Efficient Multigrid based solvers for Isogeometric Analysis R. Tielen, M. Möller and C. Vuik

Delft Institute of Applied Mathematics (DIAM) Numerical Analysis

June 1, 2018

Spring Meeting 2018

June 1, 2018 1 / 22

< □ ▶ < /□ ▶</p>

Isogeometric Analysis (IgA)

- Extension of the Finite Element Method (FEM)
- Same basis functions (**B-Splines**) are used for approximate geometry Ω_h and solution u_h
- Global mapping from Ω_h to parametric domain $\hat{\Omega}_h$
- Description of the geometry that is highly accurate $(`\Omega = \Omega_h`)$ throughout all computation steps

Figure: Poisson problem solved by FEM (left) and IgA (right).

Construction of B-spline basis functions

A *knot vector* is a sequence of non-decreasing points $\xi_i \in \mathbb{R}$ with the following structure:

$$\Xi = (\xi_1, \xi_2, \ldots, \xi_i, \ldots, \xi_{n+p}, \xi_{n+p+1})$$

where

- *n* is the number of B-spline basis functions
- p is the degree of the basis functions
- Ξ is called *open* and *uniform* if:
 - The first and last knots are repeated p+1 times
 - All $\xi_{p+1}, \ldots, \xi_{n+1}$ are equally spaced

Construction of B-spline basis functions

Examples of B-spline basis functions (p = 0)

Examples of B-spline basis functions (p = 0)

Examples of B-spline basis functions (p = 0)

Examples of B-spline basis functions (p = 1)

Examples of B-spline basis functions (p = 2)

June 1, 2018 7 / 22

< □ ▶

Properties of B-spline basis functions

- Strictly positive \Rightarrow Mass matrix positive
- Partition of unity \Rightarrow Direct mass lumping

< □ ▶ < / 🖓

B-spline basis functions in 2D

Extension 2D

Tensor product of the 1D B-spline basis functions

Spring Meeting 2018

June 1, 2018 9 / 22

Image: Image:

Need for efficient solvers

Observation

The linear system $\mathbf{A}_{h,p}\mathbf{x}_{h,p} = \mathbf{b}_{h,p}$

- reduces to standard FEM for p = 1;
- becomes more difficult to solve for increasing *p*.

Efficient solvers for high-order B-spline-based discretizations are needed

Solution strategy

Use the error of low-order discretizations to update the solution of high-order discretizations \Rightarrow **p-multigrid**

p-multigrid

June 1, 2018 12 / 22

Prolongation/Restriction

Restrict residual \mathbf{r}_k from level k to level k-1:

$$I_k^{k-1} := (\mathbf{M}_{k-1}^{k-1})^{-1} \mathbf{M}_k^{k-1}$$

Prolongate error \mathbf{e}_{k-1} from level k-1 to level k:

$$I_{k-1}^k := (\mathbf{M}_k^k)^{-1} \mathbf{M}_{k-1}^k$$

Where:

•
$$(\mathbf{M}'_k)_{(i,j)} := \int_{\widehat{\Omega}_h} \phi^k_i(\xi) \ \phi'_j(\xi) \ c(\xi) \ \mathrm{d}\widehat{\Omega}$$

• \mathbf{M}_{k}^{k} is in practice replaced by its lumped counterpart

< □ ▶

V-cycle *p*-multigrid

Solution procedure

- Start with initial guess $\mathbf{u}_{h,p}^{(0)}$
- Obtain correction $\tilde{\mathbf{e}}_{h,p}^{(n)}$ with single V-cycle
- Solution update:

$$\mathbf{u}_{h,p}^{(n+1)} \leftarrow \mathbf{u}_{h,p}^{(n)} + \widetilde{\mathbf{e}}_{h,p}^{(n)}$$

Stopping criterion:

$$\frac{||\mathbf{r}_{h,p}^{(n)}||}{||\mathbf{r}_{h,p}^{(0)}||} < \epsilon$$

< □ ▶

Numerical Results

p-multigrid as a solver

• SOR
$$(au=rac{4}{3})$$
 for pre/post-smoothing $(
u=4)$

• Conjugate Gradient at level
$$k = 1$$
 ($\epsilon = 10^{-4}$)

TUDelft

p-multigrid as a solver

• SOR $(au=rac{4}{3})$ for pre/post-smoothing

• Conjugate Gradient at level k = 1 ($\epsilon = 10^{-4}$)

p-multigrid as a solver

Spring Meeting 2018

<u>▲□▶▲@▶★≣▶★≣▶ ≜ ∽Qへ June 1, 2018 17 / 22</u>

p-multigrid as a preconditioner

- Conjugate Gradient as outer solver ($\epsilon = 10^{-8}$)
- 1 V-cycle as preconditioner in every iteration

TUDelft

Observations

Numerical results indicate:

- Number of V-cycles/iterations is relatively low \checkmark
- Optimal $\mathcal{O}(h^{p+1})$ spatial convergence is achieved \checkmark
- Number of V-cycles/iterations is p-dependent X

Spectral analysis

Error reduction factors:

$$r^{\mathcal{S}}(\mathbf{v}) = rac{|\mathcal{S}(\mathbf{v})|}{|\mathbf{v}|} \qquad r^{CGC}(\mathbf{v}) = rac{|CGC(\mathbf{v})|}{|\mathbf{v}|}$$

where $S(\cdot)$ and $CGC(\cdot)$ denote a smoothing step and coarse grid correction applied on **v**, respectively.

Here (\mathbf{v}_i) are the generalized eigenvectors which satisfy:

$$\mathbf{A}_{h,p}\mathbf{v}_i = \lambda_i \mathbf{M}^{\mathsf{C}}_{h,p}\mathbf{v}_i, \quad i = 1, \dots, N_{dof}$$

Spectral analysis

Figure: Reduction factors (\mathbf{v}_i) for p = 2 (left) and p = 3 (right).

Forthcoming Work

• Obtain *p*-independence by alternative smoothers (*)

- Explore flexibility of coarsening in both h and p
 - N_{dof} at 'coarsest' level is relatively high

(*) C. Hofreither and S. Takacs. *Robust Multigrid for IgA Based on Stable Splittings of Spline Spaces* SIAM Journal on Numerical Analysis, 55(4): 2004-2024, 2017

