates $R_{cx} \Rightarrow$ Fast timescales \Downarrow Monte Carlo = Time dependent simulation \Downarrow High computational cost?

Computational challenges

High collision rates $R_{cx} \Rightarrow$ Fast timescales \downarrow Monte Carlo = Time dependent simulation \downarrow High computational cost?

- Monte Carlo = Trivially parallel \Rightarrow More computing power
- Approximate collision rate with $\infty \Rightarrow$ Diffusion 2

2: P. A. Markowich, C. A. Ringhofer, and C. Schmeiser, Semiconductor Equations. Springer-Verlag, 1990

Outline

1 Asymptotic-preserving multilevel Monte Carlo

2 Gradient computation through discrete adjoint

Outline

1 Asymptotic-preserving multilevel Monte Carlo

2 Gradient computation through discrete adjoint

Rewriting neutral model using AP scheme³

$$v\frac{\partial}{\partial x}f_n(x,v) + \frac{R_i f_n(x,v)}{R_i f_n(x,v)} = S_{f_n}(\rho,u) + \frac{R_{cx}}{f_n(x,v')}C(v' \to v) \,\mathrm{d}v'$$

- ▶ High collision rate R_{cx} & characteristic velocity \tilde{v}
- Monte Carlo particle scheme $\Delta t \ll R_{cx}^{-1}$
- ▶ $R_{cx}, \tilde{v} \to \infty \Rightarrow$ diffusion

3: G. Dimarco, L. Pareschi, G. Samaey, Asymptotic-Preserving Monte Carlo methods for transport equations in the diffusive limit. *SIAM Journal on Scientific Computing* 40, 2018

Rewriting neutral model using AP scheme³

3: G. Dimarco, L. Pareschi, G. Samaey, Asymptotic-Preserving Monte Carlo methods for transport equations in the diffusive limit. *SIAM Journal on Scientific Computing* 40, 2018

Monte Carlo particle scheme (operator splitting)

Transport-diffusion:

$$\frac{v}{1+\Delta t R_{cx}} \frac{\partial}{\partial x} f_n(x,v) = \frac{\Delta t \tilde{v}}{1+\Delta t R_{cx}} \frac{\partial}{\partial x} \left(\tilde{v} \frac{\partial}{\partial x} f_n(x,v) \right)$$

$$X^{n+1} = X^n + \frac{V^n \Delta t}{1 + \Delta t R_{cx}} + \sqrt{2\Delta t} \sqrt{\frac{\Delta t \tilde{v}^2}{1 + \Delta t R_{cx}}} \xi^n, \quad \xi^n \sim \mathcal{N}(0, 1)$$

Collision/ionization step

$$\frac{R_{i}f_{n}(x,v)}{1+\Delta tR_{cx}}\int f_{n}(x,v') C(v' \to v) \,\mathrm{d}v'$$

Respective event probabilities:

$$1 - \exp\left(-\frac{R_{cx}\Delta t}{1 + R_{cx}\Delta t}\right), \quad 1 - \exp\left(-\frac{R_i}{\Delta t}\right)$$

Research Foundation Flanders

Multilevel Monte Carlo estimator⁴

• Estimator with independent particles: $S_{\psi} = \frac{1}{P} \sum_{p=1}^{P} \sum_{n=0}^{N_p} \int_{X_p^n}^{X_p^{n+1}} g\left(x, V_p^n\right) \mathrm{d}x \ \prod_{k=1}^{n+1} W_{\psi}\left(X_{p,\Delta t}^k\right), \ \psi \in \{\rho/u\}$

• Cost proportional to $P \times N$

4: M.B. Giles, Multilevel Monte Carlo Path Simulation. Operations Research 56(3), 2008

Multilevel Monte Carlo estimator⁴

Estimator with independent particles:

$$S_{\psi,0} = \frac{1}{P_0} \sum_{p=1}^{P_0} \sum_{n=0}^{N_{p,0}} \int_{X_{p,0}^n}^{X_{p,0}^{n+1}} g\left(x, V_{p,0}^n\right) \mathrm{d}x \ \prod_{k=1}^{n+1} W_{\psi}\Big(X_{p,0}^k\Big)$$

• Cost proportional to $P \times N$

• Difference estimator, $\ell > 0$:

$$\begin{split} S_{\psi,\ell} &= \frac{1}{P_{\ell}} \sum_{p=1}^{P_{\ell}} \left(\sum_{n=0}^{N_{p,\ell}} \int_{X_{p,\ell}^{n}}^{X_{p,\ell}^{n+1}} g\left(x, V_{p,\ell}^{n}\right) \mathrm{d}x \; \prod_{k=1}^{n+1} W_{\psi}\left(X_{p,\ell}^{k}\right) \\ &- \sum_{n=0}^{N_{p,\ell-1}} \int_{X_{p,\ell-1}^{n}}^{X_{p,\ell-1}^{n+1}} g\left(x, V_{p,\ell-1}^{n}\right) \mathrm{d}x \; \prod_{k=1}^{n+1} W_{\psi}\left(X_{p,\ell-1}^{k}\right) \right) \end{split}$$

4: M.B. Giles, Multilevel Monte Carlo Path Simulation. Operations Research 56(3), 2008

Correlating Particle Pairs⁵

$$X_{p,\ell-1}^{n+1} = X_{p,\ell-1}^{n} + \frac{V_{p,\ell-1}^{n} \Delta t_{\ell-1}}{1 + \Delta t_{\ell-1} R_{cx}} + \sqrt{2\Delta t_{\ell-1}} \sqrt{\frac{\Delta t_{\ell-1} \left(V_{p,\ell-1}^{n}\right)^{2}}{1 + \Delta t_{\ell-1} R_{cx}}} \xi_{p,\ell-1}^{n}$$
$$X_{p,\ell}^{n+1,0} = X_{p,\ell}^{n,0} + \sum_{m=0}^{M-1} \left(\frac{V_{p,\ell}^{n,m} \Delta t_{\ell}}{1 + \Delta t_{\ell} R_{cx}} + \sqrt{2\Delta t_{\ell}} \sqrt{\frac{\Delta t_{\ell} \left(V_{p,\ell}^{n,m}\right)^{2}}{1 + \Delta t_{\ell} R_{cx}}} \xi_{p,\ell}^{n,m}\right)$$

$$\xi_{\ell-1}^n, \xi_{\ell}^{n,m} \sim \mathcal{N}(0,1) \quad V_{\ell-1}^n, V_{\ell}^{n,m} \sim C\big(v' \to v\big)$$

5: E. Løvbak, G. Samaey and S. Vandewalle, A multilevel Monte Carlo method for asymptotic-preserving particle schemes in the diffusive limit. *Numerische Mathematik* 148, 2021

Research Foundation Flanders

Estimating squared particle displacement⁶

$\blacktriangleright \Delta t_0 = t^* = 0.5$									
$\blacktriangleright C(v' \to v) = \mathcal{N}(0, 1)$									
ℓ	Δt_ℓ	Result	Variance	Samples	Cost				
0	0.5×10^0	9.90×10^{-1}	1.96×10^0	3.8×10^8	$7.7 imes 10^6$				
1	$7.8 imes 10^{-5}$	-1.39×10^{-2}	$2.70 imes 10^{-1}$	$1.8 imes 10^6$	$2.3 imes 10^8$				
2	3.9×10^{-5}	2.23×10^{-3}	1.69×10^{-2}	$2.6 imes 10^5$	$9.8 imes 10^7$				
3	2.0×10^{-5}	1.14×10^{-3}	$9.17 imes 10^{-3}$	$1.3 imes 10^5$	$9.9 imes 10^7$				
4	9.8×10^{-6}	3.79×10^{-4}	4.80×10^{-3}	1.0×10^5	$1.6 imes 10^8$				
5	4.9×10^{-6}	2.07×10^{-4}	2.03×10^{-3}	6.9×10^4	2.1×10^8				
6	$2.4 imes 10^{-6}$	-4.74×10^{-4}	2.18×10^{-4}	$1.0 imes 10^3$	$6.1 imes 10^6$				
\sum		$9.80 imes 10^{-1}$			8.1×10^8				

 E. Løvbak, B. Mortier, G. Samaey and S. Vandewalle, Multilevel Monte Carlo with improved correlation for kinetic equations in the diffusive scaling. V. Krzhizhanovskaya et al. (eds.) LNCS – ICCS 2020, 2020

 $R_{cx} = 100$

Estimating squared particle displacement⁶

	$\blacktriangleright \Delta t_0 = t^* = 0.5$								
$\blacktriangleright C(v' \to v) = \mathcal{N}(0, 1)$									
ℓ	Δt_ℓ	Result	Variance	Samples	Cost				
0	0.5×10^0	9.90×10^{-1}	1.96×10^0	$3.8 imes 10^8$	$7.7 imes 10^6$				
1	$7.8 imes 10^{-5}$	-1.39×10^{-2}	$2.70 imes 10^{-1}$	$1.8 imes 10^6$	$2.3 imes 10^8$				
2	3.9×10^{-5}	2.23×10^{-3}	1.69×10^{-2}	$2.6 imes 10^5$	$9.8 imes 10^7$				
3	2.0×10^{-5}	1.14×10^{-3}	9.17×10^{-3}	1.3×10^5	$9.9 imes 10^7$				
4	9.8×10^{-6}	$3.79 imes 10^{-4}$	4.80×10^{-3}	1.0×10^5	$1.6 imes 10^8$				
5	4.9×10^{-6}	2.07×10^{-4}	2.03×10^{-3}	$6.9 imes 10^4$	2.1×10^8				
6	$2.4 imes 10^{-6}$	-4.74×10^{-4}	2.18×10^{-4}	$1.0 imes 10^3$	$6.1 imes 10^6$				
\sum		9.80×10^{-1}			8.1×10^8				

▶ Single level: 3.8×10^8 samples with $\Delta t_6 \Rightarrow$ Cost: 1.6×10^{12}

 E. Løvbak, B. Mortier, G. Samaey and S. Vandewalle, Multilevel Monte Carlo with improved correlation for kinetic equations in the diffusive scaling. V. Krzhizhanovskaya et al. (eds.) LNCS – ICCS 2020, 2020

 $\blacktriangleright R_{cr} = 100$

Outline

Asymptotic-preserving multilevel Monte Carlo

2 Gradient computation through discrete adjoint

Forward simulation

Matching forward and adjoint simulations

- Same paths in forward/backward simulation
- Challenge: $P \times N$ large
- Solutions:
 - Checkpointing: 2 forward simulations + backward simulation

Reversing a random number generator

- PCG: permuted congruential generator⁷
 - d-dimensional internal state η_k and constant vectors a, c, m

$$\eta_{k+1} = (a \odot \eta_k + c) \mod m$$

- 1-way (permutation) function generates output from η_k
- Passes TestU01 with flying colors
- \blacktriangleright Reversing modular operations \rightarrow reversed uniform sequence
- Normal distribution through reversed Ziggurat algorithm
- Exponential distribution through inverse transform:

$$u \sim \mathcal{U}([0,1]) \Rightarrow -\lambda \ln(1-u) \sim \mathcal{E}(\lambda)$$

7: M.E. O'Neill, PCG: A Family of Simple Fast Space-Efficient Statistically Good Algorithms for Random Number Generation, technical report HMC-CS-2014-0905, Harvey Mudd College, 2014

Reversable PCG

Outlook and challenges

- Alternative APMLMC-scheme⁸
- Boundaries for combined transport/diffusion
- Scoring diffusive particles in 2D/3D⁹

Thank you for your attention!

- 8: B. Mortier, P. Robbe, M. Baelmans, G. Samaey, Multilevel asymptotic-preserving Monte Carlo for kinetic-diffusive particle simulations of the Boltzmann-BGK equation. *Journal of Computational Physics* 450, pp. 110736, 2022
- 9: B. Mortier, M. Baelmans, G. Samaey, A comparison of source term estimators in coupled finite-volume/Monte-Carlo methods with applications to plasma edge simulations in nuclear fusion, arXiv:2012.08981. 2020

References

- 1 W. Dekeyser, Optimal Plasma Edge Configurations for Next-Step Fusion Reactors. *PhD thesis*, 2014
- 2 P. A. Markowich, C. A. Ringhofer, and C. Schmeiser, Semiconductor Equations. Springer-Verlag, 1990
- 3 G. Dimarco, L. Pareschi, G. Samaey, Asymptotic-Preserving Monte Carlo methods for transport equations in the diffusive limit. SIAM Journal on Scientific Computing 40, pp. A504–A528, 2018
- 4 M.B. Giles, Multilevel Monte Carlo Path Simulation. Operations Research 56(3), 2008
- 5 E. Løvbak, G. Samaey and S. Vandewalle, A multilevel Monte Carlo method for asymptotic-preserving particle schemes in the diffusive limit. *Numerische Mathematik* 148, pp. 141–186, 2021
- 6 E. Løvbak, B. Mortier, G. Samaey and S. Vandewalle, Multilevel Monte Carlo with improved correlation for kinetic equations in the diffusive scaling. V. Krzhizhanovskaya et al. (eds.) LNCS – ICCS 2020, pp. 374–388, 2020
- 7 M.E. O'Neill, PCG: A Family of Simple Fast Space-Efficient Statistically Good Algorithms for Random Number Generation, technical report HMC-CS-2014-0905, Harvey Mudd College, 2014
- 8 B. Mortier, P. Robbe, M. Baelmans, G. Samaey, Multilevel asymptotic-preserving Monte Carlo for kinetic-diffusive particle simulations of the Boltzmann-BGK equation. *Journal of Computational Physics* 450, pp. 110736, 2022
- 9 B. Mortier, M. Baelmans, G. Samaey, A comparison of source term estimators in coupled finite-volume/Monte-Carlo methods with applications to plasma edge simulations in nuclear fusion. arXiv:2012.08981, 2020

Correlating Particle Pairs: Diffusion¹⁰

• Coarse diffusion = weighted sum of fine contributions:

$$\xi_{\ell-1}^n = \sqrt{ heta_\ell} \xi_{\ell-1, \mathsf{diffusion}}^n + \sqrt{1- heta_\ell} \xi_{\ell-1, \mathsf{velocities}}^n$$

1

Weak Brownian motion

Fine diffusion:
$$\xi_{\ell-1,\text{diffusion}}^n = \frac{1}{\sqrt{M}} \sum_{m=0}^{M-1} \xi_{\ell}^{n,m}$$
Fine velocities: $\xi_{\ell-1,\text{velocities}}^n = \left(\mathbb{V} \left[\sum_{m=0}^{M-1} V_{\ell}^{n,m} \right] \right)^{-\frac{1}{2}} \sum_{m=0}^{M-1} V_{\ell}^{n,m}$

 E. Løvbak, B. Mortier, G. Samaey and S. Vandewalle, Multilevel Monte Carlo with improved correlation for kinetic equations in the diffusive scaling. V. Krzhizhanovskaya et al. (eds.) LNCS – ICCS 2020, 2020

Correlating Particle Pairs: Collision/absorption¹¹

- \blacktriangleright Event probability p_e is different for different Δt
- Implementation:

20

 $u_{\ell}^n > 1 - p_e, \; u_{\ell}^n \sim \mathcal{U}[0,1] \quad \Rightarrow \quad \text{simulate event}$

• Generate uniformly distributed $u_{\ell-1}^n$ from $u_{\max} = \max_m u_{\ell}^{n,m}$:

$$u_{\ell-1}^n = u_{\max}^M \sim \mathcal{U}([0,1])$$

- ▶ Collision: new velocity: $V_{\ell-1}^{n+1} = V_{\ell}^{n+1,0}$
- Absorption: Re-weight/kill particle

6: E. Løvbak, G. Samaey and S. Vandewalle, A multilevel Monte Carlo method for asymptotic-preserving particle schemes in the diffusive limit. *Numerische Mathematik* 148, 2021

Continuous vs. discrete adjoints

$$S_{\psi}^{*} = \sum_{k} \int f_{n}^{*}(x,v) \Psi_{k}^{*}(x,v) \int f_{n}(x,v') \Psi_{k}(x,v',v) \mathrm{d}\mathbf{v}' \, \mathrm{d}v, \ \psi \in \{\rho/u\}$$

Continuous vs. discrete adjoints

Research Foundation Flanders

Discrete adjoint formulation

Forward scoring

$$S_{\psi} = \frac{1}{P} \sum_{p=1}^{P} \sum_{n=0}^{N_p} \int_{X_p^n}^{X_p^{n+1}} g\left(x, V_p^n\right) \mathrm{d}x \ \prod_{k=1}^{n+1} W_{\psi}\left(X_p^k\right), \ \psi \in \{\rho/mu\}$$

Adjoint scoring

$$\begin{split} S_{\psi}^{*} = & \frac{1}{P} \sum_{p=1}^{P} \sum_{n=0}^{N_{p}} \int_{X_{p}^{n}}^{X_{p}^{n+1}} \frac{\partial}{\partial \psi} g\left(x, V_{p}^{n}\right) \mathrm{d}x \ \prod_{k=1}^{n+1} W_{\psi}\left(X_{p}^{k}\right) \\ & + \frac{1}{P} \sum_{p=1}^{P} \sum_{n=0}^{N_{p}} \int_{X_{p}^{n}}^{X_{p}^{n+1}} g\left(x, V_{p}^{n}\right) \mathrm{d}x \ \prod_{k=1}^{n+1} W_{\psi}\left(X_{p}^{k}\right) \sum_{l=1}^{n+1} \frac{\frac{\partial W_{\psi}\left(X_{p}^{l}\right)}{\partial \psi}}{W_{\psi}\left(X_{p}^{k}\right)} \end{split}$$

Adjoint simulation runs backward in time

22

Convergence of stochastic gradient descent¹²

Given

- Objective function $J(\Omega,\mathbf{q})$ and Lipschitz gradient $\nabla J(\Omega,\mathbf{q})$
- Sequence of estimates Ω_k, \mathbf{q}_k for which $J(\Omega_k, \mathbf{q}_k) \geq J^*$
- Stochastic gradient estimate $abla \hat{J}_k(\Omega_k, \mathbf{q}_k, \eta_k)$ with noise η_k
- Constants $\mu_G > \mu > 0$ and $M, M_V \ge 0$ so

$$\nabla J(\Omega_k, \mathbf{q}_k)^T \mathbb{E}_{\eta_k} \left[\nabla \hat{J}_k(\Omega_k, \mathbf{q}_k, \eta_k) \right] \ge \mu \| \nabla J(\Omega_k, \mathbf{q}_k) \|_2^2 \quad \text{(descending)} \\ \left\| \mathbb{E}_{\eta_k} \left[\nabla \hat{J}_k(\Omega_k, \mathbf{q}_k, \eta_k) \right] \right\|_2 \le \mu_G \| \nabla J(\Omega_k, \mathbf{q}_k) \|_2 \quad \text{(bounded)} \\ \mathbb{V}_{\eta_k} \left[\nabla \hat{J}_k(\Omega_k, \mathbf{q}_k, \eta_k) \right] < M + M_V \| \nabla J(\Omega_k, \mathbf{q}_k) \|_2^2 \quad \text{(variance)}$$

$$\begin{split} & \blacktriangleright \mbox{ Stochastic gradient descent with step size } \alpha : \\ & \mathbb{E}\left[\frac{1}{K}\sum_{k=1}^{K}||\nabla J(\Omega_k,\mathbf{q}_k)||_2^2\right] \leq \frac{\alpha LM}{\mu} + \frac{2(J(\Omega_1,\mathbf{q}_1) - J^*)}{K\mu\alpha} \xrightarrow{K \to \infty} \frac{\alpha LM}{\mu} \end{split}$$

10: L. Bottou, F.E. Curtis and J. Nocedal, Optimization Methods for Large-Scale Machine Learning. SIAM Review 60(2), 2018

PO Research Foundation Flanders Opening new horizons

Convergence of stochastic gradient descent¹²

Given

- Objective function $J(\Omega,\mathbf{q})$ and Lipschitz gradient $\nabla J(\Omega,\mathbf{q})$
- Sequence of estimates Ω_k, \mathbf{q}_k for which $J(\Omega_k, \mathbf{q}_k) \geq J^*$
- Stochastic gradient estimate $abla \hat{J}_k(\Omega_k, \mathbf{q}_k, \eta_k)$ with noise η_k
- Constants $\mu_G > \mu > 0$ and $M, M_V \ge 0$ so

$$\nabla J(\Omega_k, \mathbf{q}_k)^T \mathbb{E}_{\eta_k} \left[\nabla \hat{J}_k(\Omega_k, \mathbf{q}_k, \eta_k) \right] \ge \mu \| \nabla J(\Omega_k, \mathbf{q}_k) \|_2^2 \quad \text{(descending)} \\ \left\| \mathbb{E}_{\eta_k} \left[\nabla \hat{J}_k(\Omega_k, \mathbf{q}_k, \eta_k) \right] \right\|_2 \le \mu_G \| \nabla J(\Omega_k, \mathbf{q}_k) \|_2 \quad \text{(bounded)} \\ \mathbb{V}_{\eta_k} \left[\nabla \hat{J}_k(\Omega_k, \mathbf{q}_k, \eta_k) \right] < M + M_V \| \nabla J(\Omega_k, \mathbf{q}_k) \|_2^2 \quad \text{(variance)}$$

 $\begin{array}{l} \blacktriangleright \quad \text{Stochastic gradient descent with step size } \alpha: \\ \mathbb{E}\left[\frac{1}{K}\sum_{k=1}^{K}||\nabla J(\Omega_k,\mathbf{q}_k)||_2^2\right] \leq \frac{\alpha LM}{\mu} + \frac{2(J(\Omega_1,\mathbf{q}_1) - J^*)}{K\mu\alpha} \xrightarrow{K \to \infty} \frac{\alpha LM}{\mu} \end{array}$

10: L. Bottou, F.E. Curtis and J. Nocedal, Optimization Methods for Large-Scale Machine Learning. SIAM Review 60(2), 2018

Research Foundation Flanders Opening new horizons

