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U’ Bates PIDE and semidiscretization

European put option gives holder the right to sell a given asset
at a prescribed maturity date T for a prescribed strike price K.

S, : asset price at time 7 > 0.
Payoffis ¢(St) = max(K — Sr, 0).
For the evolution of S, consider the Bates model (1996):

ds, = (r—x()S,dr+VV; S dW} + (Y —-1)S,dN,,
av, = k(n-— V,)dr+ oV, dW?

with real parameters «, n, o, r, A, C.

W, W2: Brownian motions with correlation factor p € [—1,1].

N, : independent Poisson process with intensity A > 0.
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Y : lognormal distribution with parameters v and § > 0,

probability density function

1 logy — )
f(J/):MeXP(_W> (y >0),

mean relative jump-size ¢ = exp(y + 62/2) —

Option value u(s, v, t) satisfies partial integro-differential equation
(PIDE)

ou 2, d2u 02u
= 3PV +poSV -+ 3 Vﬁ +(r

= _ 1
ot 2 082 0sov
a oo
+r(n — v)a—l‘j - (r+>\)u+)\/ u(sy, v, t)f(y)dy
0

ou
/\C)S%

fors>0,v>0,0<t<T.
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Truncated spatial domain [0, Smax] X [0, Vimax]-

Initial and boundary conditions:

u(s,v,t)= ¢(s) whenever t=0,
u(s,v,t)= e "K whenever s=0,
u(s,v,t) = 0  whenever s = Spmay,
uy(s,v,t) = 0 whenever v = Viax

with ¢(s) = max(K — s, 0).

Bates PIDE is assumed to hold for v = 0.

Semidiscretization on smooth, nonuniform Cartesian grid with
large fraction of grid points (s;, v;) near (s, v) = (K, 0).
Second-order central finite differences for spatial derivatives.

At v = 0, second-order forward finite difference used for u,.
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Discretization of integral term J(s, v, t) :/ u(sy, v, Hf(y)dy:
0
Let (s,v) = (s;,v;) and fi(x) = f(x/s)/s for x > 0. Then

oo smz\x
J(s, v, 1) :/ u(x, v, Hfi(x)dx z/ u(x, v, Hfi(x)dx.
0 0

and using piecewise linear interpolation

DS s — X — Sk
sowt) = 3 [ [P w0+ 52 w0 ran

k=1 Sk—

= v itk —1,j(t) + Bi ki j(1)]
pa

with certain known coefficients «; x and §; k.
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FD discretization of Bates problem yields initial value problem for
large system of stiff ordinary differential equations (ODEs)

Ut)=AU(t)+ G(t) (0<t<T), UQ©)=U
with given matrix A and vectors G(t), Up.
Cell averaging applied to smooth initial data at s = K.
Matrix A can be written as
A=D— (r+\I+)J

where D represents the convection-diffusion part, J represents
the integral and I is the identity matrix.

D is sparse, but J has large dense diagonal blocks.

Spectrum of J lies in complex unit disk.
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U' Adaptation of ADI schemes

Operator splitting methods for time discretization of ODE systems

stemming from jump-diffusion models considered by for example
» Andersen & Andreasen ('00)

Tavella & Randall ('00)

Almendral & Oosterlee ('05)

Cont & Voltchkova ('05)

d’Halluin, Forsyth & Vetzal ('05)

Briani, Natalini & Russo ('07)

Itkin & Carr ('11)

Kwon & Lee ('11)

Salmi & Toivanen ('14)

Salmi, Toivanen & Von Sydow ('14)

Von Sydow, Toivanen & Zhang ('15)

Kaushansky, Lipton & Reisinger ('17)

In 't H. & Toivanen ('16, '18)
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Splitting .
A=A) +AY + A + A

where
A = AgJ) represents integral term,
AP represents 9?u/dsdv term,
A, represents du/ds, 9?u/ds? terms,
A represents du/dv, d2u/dv? terms

and (r + A)I is distributed evenly over A; and A, . Write
Fo(t, V) = [A + AP v+ &§(1) + (1),
F1(t, V) =AV+ G1(t),

Fg(t, V) =AV -+ Gg(t),

F=Fo+Fi+Fa. ‘



Parameter 6 > 0.
Step-size At > 0 and temporal grid points t, = n- At.

Adaptation of three alternating direction implicit (ADI) schemes
defining U, = U(t,) forn=1,2,3,...

Adaptation of Douglas (Do) scheme:

Yo = Un—1 + AtF(th—1, Up_1),
Yj= Y1+ 0At(Fi(th, V) = Fi(to1, Up—1)) (/=1.2), (1)

Un:YQ.

First-order consistent in ODE sense for any given 6.
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Adaptation of modified Craig—Sneyd (MCS) scheme:

Yo = Un—1 + AtF(th—1, Un—1),

Yj = Y1+ 0At(Fi(th, Y)) — Fi(to—1, Un—1)) (j=1,2),
Yo = Yo + 0At (Fo(ty, Ya) — Fo(ta_1, Un_1)),

Yo = Yo+ (3 — 0)At (F(ta, Y2) — F(ts_1, Un_+)),

Y; = Y1 + 00t (Fi(ta, Y) — Fi(tro1, Un_1))  (j=1,2),

U=Ya.

Second-order consistent in ODE sense for any given 6.

MCS scheme for PDEs by In 't H. & Welfert ('09).
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Adaptation of stabilizing correction Adams2-type (SC2A) scheme:

2 2
Yo = Un 1+ At> (biFo(tai, Un_i) + b Z (tn—i, Un—i)
i=1 =

(3)
Yi = Yj_1 + 0Ot (Fj(tn, Y)) — Fi(ta—1, Un—1)) (j=1,2),

Un: Y2

with (b1, B2) = (3, —1) and (b1, B2) = (3 — 6,0 1).
Second-order consistent in ODE sense for any given 6.

Stabilizing correction linear multistep (SCLM) schemes for PDEs
studied by Bruno & Cubillos ('16) and Hundsdorfer & In 't H. ('18).

Generalization of implicit-explicit (IMEX) linear multistep methods
by adding dimension splitting.
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Summary main characteristics of three ADI-type schemes:

All treat the integral and mixed derivative terms jointly and
explicitly.

(1): one-step method, order 1, per time step two tridiagonal
solves and one multiplication by J

(2): one-step method, order 2, per time step four tridiagonal
solves and two multiplications by J

(3): two-step method, order 2, per time step two tridiagonal
solves and one multiplication by J
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LY stability analysis

Linear scalar test equation
U'(t) = (Mo + o + 1 + p2) U(1). (4)
Let wo = Ao At and z; = p; At for j=0,1,2.
Application of (1), (2), (3) to (4) yields
Un = R(wo, 20, 21, 22) Up—1 ,
Un = S(wo, 20, 21, 22) Up 1,
Un = T1(Wo, 20, 21, 22) Up—1 + To(Wo, 20, 21, 22) U2

with rational functions R, S, T4, Tp.
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Expressions are

R(wo,20,21,22) =1+

)

TIN

S(wo, 20,21, 22) =1 +,§+9(W°;;2720)Z+(%_9)§7

Ti(wo, 20, 21,22) =1+ %WOT*ZO +(8 - 9)¥’
To(Wo, 20, 21, 22) = —%W“T“" + (0 — %)%

with z=wy+20+21+ 2 and p=(1—-6z)(1 — 0z2).

Natural requirement:

ol +[20] < 2y/Re(z1)Re(22) , Re(z) < —3lwo| (j=1,2). (5)
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Unconditional stability results following In 't H. & Toivanen ('18).

Theorem 1
For the adaptation (1) there holds:

If 6 > 1, then |R| < 1 whenever wy, 2o, 21, zo € C satisfy (5).

Theorem 2
For the adaptation (2) there holds:

(a)lf 6> % then |S| < 1 whenever wy, zy, z1, z» € R satisfy (5).

(b) If 5 <6 <1, then|S| < 1 whenever wy, 2, 21, 2, € C satisfy (5).

Proofs employ In’t H. & Welfert ('07, ’09), In 't H. & Mishra ("11).
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Consider the characteristic polynomial

P(¢; Wo, 20, 21, 22) = (% — Ty(Wo, 20, 21, 22)¢ — To(Wo, 20, 21, Z2).

For any given point (wp, 2o, Z1, 22) the adaptation (3) is stable iff the
root condition holds: both roots ¢ of P have a modulus at most one,
and those with modulus equal to one are simple.

Theorem 3

If 6> % then (3) is stable whenever wy, o, z1, Zo € R satisfy (5).

Proof employs Hundsdorfer & In’t H. (’18).
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U' Numerical experiments

Consider following adaptations (1), (2), (3):

» Do scheme with 6 = }

» MCS scheme with § = }
» MCS scheme with § = }
» SC2A scheme with 6 = 2

CS and MCS with step-size At =T/N
Do and SC2A with step-size At = T/(2N)

Global temporal errors are computed in maximum norm at
t = T on region of interest JK < s< 3Kand0 < v < 1.

Spatial discretization on 200 x 100 nonuniform grid.
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Three cases of Bates parameter sets:

Case A | Case B | Case C
K 2 1.5 2.5
n 0.04 0.1 0.05
o 0.25 0.3 0.6
p -0.5 -0.5 -0.8
r 0.03 0.05 0.01
A 0.2 5 10
vy -0.5 0.3 -0.05
) 0.4 0.1 0.01
T 0.5 1 5
K 100 100 100

Cases A and B from literature.

Case C new (constructed).
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U’ Conclusions and future research

Conclusions

» SC2A (0 = 2) and MCS (¢ = J) preferable
» highly efficient

» unconditionally stable

» smooth, second-order convergence

» uniform in number of spatial grid points

Future research

» further analysis SCLM schemes
» application to e.g. American options
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NUMDIFF-15 conference, September 3-7, 2018, Halle, Germany

https://sim.mathematik.uni-halle.de/numdiff/Numdiff15

Registration before June 30, 2018.

Proceedings in Journal of Computational and Applied Mathematics.




