
Efficient Multigrid based solvers for
Isogeometric Analysis

R. Tielen, M. Möller and C. Vuik
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Isogeometric Analysis (IgA)

Extension of the Finite Element Method (FEM)

Same basis functions (B-Splines) are used for
approximate geometry Ωh and solution uh

Global mapping from Ωh to parametric domain Ω̂h

Description of the geometry that is highly accurate
(‘Ω = Ωh’) throughout all computation steps

Figure: Poisson problem solved by FEM (left) and IgA (right).
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Construction of B-spline basis functions

A knot vector is a sequence of non-decreasing points ξi ∈
R with the following structure:

Ξ = (ξ1, ξ2, . . . , ξi , . . . , ξn+p, ξn+p+1)

where

n is the number of B-spline basis functions

p is the degree of the basis functions

Ξ is called open and uniform if:

The first and last knots are repeated p + 1 times

All ξp+1, . . . , ξn+1 are equally spaced
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Construction of B-spline basis functions

Cox-de Boor recursion formula

φi ,0(ξ) =

{
1 if ξi ≤ ξ < ξi+1

0 otherwise.

φi ,p(ξ) =
ξ − ξi
ξi+p − ξi

φi ,p−1(ξ) +
ξi+p+1 − ξ
ξi+p+1 − ξi+1

φi+1,p−1(ξ)

for p ≥ 1, where ξ ∈ [ξ1, ξn+p+1].
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Examples of B-spline basis functions (p = 0)
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Examples of B-spline basis functions (p = 1)
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Examples of B-spline basis functions (p = 2)
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Properties of B-spline basis functions

Compact support ⇒ Sparse system matrices

Strictly positive ⇒ Mass matrix positive

Partition of unity ⇒ Direct mass lumping
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B-spline basis functions in 2D

Extension 2D

Tensor product of the 1D B-spline basis functions
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Need for efficient solvers

Condition number of stiffness/mass matrix

κ(Ah,p) scales exponentially with approximation order p
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Observation

The linear system Ah,pxh,p = bh,p

reduces to standard FEM for p = 1;

becomes more difficult to solve for increasing p.

Efficient solvers for high-order B-spline-based
discretizations are needed

Solution strategy

Use the error of low-order discretizations to update the
solution of high-order discretizations ⇒ p-multigrid
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p-multigrid

Hierarchy of discretizations with different orders k

Low-order error is used to update high-order solution

Smoothing steps are applied at each k-level (•)
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Prolongation/Restriction

Restrict residual rk from level k to level k − 1:

I k−1
k := (Mk−1

k−1)−1Mk−1
k

Prolongate error ek−1 from level k − 1 to level k :

I kk−1 := (Mk
k)−1Mk

k−1

Where:

(Ml
k)(i ,j) :=

∫
Ω̂h
φki (ξ) φlj(ξ) c(ξ) dΩ̂

Mk
k is in practice replaced by its lumped counterpart
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V-cycle p-multigrid

Solution procedure

Start with initial guess u
(0)
h,p

Obtain correction ẽ
(n)
h,p with single V-cycle

Solution update:

u
(n+1)
h,p ← u

(n)
h,p + ẽ

(n)
h,p

Stopping criterion:

||r(n)
h,p||

||r(0)
h,p||

< ε
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Numerical Results

Consider
−∆u = f on Ω

u = uexact on ∂Ω

where
uexact(x , y) = −(x2 + y2 − 1)(x2 + y2 − 4)xy2
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p-multigrid as a solver

SOR (τ = 4
3 ) for pre/post-smoothing (ν = 4)

Conjugate Gradient at level k = 1 (ε = 10−4)
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p-multigrid as a solver
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p-multigrid as a preconditioner

Conjugate Gradient as outer solver (ε = 10−8)

1 V-cycle as preconditioner in every iteration

3 4 5 6
0

10

20

30

h-refinement level

It
er

at
io

n
s

p = 2
p = 3
p = 4

3 4 5 6
10−10

10−8

10−6

10−4

10−2

h-refinement level

L
2

er
ro

r

p = 2
p = 3
p = 4

Spring Meeting 2018 (VFU) June 1, 2018 18 / 22



Observations

Numerical results indicate:

Number of V-cycles/iterations is relatively low 3

Number of V-cycles/iterations is h-independent 3

Optimal O(hp+1) spatial convergence is achieved 3

Number of V-cycles/iterations is p-dependent 7
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Spectral analysis

Error reduction factors:

rS(v) =
|S(v)|
|v|

rCGC (v) =
|CGC (v)|
|v|

where S(·) and CGC (·) denote a smoothing step and
coarse grid correction applied on v, respectively.

Here (vi) are the generalized eigenvectors which satisfy:

Ah,pvi = λiM
C
h,pvi , i = 1, . . . ,Ndof
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Spectral analysis
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Figure: Reduction factors (vi ) for p = 2 (left) and p = 3 (right).
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Forthcoming Work

Obtain p-independence by alternative smoothers (∗)
Explore flexibility of coarsening in both h and p

I Ndof at ‘coarsest’ level is relatively high

(∗) C. Hofreither and S. Takacs. Robust Multigrid for IgA
Based on Stable Splittings of Spline Spaces SIAM Journal
on Numerical Analysis, 55(4): 2004-2024, 2017
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