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Motivation

Why Model Order Reduction?

In mechanical field and in applied sciences, simulations (often based on PDEs models)
are used to understand system behaviours before actually building or operating on it.

These systems depend on parameters: several simulations needed for each change of

the parameter value.

Main idea of the Reduced Basis (RB) method

Instead of restarting from scratch for every new simulation, we can evaluate the

behaviour of a system exploiting the knowledge of the solution for some

already computed solutions.
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Motivation

Parametric Partial Differential Equations

Many physical phenomena

can be described by a PDE.

Some features of the model

can be addressed to a

parameter µ = (µp,µG), so that

we can describe a set of µPDEs

in the same problem.



−ν∆u + ∇p = 0 in Ω,

∇ ·u = 0 in Ω,

u = 0 on ΓD

ν
∂u
∂n
−pn =−n on Γin,

ν
∂u
∂n
−pn = 0 on Γout ,
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Motivation

RB Offline Stage - Computationally expensive

FEM solutions for a representative set of parameter values µ1, . . . ,µN with N�N

. . .

uN
1 = uN (µ1) uN

2 = uN (µ2) . . . uN
N = uN (µN)

µ = (l,s,δ), l = length, s = thickness, δ = bifurcation span

RB Online Stage - Real-time evaluable

For each new parameter vector µ the RB solution is a weighted combinations of the
precomputed solutions (Galerkin projection)

uN(µ) =
N

∑
i=1

αi (µ)uN
i
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Motivation

RB - Stokes problem on a 3D parametrized bifurcation



−ν∆u + ∇p = 0 in Ωµ ,

∇ ·u = 0 in Ωµ ,

u = 0 on ΓD

ν
∂u
∂n
−pn =−n on Γin,

ν
∂u
∂n
−pn = 0 on Γout ,

µ = [µ1,µ2] Geometrical parameters

µ1 ∈ [6,13]: length of left branch

µ2 ∈ [−0.5,0.5]: bending of left branch

P2-P1 Taylor-Hood elements N = 107803
? C. Jaeggli, L. Iapichino and G. Rozza.An improvement on geometrical parametrizations by

transfinite maps, Comptes Rendus Mathematique, Volume 352, Issue 3, Pages 263- 268, 2014.

? A. Quarteroni, G. Rozza Numerical Solution of Parametrized Navier-Stokes Equations by Reduced
Basis Methods.Numerical Methods for PDEs, Vol. 23, No.4, pp. 923-948, 2007.
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Motivation

3D Stokes problem solved by RB

Reduced Basis solutions by using 30 basis functions
(µ1,µ2) = (6,−0.48),N=30 N = 107803
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Motivation

3D Stokes problem solved by RB

Errors between the RB solutions and FE solutions
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3D Stokes problem solved by RB
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Controllability of Parametrized Dynamical Systems

Controllability of Parametrized Dynamical Systems
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Controllability of Parametrized Dynamical Systems

Controllability of Parametrized Dynamical Systems

Consider the finite dimensional linear control system (possibly obtained from a

PDE control problem after space discretization, i.e. FE scheme x ∈ VN )x ′(t

,ν

) = A(ν)x(t

,ν

) + Bu(t

,ν

), t ∈ (0,T );

x(0

,ν

) = x0.
(1)

The (column) vector valued function x(t ,ν) = [x1(t ,ν), . . . ,xN (t ,ν)] ∈ RN is

the state of the system. A(ν) ∈ RN ×N ,B ∈ RN ×M .

ν is a multi-parameter living in a compact set K of Rd .

u = u(t ,ν) is a M-component control vector in RM ,M ≤N .

Controllability problem

Given a control time T > 0 and a final target x1 ∈RN we look for a control u(t ,ν)

such that the solution of (1) satifies the controllability condition: x(T ,ν) = x1.

We assume that (1) is controllable for all values of ν [E. Zuazua, Automatica, 2014].
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Controllability of Parametrized Dynamical Systems

Solution of the controllability problem (classical approach)

If ϕ̃◦ is a minimizer of the following quadratic functional in RN :

Jν (ϕ
◦) =

1
2

∫ T

0
|B?

ϕ(t ,ν)|2dt + 〈x1,ϕ
◦〉+ 〈x0,ϕ(0,ν)〉,

then ũ(t ,ν) = B?ϕ̃(t ,ν), where ϕ̃(t ,ν) is the solution of the adjoint system (5)

associated to ϕ̃◦: ϕ ′(t ,ν) = A(ν)?ϕ(t ,ν); t ∈ (0,T );

ϕ ′(T ,ν) = ϕ◦,
(2)

is the control that steers the solution of (1) to x1: x̃(T ,ν) = x1, where x̃(T ,ν) is the

solution of: x ′(t ,ν) = A(ν)x(t ,ν) + Bũ(t ,ν), t ∈ (0,T );

x(0,ν) = x0.

? S. Micu, E. Zuazua, ”An introduction to the controllability of linear PDE”, T. Sari (Ed.), Contrôle non
linéaire et applications, Collection Travaux en Cours Hermann (2005), pp. 67-150.
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Controllability of Parametrized Dynamical Systems

Greedy Controllability
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Controllability of Parametrized Dynamical Systems

Greedy controllability: Main idea

Controls u(t ,ν) are chosen to be of minimal norm satisfying the controllability

condition: x(T ,ν) = x1; and lead to a manifold of dimension d in [L2(0,T )]M :

ν ∈ K → u(t ,ν) ∈ [L2(0,T )]M .

This manifold inherits the regularity of the mapping ν → A(ν).

Idea of the Greedy controllability?

To diminish the computational cost we look for the very distinguished realisations

of the parameter of that yield the best possible approximation of this manifold.

Given an error ε the goal is to find ν1, . . . ,νn(ε) so that

for all parameter values ν the corresponding control u(t ,ν) can be

approximated by a linear combination of u(t ,ν1), . . . ,u(t ,νn(ε)) with an error ≤ ε .

And of course to do it with a minimum number n(ε).

?M. Lazar E. Zuazua, Greedy controllability of finite dimensional linear systems, Automatica, Dic 2016
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Controllability of Parametrized Dynamical Systems

Greedy controllability: The approach

Greedy controllability - Offline

Select (with a greedy approach) ν1, . . . ,νn(ε) ∈ K and compute ϕ◦1 , . . . ,ϕ
◦
n(ε)

Greedy controllability - Online

∀ν ∈ K , ϕ̄◦ν ∈ span{ϕ◦1 , . . . ,ϕ
◦
n(ε)} and ūν (t ,ν) = B?ϕ̄ν (t ,ν) is such that

|x̄(T ,ν)−x1| ≤ ε.

?M. Lazar E. Zuazua, Greedy controllability of finite dimensional linear systems, Automatica, Dic 2016
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Controllability of Parametrized Dynamical Systems

Selection of the parameter values

Greedy algorithm (offline)

Select ν1 ∈ K , compute ϕ◦1 , ϕ1(t ,ν), u1(t ,ν), Φ◦1 = {ϕ◦1}.
Find ν2 = argmaxν∈K dist(ϕ◦ν ,Φ

◦
1).

Compute ϕ◦2 , ϕ2(t ,ν), u2(t ,ν), Φ◦2 = span{ϕ◦1 ,ϕ
◦
2}.

Find ν3 = argmaxν∈K dist(ϕ◦ν ,Φ
◦
2).

. . .

until ∀ν ∈ K ,dist(ϕ◦ν ,Φ
◦
n)≤ toll

?M. Lazar E. Zuazua, Greedy controllability of finite dimensional linear systems, Automatica, Dic 2016
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Controllability of Parametrized Dynamical Systems

Controllability distance dist(ϕ◦2 ,ϕ
◦
1)

ϕ◦1 as been computed in step 1, ϕ◦2 is unknown, a surrogate of dist(ϕ◦2 ,ϕ
◦
1) can

be computed.
Adjoint solutionϕ ′(t ,ν2) = A?(ν2)ϕ(t ,ν); t ∈ (0,T );

ϕ ′(T ,ν2) = ϕ◦1 ,

ũ(t ,ν2) = B?ϕ(t ,ν2)

State solutionx̄ ′(t ,ν2) = A(ν2)x̄(t ,ν) + Bũ(t ,ν2), t ∈ (0,T );

x̄(0,ν2) = x0.

Surrogate:

dist(x̄(T ,ν2)−x(T ,ν2)) = dist(x̄(T ,ν2)−x1)

The exploration of the parameter domain requires repetitive evaluations of the

Adjoint and State systems.

?M. Lazar E. Zuazua, Greedy controllability of finite dimensional linear systems, Automatica, Dic 2016
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Controllability of Parametrized Dynamical Systems

Reduced Basis Method
in the Greedy Controllability approach
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Controllability of Parametrized Dynamical Systems

Reduced order Controllability distance dist(ϕ◦2 ,ϕ
◦
1)

ϕ◦1 as been computed in step 1, ϕ◦2 is unknown, we propose a reduced order
surrogate of dist(ϕ◦2 ,ϕ

◦
1) .

RB Adjoint solutionϕ ′(t ,ν2) = A?(ν2)ϕ(t ,ν); t ∈ (0,T );

ϕ ′(T ,ν2) = ϕ◦1 ,

ũ(t ,ν2) = B?ϕ(t ,ν2)

RB State solutionx̄ ′(t ,ν2) = A(ν2)x̄(t ,ν) + Bũ(t ,ν2), t ∈ (0,T );

x̄(0,ν2) = x0.

RB Surrogate:

dist(x̄(T ,ν2)−x(T ,ν2)) = dist(x̄(T ,ν2)−x1)

The exploration of the parameter domain requires repetitive evaluations of

reduced Adjoint and State systems.

? L. Iapichino, S. Volkwein, G. Fabrini. Reduced-Order Greedy Controllability of Finite Dimensional
Linear Systems, Proceeding of 9th Vienna International Conference on Mathematical Modelling, 2018.
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Controllability of Parametrized Dynamical Systems

Reduced Basis computation and parameter selection

STEP 1: The initial basis is composed by the target function x1.

STEP 2: Run the Greedy algorithm (with repetitive evaluations of the

REDUCED systems) and select νnext .

STEP 3: Find the optimal control u(t ,νnext ) and the state solution x(t ,νnext ).

STEP 4: Enrich the existing basis with the POD of x(t ,νnext ).

STEP 5: Repeat STEP 2 for the selection of the remaining parameter values

until the surrogate distance is smaller than the desired tolerance.
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Numerical Results
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Numerical results

Numerical results


yt (t ,x,ν)−ν∆y(t ,x,ν) + v ·∇y(t ,x,ν) = 0, a.e. in Q,

ν
∂y
∂n (t ,s,ν) = ∑

M
i=1 ui(t)bi(s), a.e. on Σ,

y(0,x,ν) = y◦(x), a.e. in Ω

D = {ν ∈ R |0.5≤ ν ≤ 4}⊂ R, v = 0.1;

Ω⊂ R2, bounded domain with Lipschitz-continuous
boundary Γ = ∂Ω, Σ = (0,1)×Γ, Q = (0,1)×Ω;

bi : Γ→R, 1≤ i ≤M, denote given control shape functions:

Γ =
M⋃

i=1

Γi , bi (s) = χΓi (s), 1≤ i ≤M, ‖bi‖2L2(Γ)
=
∫

Γi
12 ds = |Γi |,‖bi‖L2(Γ) = |Γi |1/2

y1(x) = 10.

Control problem

For ν ∈D , find u(t ,ν) such that yt (T ,x,ν) = y1(x)
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Numerical results

Finite element model

Ã(ν) =
((

a(ϕj ,ϕi ;ν)
))

1≤i,j≤N B̃ =
((
〈bj ,ϕi〉L2(Γ)

))
1≤i≤N ,1≤j≤M

x(t ,ν) =
(
yN

i (t)
)

1≤i≤N x◦ =
(
yN
◦i
)

1≤i≤N x1 =
(
yN

1i
)

1≤i≤N

Then, (21) leads to the N -dimensional dynamical system

Mx ′(t ,ν) = Ã(ν)x(t ,ν) + B̃u(t ,ν) for t ∈ (0,T ], x(0) = x◦. (6)

Setting A(ν) = M−1Ã(ν) and B = M−1B̃ problem (6) can be expressed as

x ′(t ,ν) = A(ν)x(t ,ν) + Bu(t ,ν) for t ∈ (0,T ], x(0,ν) = x◦.

Linear quadratic optimization problem

minJ(ϕ◦) =
1
2

∫ T

0
‖B>ϕ(t ,ν)‖2RM dt−〈x1,ϕ◦〉RN + 〈x◦,ϕ(0,ν)〉RN (7a)

subject to the differential equation

−ϕ
′(t ,ν) = A(ν)>ϕ(t ,ν) for t ∈ [0,T ), ϕ(T ,ν) = ϕ◦. (7b)
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Numerical results

Numerical results - greedy controllability

Results with the classical optimization approach (N = 881)

ν 0.5 1 1.5 2 2.5 3 3.5 4

iterations 59 34 28 29 28 24 20 20
cpu time 62 38.23 32 32.9 31.88 25.71 21.68 21.57

‖ x(T ,ν)−x1 ‖ 8.6e-3 2.8e-3 9.6e-3 7.4e-3 8.1e-3 6.9e-3 7.7e-3 6.5e-3

Greedy controllability - offline

N=9, Ξtrain ⊂ K ,dim(Ξtrain) = 1000, cpu time =1h10m.
Each step (parameter exploration) requires 7.5 minutes.

RB Greedy controllability - offline

N=11, Ξtrain ⊂ K ,dim(Ξtrain) = 1000, cpu time = 9 minutes.
Each step (parameter exploration) requires from 0.5 seconds to 0.98 seconds.
15 RB functions selected.
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Numerical results

Numerical results - RB Greedy controllability

RB and FEM Greedy controllability - offline
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Numerical results

Numerical results - RB Greedy controllability

RB and FEM Greedy controllability - online
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Numerical results

Numerical results - RB Greedy controllability

RB and FEM Greedy controllability - online
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Conclusion

Conclusions

The proposed Reduced Greedy controllability approach has been used to

solve controllability problems for parameter dependent dynamical
systems, the problem is not solved entirely by the RB method, but the latter

is used only locally into a greedy controllability technique.

The use of RB method in the greedy controllability approach allows to

further speedup the computational times required for the solution retaining

the same level of accuracy.

THANK YOU FOR YOUR ATTENTION!
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