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Motivation/Outline

» Motivation: Randomized methods have got a steadily growing deal of
attention in recent years, especially for problems in large-scale data

analysis.
Two most important benefits:
e They can result in faster algorithms, either in worst-case asymptotic
theory and/or numerical implementation,
o they allow very often for (novel) tight error estimators
» Topic of this talk: Show how we can benefit from randomized

methods in model order reduction
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Motivation/Outline

» Motivation: Randomized methods have got a steadily growing deal of
attention in recent years, especially for problems in large-scale data
analysis.

Two most important benefits:
e They can result in faster algorithms, either in worst-case asymptotic
theory and/or numerical implementation,
o they allow very often for (novel) tight error estimators
» Topic of this talk: Show how we can benefit from randomized

methods in model order reduction

» Outline:
@ Introduction to projection-based model order reduction
@ Short overview on randomized methods
© Construct local spaces for domain decomposition or multiscale methods
@ Present randomized a posteriori error estimator for projection-based

model reduction error that does not require the computation/
estimation of stability constants
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Projection-based model order reduction

Parametrized Partial Differential Equation

» Parameter vector 11 € P; compact parameter set P < RF
» Parametrized PDE: Given any p € P, find u(p) € X, s.th.
A(p)u(p) = f(p) in X".

» Q < R3: bounded domain with Lipschitz boundary Q2
» H}(Q)9 = X = HY(Q)? (d = 1,2,3); X": dual space
» A(p) : X — X': inf-sup stable, continuous linear differential operator

» f(u) : X = R: continuous linear form
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Projection-based model order reduction

Parametrized Partial Differential Equation

» Parameter vector u € P; compact parameter set P RP
» Parametrized PDE: Given any p € P, find u(u) € X, s.th.

A(p)u(p) = f(p) in X".

» High-dimensional discretization:

» Introduce high-dimensional FE space X < X with dim(X") = A/
(assume small discretization error)

High-dimensional approximation: Given any u € P, find uN(,u) e XN,
s.th.

v

A () = () in XV
» Issue: Require tV(j1) in real time and/or for many s € P.
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Projection-based model order reduction

Parametrized Partial Differential Equation

» Parameter vector u € P; compact parameter set P RP
» Parametrized PDE: Given any p € P, find u(u) € X, s.th.

A(p)u(p) = f(p) in X".

» High-dimensional discretization:

» Introduce high-dimensional FE space X < X with dim(X") = A/
(assume small discretization error)

» High-dimensional approximation: Given any u € P, find uN(,u) e XN,
s.th.
AN (n) = £(u)  A(n) € RNV £(u) e RV,

» Issue: Require tV(j1) in real time and/or for many s € P.
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Projection-based model order reduction

Projection-based model order reduction: key concept

\ e

N (7my)

» Offline: Construct reduced space XN < XV ) v

X
from solutions v (), i =1,...,N /\
(e.g. by a Greedy algorithm, Proper

Orthogonal Decomposition,...)

» Exploit: uN(H) belongs to “solution
manifold” MY = {uN () | e P} < XN of
typically very low dimension

» Online: Galerkin projection on X": Given any ;* € P, find u/V(p*) e XV,
s.th.
Ap*)u (u*) = F(p*)  in XM
» If MY is smooth, N « A\ already yields a very accurate approximation.
([DeVore Petrova Wojtaszczyk 13])

For an overview on model order reduction see for instance [Benner, Cohen,

Ohlberger, Willcox 2017].
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Projection-based model order reduction

Efficient computational procedure

» assume affine parameter dependence of operator A(i) and linear form

f(p): o .
= Y 03(wAg,  F()() = D 05 mf()
q=1 g=1

or use Empirical Interpolation Method [Barraul et al 04] otherwise
» Offline (O(N?) cost):
o Compute snapshot matrix S = [V (fi1)]...[u"Y (uN)]
o Preassemble data: Ay, = S'A,S, Fyq = StF,
» Online (O(N?) cost):

e assemble reduced system:
Z 03 (1) An g, Fu(i*) = 3 05(1*) Fvg  (O(QN?))

o solve reduced system Ay (u*)u g (u*) = Fy(u*) (O(N3))
and obtain uM(p*) = SulN . (u*)
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Projection-based model order reduction

Algorithm 1: Greedy algorithm

input : finite dimensional training set P*" — P, tolerance tol
output: Sy, X"

Initialize: S; = &, X° = {0}, Ao(p) = || ()] x
for N =1: Npax do

Find: pn = arg max An—1(p).
He‘[)tiam

Solve for u™ ().

Extend: Sy = Sy_1 U pn and XV = span{uN(ul), ce uN(,uN)}.
Compute Apn(p) for all e P™".
if arg max Apn(u) < tol then
peptrain

| break
end

end

A posteriori error estimator should also be offline/online decomposable
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Projection-based model order reduction

Certification via a posteriori error bound

v

Define residual r(p) := () — A(p)u™ (1) € XV’
» Define Riesz representation R () of r(u) as solution of

(R(p), vV)x = (r(p), vy vV e XV,

. . A N} N
» inf-sup constant: Bar(1) = inf xcxn SUP,NexN ﬁv(‘u”))‘:HWW ”X>
Ap)vN why

» continuity constant: Yar(i) = sup,wexA SUP N exA ﬁv MHXHW T

Proposition (A posteriori error bound)

The error estimator Ay (1) = Bre(p) ™ | R(w)|x with Bre(p) < B (1)
satisfies

le(e)lx = [ () — u¥(w)llx < A < gN((") I () — ()] x.
LB\
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Projection-based model order reduction

Randomized Numerical Linear Algebra
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A short overview on randomized methods

Randomized Numerical Linear Algebra

» produce random “sketch” of a matrix and then use the sketch as a
surrogate for computations

o sketch is a smaller or sparser matrix that represents the essential
information in the original matrix
e generated by random sampling
» How to generate a sketch?

e Element-wise sampling (unfavorable error bounds)
o Row/column sampling — CUR decomposition
e apply given matrix to random matrix — SVD, QR decomposition

For an overview on algorithms and associated error estimates see for
instance: [Halko et al 2011], [Mahoney 2011], [Drineas, Mahoney, 2016]
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A short overview on randomized methods

Why can randomization work?

» Goal: Given a matrix B € R™*" and an integer k find an orthonormal
matrix @ of rank k such that B ~ QQ*B.

» Approach:

» Draw k random vectors r; € R" (say standard Gaussian)

» Form sample vectors y; = Br;e R™ j=1,... k.

» Orthonormalize y; — q;, = 1,..., k and define Q = [q1,. .., q«]

» Result: If B has exactly rank k then g;, = 1,..., k span the range of
B at probability 1. But also in the general case q;, = 1,..., k often
perform nearly as good as the k leading left singular vectors of B

» Compute randomized SVD:
» Form C = Q*B which yields B ~ QC
» Compute SVD of of the small matrix C = UXV* and set U = QU
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A short overview on randomized methods

Subspace embeddings and concentration inequalities

Proposition (Concentration inequality; Johnson-Lindenstrauss)
» Choose rows of a matrix ® : RV — RK say as K independent copies
of standard Gaussian random vectors scaled by 1/v/K

»r0<ex<l
» S RV 3 finite set

» assume K > (C(z)/e?) log(#S/9).

Then we have

P{1l-e)lx—ylZ<[ox—dyl3 < (1 +e)[x—ylZ Vx,yeS}> 1-4.]

see for instance [Boucheron, Lugosi, Massart 2012], [Vershynin 2012],
[Vershynin 2018+]
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A short overview on randomized methods

References for randomization in reduced order modelling

Exploiting randomization for construction of reduced spaces:
» Hochman et al 2014
» Alla, Kutz 2015
» Zahm, Nouy 2016
» Balabanov, Nouy 2018
Randomization within error estimation:
» Cao, Petzold 2004, Homescu, Petzold, Serban 2005
» Drohmann, Carlberg 2015, Trehan, Carlberg, and Durlofsky 2017
» Manzoni, Pagani, Lassila 2016
» Janon, Nodet, Prieur 2016
» Giraldi, Nouy 2017
» Balabanov, Nouy 2018
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Localized Model Order Reduction

Randomized local model order reduction
(joint work with A. Buhr)
A. Buhr and K. Smetana,

Randomized local model order reduction,

SIAM J. Sci. Comput., accepted for publication

[m]

=
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Localized Model Order Reduction Motivation for localized model order reduction

Localized model order reduction

Limitations of standard model order reduction approach:

» Curse of parameter dimensionality: many parameters require
prohibitively large reduced spaces

» No topological flexibility (although geometric variation is possible)

» Possibly high computational costs in the offline stage
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Localized Model Order Reduction Motivation for localized model order reduction

Localized model order reduction

Limitations of standard model order reduction approach:

» Curse of parameter dimensionality: many parameters require
prohibitively large reduced spaces

» No topological flexibility (although geometric variation is possible)

» Possibly high computational costs in the offline stage
— Localized model order reduction

Further advantages:

» Allows to use different (sizes of) reduced spaces in different parts of
the domain (similar to hp-methods)

» (Local) changes of the PDE, the geometry in the online stage are
possible
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Localized Model Order Reduction Existing localized model order reduction approaches

Many localized model order reduction approaches:

» Component Mode Synthesis: [Bampton, Craig 68], [Hurty 65], [Bourquin
92], [Hetmaniuk, Lehoucq 10], [Jakobsson, Bengzon, Larson 11],
[Hetmaniuk, Klawonn 14], ...

» Generalized Finite Element Method: [Babuska, Caloz, Osborn 94], [Babuska,
Melenk 97], [Strouboulis, Babuska, K. Copps 01], [Babuska, Lipton 11], ...

» Reduced Basis Element Method: [Maday, Rgnquist 02,04], ...
» Multiscale Reduced Basis Method: [Nguyen 08]
» Reduced Basis Hybrid Method: [lapichino, Quarteroni, Rozza 12]

» Localized Reduced Basis Multiscale Method: [Schindler, Haasdonk,
Kaulmann, Ohlberger 12], [Ohlberger, Schindler 15], ...

» Static Condensation Reduced Basis Element Method: [Huynh, Knezevic,
Patera 13], [Eftang, Patera 13], [Smetana 15], [Smetana, Patera 16], ...

» Generalized Multiscale Finite Element Method: [Efendiev, Galvis, Hou 13],
[Calo, Efendiev, Galvis, Li 16], ...
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Localized Model Order Reduction Existing localized model order reduction approaches

Many localized model order reduction approaches:

» Reduced Basis Multiscale Finite Element Methods: [Hesthaven, Zhang, X.
Zhu 15]

» Reduced Basis methods combined with a Dirichlet-Neumann scheme: [Maier
Haasdonk 14]

» Reduced Basis methods combined with a heterogeneous Domain
Decomposition scheme: [Martini, Rozza, Haasdonk 15]

» ArbiLoMod: [Buhr, Engwer, Ohlberger, Rave 15], ...
» RDF method: [lapichino, Quarteroni, Rozza 16]

» Discontinuous Galerkin Reduced Basis Element Method: [Antonietti,
Pacciarini, Quarteroni 16], ...

» and many, many more ...
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Localized Model Order Reduction [e,E]

Localized model order reduction

Challenges:

llenges

» We can only exploit that the global solution solves PDE locally

» But: No knowledge of the trace of the global solution on I,

== Infinite dimensional parameter space

—]
| Qin | L out
I'n
I'p Cout Ql Lin QQ Cout
Iy
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Optimal local approximation spaces

How can we construct local approximation spaces that ...

. yield a very rapidly converging approximation,

. are even optimal in the sense that they minimize the approximation
error on [, or €, among all spaces of the same dimension, or, more
precisely, minimizes the Kolmogorov n-width:

> .

Definition (Kolmogorov n-width, optimal subspaces (Kolmogoroff 1936))

R Hilbert space, A < R, R": subspace of R, dim R" = n.
The Kolmogorov n-width is defined as

dy(A;R) :== inf Sup |nf In—<lr

dim R"—n
A subspace R" with dim R" < n, that satisfies

dn(A; R) = sup |nf 7 —<lr

neA

is called an optimal subspace.
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Optimal local approximation spaces Motivation: separation of variables

Motivation: separation of variables

» Consider Q = (—5,5) x (0,1)
) du du
—Au=0, in Q, d—y(x,l)—d—y

» plus: arbitrary Dirichlet boundary conditions on Io;.

(x,0) = 0. (1)

Fout Fm Fowf

K Smetana (k.smetana@utwente.nl) Randomized Model Order Reduction June 1, 2018 18 / 42



Optimal local approximation spaces Motivation: separation of variables

Motivation: separation of variables

» Consider Q = (—5,5) x (0,1)

Cau—0, in0,  Hqy- Z;

» plus: arbitrary Dirichlet boundary conditions on I';.

(x,0) =0. (1)

v

separation of variables: all local solutions of (1) on € have the form
0

u(x,y) = aog + box + Z cos(nmy)[a, cosh(nmx) + b, sinh(nmx)]
n=1

v

Example: Prescribe cos(37y) on on I,y and thus n = 3:

1

L )

-5 4 -3 -2 -1 0 1 2 3 4 5
X

u(x,2/3)
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Optimal local approximation spaces Motivation: separation of variables

Motivation: separation of variables

» Consider Q = (—5,5) x (0,1)

_au—0, in0,  Hoqy- Z;

» plus: arbitrary Dirichlet boundary conditions on Io;.

(x,0) = 0. (1)

» separation of variables: all local solutions of (1) on Q have the form

o0
u(x,y) = ag + box + Z cos(nmy)[a, cosh(nmx) + b, sinh(nmx)]
n=1
= Extremely rapid and exponential decay of the summands in the interior
of Q for higher n.
Most terms in the sum are practically zero on I'j,.
A very small port space on [, will already yield a very good
approximation!

Il
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Optimal local approximation spaces Motivation: separation of variables

Motivation: separation of variables

» Consider Q = (—5,5) x (0,1)
d d
—Au=0, inQ UT;(X, 1) = d;

» plus: arbitrary Dirichlet boundary conditions on Io;.

(x,0) = 0. (1)

» separation of variables: all local solutions of (1) on Q have the form
u(x,y) = ao + box + Z cos(nmy)[an cosh(nmx) + b, sinh(nmx)]

n=1

= Extremely rapid and exponential decay of the summands in the interior
of Q for higher n.

Question: How can we generalize this idea?

K Smetana (k.smetana@utwente.nl) Randomized Model Order Reduction June 1, 2018 18 / 42



Construction of optimal local approximation spaces
The space of all local solutions of the PDE on 2

» Consider the space of all local solutions of the PDE! on Q

H:={we HY(Q) :with Aw =0 € X'}.

» global solution of the PDE restricted to 2 lies in H!

» We are interested in u|r, or u|q, and thus introduce

R:={w|r,, weH} or R:={wlq,,
and S :={w|r,,, weH}

weH),

'For theoretical purposes one needs to consider the quotient space 7 := H/ ker(A)
at certain instances.
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(01o1 1 FIN TR BETSTS o3 [ Fate IS ETSS  Construction of optimal local approximation spaces

Transfer operator
» We introduce a transfer operator

T:S—>R

» For w € H and thus w]r,, € S we define

T(W|rout) = W|rin or T(W|rout) = W‘Qin'

'__'“
-
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(01o1 1 FIN TR BETSTS o3 [ Fate IS ETSS  Construction of optimal local approximation spaces
Transfer operator

» We introduce a transfer operator

T:S—R

» For w € H and thus W‘rout € S we define

T(W|rout) :

= W|rin or

K Smetana (k.smetana@utwente.nl) Randomized Model Order Reduction
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=
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(0011 EINSTSE| BETLT IO ELLT IEELER . Construction of optimal local approximation spaces
Transfer operator

» We introduce a transfer operator

T:S—R

T(w

» For w € H and thus wir,, € S we define

Foue) = WIr,

or

T(w

rout) = W‘Qin'
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(01o1 1 FIN TR BETSTS o3 [ Fate IS ETSS  Construction of optimal local approximation spaces

Transfer operator

» We introduce a transfer operator

T:S—R

» For w € H and thus wir,,, € S we define

T(W|rout) = W|rin or T(W|rout) = W|Qin'

» T is compact thanks to the Caccioppoli inequality.

» Introduce adjoint operator T* and consider the eigenvalue problem
T*Tw|oyr = Aoy for w e H.
» Equivalent formulation: Find (¢;j, Aj) € (H,R") such that
( #ilon » Wb, JR =X ( Gjlree » Wlre,)s Yw € H, Din = Tin, Qi
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(01o1 1 FIN TR BETSTS o3 [ Fate IS ETSS  Construction of optimal local approximation spaces

Transfer eigenvalue problem

Proposition (Transfer eigenvalue problem)

» @j and \;: eigenfunctions and eigenvalues of the transfer eigenvalue
problem: Find (¢;j, Aj) € (H,R*) such that

( @j|D,—,, ) W|Din )R = AJ ( 99j‘rout y W|rout)5 VWEH,D/H = rin;gzin

» List \j such that \y > Ao > ..., and \; — 0 as j — 0.

» The optimal space on [, or Q;, is given by

R" := span{¢7", ..., p:P}, gbs” Tojlro, J=1,..,nm

dn(T(S): R) = sup inf 1L —ClR _ /3

ges cerRm ||€]ls
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(01o1 1 FIN TR BETSTS o3 [ Fate IS ETSS  Construction of optimal local approximation spaces

Exponential convergence of optimal modes

Heat conduction, linear elasticity: [Babuska, Lipton 11], [Babuska,
Huang, Lipton 2014]: Proof that eigenvalues of the transfer eigenvalue
problem decay almost exponentially, i.e. superalgebraically

Numerical Experiments: Eigenvalues converge exponentially even for
irregular domains [Smetana, Patera 16]:

0
10
-4 Nl <
10
=<
. 10—8 K<Y “A“‘X‘y";;::‘
e ﬂV
'\\ kvé}%lﬁn&'g‘n "Xe'%v
TAYaviva 'AVAv "AVAV 4v
1072 s LR,
e ”"‘W'A A Ax“"'ﬁ&t "VAVAV Ame%‘A'ﬁﬁéﬂ
“" '"A"Iv'%" 4"'51"51‘!: Av:Av'v Ak
10716 Agg; vmﬁ‘Xé'gnm'gnmﬁ;};nunz
OO 4L
1 5 10 15 20 25 i
n
Figure: eigenvalues A, Figure: mesh in Q;
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(011 EI N STeE BT TEOAT ) ELLT IEELEERY Approximating the transfer eigenvalue problem

Computing an approximation of the transfer eigenvalue problem

Transfer eigenvalue problem: Find (¢}, Aj) € (H,R") such that

( Th(spj|rout) Y Th(W‘rout) )R :)\J ( ¢j|rout Y W‘rout)s VWE%

H = { set of all local solutions of the PDE with arbitrary Dirichlet b. c. }

@ Introduce a FE discretization with N, degrees of freedom (DOFs) on
Iout and N;, DOFs on [, or Q;,

@ Solve for each basis function on I, the PDE locally
== number of required local solutions of the PDE scales with the
number of DOFs on I,,; and thus depends on the discretization

© Assemble and solve generalized eigenvalue problem

l—Wout Fm I10ut‘ an Fout
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(011 EI N STeE BT TEOAT ) ELLT IEELEERY Approximating the transfer eigenvalue problem

Computing an approximation of the transfer eigenvalue problem

Transfer eigenvalue problem: Find (¢}, Aj) € (H,R") such that

( Th(spj|rout) Y Th(W‘rout) )R :)\J ( ¢j|rout Y W‘rout)s VWE%

H = { set of all local solutions of the PDE with arbitrary Dirichlet b. c. }

@ Introduce a FE discretization with N, degrees of freedom (DOFs) on
Iout and N;, DOFs on [, or Q;,

@ Solve for each basis function on I, the PDE locally
== number of required local solutions of the PDE scales with the
number of DOFs on I,,; and thus depends on the discretization

© Assemble and solve generalized eigenvalue problem

Problem: For large number of DOFs on I',,; the approximation of the
transfer eigenvalue problem can be very/prohibitively expensive
especially in 3D
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Optimal local approximation spaces Randomized Linear Algebra

Approximating optimal local spaces with Randomized Linear Algebra?®

» Prescribe random boundary conditions; in detail choose every
coeffcient of a FEM basis function on I, as a (mutually inde-
pendent) Gaussion random variable with zero mean and variance one

» Solve PDE for random boundary conditions numerically and store
evaluation of local solution of PDE u"|r. or uf|q, .

» Define reduced space R”, , as the span of n such evaluations u”|r, or
Uh|Qin

Lout Lin Lout an Fout

2for a review see [Halko, Martinsson, Tropp 11]
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Optimal local approximation spaces Randomized Linear Algebra

Approximating optimal local spaces with Randomized Linear Algebra?®

» Prescribe random boundary conditions; in detail choose every
coeffcient of a FEM basis function on [, as a (mutually inde-
pendent) Gaussion random variable with zero mean and variance one

» Solve PDE for random boundary conditions numerically and store
evaluation of local solution of PDE u”|r, or u|q, .
» Define reduced space R/, , as the span of n such evaluations ulllr. or
uh’Qin
Questions: What is the quality of such an approximation?

(How) can we determine the dimension of the reduced space for a given
tolerance?

2for a review see [Halko, Martinsson, Tropp 11]
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Optimal local approximation spaces Probabilistic a priori error bound

Probalistic a priori error bound?®

Proposition (A priori error bound (Buhr, Smetana 17))

Under the above assumptions there holds for n,p > 2

p

The — 1/2
E | sup inf I —de | <1+ vn ) A+ SVOTP ZA})
gesncerme  [€lls p—1 Zi

~ Cﬁ\/ )‘ZH

Optimal convergence rate achieved with transfer eigenvalue problem:

do(T(S); R) = sup inf I7e—cle _ v An+1
ces R [€]s

3based on results in [Halko, Martinsson, Tropp 11]
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Optimal local approximation spaces Probabilistic a priori error bound

Probalistic a priori error bound?®

Proposition (A priori error bound (Buhr, Smetana 17))

Under the above assumptions there holds for n,p > 2

p

E sup inf HThf*CHR <G <1+ ﬁ > \h Jre n+p Z:)\h)l/z
cesncerntz  [€ls Vp—1)V =

N C\/ﬁm

. AmaX(M ) )\max(M )
> Ch - \/)\miH(M:) /\min(MSS)

> (MR)ij = (¥j,¥i)r, ¥i: FE basis functions
> (Ms)ij = (¥j,%i)s, ¥i: FE basis functions
» p: oversampling parameter
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(0131 E N STeE | REVLTTEOAT ) ELLT I ELSSE. Adaptive randomized range finder algorithm

Probablistic a posteriori error bound*

Proposition (Probablistic a posteriori error bound (Buhr, Smetana 2017))

» {w 1 i =1,2,...,n;}: standard Gaussian vectors
» Ds : RNew — Sh-(¢y, ..., CNowe) P X0 X = Zﬁ"{* civi, ;i FE basis functions

» Nt : bound for the dimension of the range of operator T"

Define 5
A, ) = St ) ( inf HThDSQf),c\\R)
)\M§ i€l,...,nt \CER .

Then there holds

1/2
. Th C A%sx i ) Th o
sup inf I77¢ — clle < A(ng, 6r) < Ma et (nt, Oig) sup _inf 17°¢ = clr
eesh Rl IEls 2 eesh Ry IE]ls

with a probability of at least 1 — 6.

“Estimator extends results in [Halko, Martinsson, Tropp-11]; effectivity bound new
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(0131 E N STeE | REVLTTEOAT ) ELLT I ELSSE. Adaptive randomized range finder algorithm

Algorithm 2: Adaptive randomized range finder

input : T" Nr, target tolerance tol, number of test vectors n;, maximum failure
probability Jaigofail

output: R/, such that P (supgesh infeepn ITe—Clr tol) > 1 — algofail-

rand  |€]ls

Initialize n: test functions: 7¢ ThDsw Doi= 1,..., 0, g(i): standard Gaussian vector
8t = Galgofair/NT. Initialize j = 0.

while A(n¢, d¢) >tol do
j=j+1
Compute a new basis function:
¢V = ThDswlUtm) | U+ standard Gaussian vector
C(J) ‘7(0) ZJ 1( rand’C(J)) ¢rand
7 = ¢V /16w

Update test functions 7() and therefore A(ne, 0er):
() A T() - (d)jand? ()) d)jandv i = 17"'5

end
n= j; Rrand - span{¢rand7 ad)rand
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Optimal local approximation spaces Numerical experiments

Numerical Experiments for analytic test problem

Numerical Experiments: interfaces

» local (oversampling) domain Q := (—1,1) x (0, 1)

» Consider PDE: —Au=01inQ

» Goal: Construct reduced space on [},

1_‘out Fm

Figure: Q
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Numerical experiments
Heat conduction: —Au =00n Q2 =(-1,1) x (0,1)

2F 7 T [ 2F
1 A /o B 1+
1k i 1l
—2 L | — —2L
0 0.5 1
X2
Figure: optimal basis basis generated by randomized range

finder algorithm
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Numerical experiments
Heat conduction: —Au =00n Q2 =(-1,1) x (0,1)

O max
-=--T75 percentile
= " - — {——50 percentile
wiw 100 R - 25 percentile
~ - 0. .
= s o o min
T 1051 i
%k B n+1
10710
¢ 105}
o
@ 0 2 4 6 8 10 12

basis size n
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Optimal local approximation spaces Numerical experiments

Heat conduction: —Au =00n Q = (—1,1) x (0,8)

CPU times

Properties of basis generation

Algorithm 2 | Scipy/ARPACK
(resulting) basis size n 39 39
operator evaluations 59 79
adjoint operator evaluations 0 79
execution time in s (without factorization) 20.4 s 479 s

Table: CPU times; Target accuracy tol= 10"*%

, number of testvectors n; = 20,
failure probability Saigofail = 1071%; unknowns of corresponding problem 638,799
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Optimal local approximation spaces Numerical experiments

Numerical Experiments for a transfer operator with slowly
decaying singular values

Numerical Experiments: subdomains

» local (oversampling) domain Q := (—2,2) x (—0.25,0.25) x (—2,2)
» Consider PDE: linear elasticity in Q (isotropic, homogeneous)
» Goal: Construct reduced space on

Qi = (—0.5,0.5) x (—0.25,0.25) x (—0.5,0.5)

Figure: Q\Qj,
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Numerical experiments
Linear elasticity on Q := (—2,2) x (—0.25,0.25) x (—2,2)

—— \/7
n+1
A priori error bound - 2
_ sc. a priori
—~ 102 & i =
g % &
ig B ,. ___-IE H T _ PRn+pT H
':QQ 10_2 B
] -
0| e
S B
=5 10°8| | | ‘
2 50 100 v N
n
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Numerical experiments
Linear elasticity on Q := (—2,2) x (—0.5,0.5) x (—2,2)

—= ng =5
—nt=10
——n; = 20
—A—nt:40
—*—nt=80

rand

—

(@]

w

)
di % T
AR TR

i

a/|Th
= =
o o
=) —

0 100 200 300
n

109

104 109 107* 108

target accuracy tol

Figure: Convergence behavior of adaptive algorithm (left) and effectivity of a
posteriori error estimator A/||T" — Pge  T"| (right) for increasing number of test

vectors n;.
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Randomized a posteriori error estimation

Randomized residual-based error estimators for

parametrized equations

(joint work with A. T. Patera and O. Zahm)
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Goal/Motivation
Goal /Motivation

» Goal: Develop a posteriori error estimator for projection-based model
order reduction that does not contain constants whose estimation is
expensive (inf-sup constant)

» Setting: We query a finite number of parameters in the online stage
for which we want to estimate the approximation error.

» Approach: Exploit results for random subspace embeddings

Proposition (Concentration inequality, Johnson-Lindenstrauss)

Choose rows of matrix ® say as K independent copies of standard Gaussian
random vectors scaled by 1/v/K and let S ¢ RN be a finite set. Moreover,
assume K = (C(z)/?) log(#S/5). Then we have

P{1-e)|x—yls<[dx—dyl5< (1+e)|x—y|3 Vx,yeS}=>1-4.
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Randomized a posteriori error estimation Norm estimate

Assumptions on random vector

» Z € RN random vector such that
V|2 =vTEv =E(Z"v)?) VYveRV,

where ¥ is matrix e.g. associated with H'- or L?-inner product or a
quantity of interest

== (Z"v)? is an unbiased estimator of |v|Z
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Randomized a posteriori error estimation Norm estimate

Assumptions on random vector

» Z € RV random vector such that
Ivl3 =vTEv =E((ZTv)?) VveRY,
where ¥ is matrix e.g. associated with H'- or L?-inner product or a
quantity of interest

== (Z"v)? is an unbiased estimator of |v|Z

» For simplicity: Assume Z ~ N (0,X) is a Gaussian vector with zero
mean and covariance matrix ¥
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Randomized a posteriori error estimation Norm estimate

Assumptions on random vector

» Z € RN random vector such that
V|2 =vTEv =E(Z"v)?) VYveRV,

where ¥ is matrix e.g. associated with H'- or L?-inner product or a
quantity of interest

== (Z"v)? is an unbiased estimator of |v|Z

» For simplicity: Assume Z ~ N (0,X) is a Gaussian vector with zero
mean and covariance matrix ¥

» Z1,...,Zk: K independent copies of Z
» Consider the following (unbiased) Monte-Carlo estimator of |v|Z

Ly
1z (ZiTV)z-
K i=1
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Randomized a posteriori error estimation Norm estimate

Proposition (Concentration inequality)

For any given w € R, w > y/e and K = 3 we have for one fixed but

arbitrary jij € P
K

W

K
P < & D@ < wlelt 21~ (42)

where e(pj) = u™ (1)) — uM ().

w
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Randomized a posteriori error estimation Norm estimate

Proposition (Concentration inequality for set of vectors)

Given a finite set of parameters S = {1, ...,us} < P, a failure probability
0<d<1l weR, w> /e, we have for

log(#S) + log(671)
log(w/v/e)

le(u)lz _ 1 &
P{ f=nle 2 2 < wle(y) B, VieS} =16

w2

K> that

v

Proof: union bound argument
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Randomized a posteriori error estimation Norm estimate

Proposition (Concentration inequality for set of vectors)

Given a finite set of parameters S =

(s ..

0<d<1l weR, w> /e, we have for

log(#S) + log(671)

. ts} < P, a failure probability

K> that
log(w/v/e)
K
P H MJ ”): 2 S _5

i 2 > < wle(w)lZ, Vu e .

w=2 w=3 w=4 w=5 w=10
#S =1 24 8 6 5 3
#S = 100 48 16 11 9 6
#S = 1000 60 20 13 11 7
#S =100 96 31 21 17 11

Table: Values for

K Smetana (k.smetana@utwente.nl) Randomized Model Order Reduction

K that guarantee (1) for all 4; € S with § = 1072

June 1, 2018

38 / 42



Randomized a posteriori error estimation Norm estimate

Proposition (Concentration inequality for set of vectors)

Given a finite set of parameters S = {1, ...,us} < P, a failure probability
0<d<1l weR, w> /e, we have for

log(#S) + log(671)
= log(w/ve)

K
p{' s 2 < w?e(u))|2, Vuj€5}>1—5-

w2

that

v

Define A(p) := (% Z,K:;[(Z,-Té(ﬂ))z) v

Problem: estimator A(u) = (K Z, 1(ZT(UN(MJ)*HN(M>))2>1/2

involves high-dimensional finite element solution
= Computationally infeasible in the online stage
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Randomized a posteriori error estimation A posteriori error estimation

A constant-free, randomized a posteriori error estimator

» Exploit error residual relationship
ZT (N (1) — () = ZT Aw) A (N (1) — uM (w)
= ZT A(p) (£ () — A(p)u" (1)

resi‘gual
= (AT Z) T (F (1) — A(u)u" ()
—— X —
dual problem r(p):=

» Define solutions of dual problem with random right-hand sides Z;:
yN(p) = A7 Z,
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Randomized a posteriori error estimation A posteriori error estimation

A constant-free, randomized a posteriori error estimator

» Exploit error residual relationship
ZT (N () — uM () = ZTA() A (e () — 1M ()
= ZT A(p) (£ () — A(p)u" (1)

resi‘gual
= (AT Z) T (F (1) — A(u)u" ()
—— X —
dual problem r(p):=

» Define solutions of dual problem with random right-hand sides Z;:

yN(p) = Ap)~TZ
» Rewrite randomized a posteriori error estimator

i=1
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Randomized a posteriori error estimation A posteriori error estimation

A fast-to-evaluate randomized error estimator

» Approximation of the dual solutions via projection-based model order
reduction:
N, N,
YV () ~ yMo () e Yo < XV,

1

where YNeu dual reduced space (we use one space for all K dual
problems)

» Define fast-to-evaluate randomized error estimator

1/2
AN (1) = (K Z Naw (1) T r (1)) )

» By using an auxiliary problem ANev(1) can be evaluated by solving
one (and not K) linear system of equations of size Ny,
— computational complexity of ANd(y) in general O(N3))
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Randomized a posteriori error estimation A posteriori error estimation

A fast-to-evaluate randomized error estimator

Proposition

Choose S € N in the offline stage. Then, in the online stage for any given
w > /e and 6 > 0 we have for S different parameters values pj, j =1,...,5 in a
finite parameter set S = {u1, ..., us} and

log($) + log(6~") (1S Ve
) that A" (p) := (R i;(x,{" (Mj)Tf(Nj))2>

satisfies
P{ (aw) AN (1)) < () < (aw) AN (), €S, } =135,

where

e o S50

v
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Summary

» Reduced local approximation spaces generated by methods from
Randomized Linear Algebra
o Probabilistic a priori error bound/Numerical experiments: convergence
rate is only slightly worse compared to the optimal rate (factor v/n).
e Probabilistic a posteriori error bound allows to build the reduced space
adaptively
o required number of local solutions of PDE scale (roughly) with size of
the reduced space; Numerical experiments: faster than Lanczos
» Proposed randomized a posteriori error estimator for projection-based
model order reduction methods that...
@ ... is based on concentration inequalities, error-residual relationship,
and random dual problem
e ... does only contain computable constants
o ... is reliable and efficient at high (given) probability
e ... has a favorable computational complexity as Ny, can be chosen
relatively small
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Summary

» Reduced local approximation spaces generated by methods from
Randomized Linear Algebra
o Probabilistic a priori error bound/Numerical experiments: convergence
rate is only slightly worse compared to the optimal rate (factor v/n).
e Probabilistic a posteriori error bound allows to build the reduced space
adaptively
o required number of local solutions of PDE scale (roughly) with size of
the reduced space; Numerical experiments: faster than Lanczos
» Proposed randomized a posteriori error estimator for projection-based
model order reduction methods that...
@ ... is based on concentration inequalities, error-residual relationship,
and random dual problem
e ... does only contain computable constants
o ... is reliable and efficient at high (given) probability
e ... has a favorable computational complexity as Ny, can be chosen
relatively small

Thank you very much for your. attention!
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