Randomized Model Order Reduction

<u>Kathrin Smetana</u> (University of Twente) joint work with A. Buhr (University of Münster), A. T. Patera (MIT), and O. Zahm (INRIA)

June 1, 2018

Spring Meeting SCS

Motivation/Outline

- Motivation: Randomized methods have got a steadily growing deal of attention in recent years, especially for problems in large-scale data analysis.
 - Two most important benefits:
 - They can result in faster algorithms, either in worst-case asymptotic theory and/or numerical implementation,
 - they allow very often for (novel) tight error estimators
- Topic of this talk: Show how we can benefit from randomized methods in model order reduction

4 3 4 3 4 3 4

Motivation/Outline

- Motivation: Randomized methods have got a steadily growing deal of attention in recent years, especially for problems in large-scale data analysis.
 - Two most important benefits:
 - They can result in faster algorithms, either in worst-case asymptotic theory and/or numerical implementation,
 - they allow very often for (novel) tight error estimators
- Topic of this talk: Show how we can benefit from randomized methods in model order reduction

Outline:

- Introduction to projection-based model order reduction
- Short overview on randomized methods
- Onstruct local spaces for domain decomposition or multiscale methods
- Present randomized a posteriori error estimator for projection-based model reduction error that does not require the computation/ estimation of stability constants

Parametrized Partial Differential Equation

- Parameter vector $\mu \in \mathcal{P}$; compact parameter set $\mathcal{P} \subset \mathbb{R}^{P}$
- Parametrized PDE: Given any $\mu \in \mathcal{P}$, find $u(\mu) \in X$, s.th.

$$A(\mu)u(\mu) = f(\mu)$$
 in X'.

- + $\Omega \subset \mathbb{R}^3$: bounded domain with Lipschitz boundary $\partial \Omega$
- $H^1_0(\Omega)^d \subset X \subset H^1(\Omega)^d$ (d = 1, 2, 3); X': dual space
- $A(\mu): X \rightarrow X'$: inf-sup stable, continuous linear differential operator
- $f(\mu): X \to \mathbb{R}$: continuous linear form

• • = • • = • = =

Parametrized Partial Differential Equation

- Parameter vector $\mu \in \mathcal{P}$; compact parameter set $\mathcal{P} \subset \mathbb{R}^{P}$
- ▶ Parametrized PDE: Given any $\mu \in \mathcal{P}$, find $u(\mu) \in X$, s.th.

$$A(\mu)u(\mu) = f(\mu)$$
 in X'.

- High-dimensional discretization:
- Introduce high-dimensional FE space X^N ⊂ X with dim(X^N) = N (assume small discretization error)
- High-dimensional approximation: Given any $\mu \in \mathcal{P}$, find $u^{\mathcal{N}}(\mu) \in X^{\mathcal{N}}$, s.th.

$$A(\mu)u^{\mathcal{N}}(\mu) = f(\mu) \text{ in } X^{\mathcal{N}'}.$$

▶ Issue: Require $u^{\mathcal{N}}(\mu)$ in real time and/or for many $\mu \in \mathcal{P}$.

ヘロト 不得下 不足下 不足下

Parametrized Partial Differential Equation

- Parameter vector $\mu \in \mathcal{P}$; compact parameter set $\mathcal{P} \subset \mathbb{R}^{P}$
- ▶ Parametrized PDE: Given any $\mu \in \mathcal{P}$, find $u(\mu) \in X$, s.th.

$$A(\mu)u(\mu) = f(\mu)$$
 in X'.

- High-dimensional discretization:
- Introduce high-dimensional FE space X^N ⊂ X with dim(X^N) = N (assume small discretization error)
- High-dimensional approximation: Given any $\mu \in \mathcal{P}$, find $u^{\mathcal{N}}(\mu) \in X^{\mathcal{N}}$, s.th.

$$\underline{A}(\mu)\underline{u}^{\mathcal{N}}(\mu) = \underline{f}(\mu) \quad \underline{A}(\mu) \in \mathbb{R}^{\mathcal{N} \times \mathcal{N}}, \underline{f}(\mu) \in \mathbb{R}^{\mathcal{N}}$$

▶ Issue: Require $u^{\mathcal{N}}(\mu)$ in real time and/or for many $\mu \in \mathcal{P}$.

Projection-based model order reduction: key concept

- Exploit: $u^{\mathcal{N}}(\mu)$ belongs to "solution manifold" $\mathcal{M}^{\mathcal{N}} = \{u^{\mathcal{N}}(\mu) \mid \mu \in \mathcal{P}\} \subset X^{\mathcal{N}}$ of typically very low dimension
- Offline: Construct reduced space X^N ⊂ X^N from solutions u^N(µ
 _i), i = 1, ..., N
 (e.g. by a Greedy algorithm, Proper Orthogonal Decomposition,...)

4 / 42

• Online: Galerkin projection on X^N : Given any $\mu^* \in \mathcal{P}$, find $u^N(\mu^*) \in X^N$, s.th.

$$A(\mu^*)u^N(\mu^*) = f(\mu^*)$$
 in $X^{N'}$.

• If $\mathcal{M}^{\mathcal{N}}$ is smooth, $N \ll \mathcal{N}$ already yields a very accurate approximation. ([DeVore Petrova Wojtaszczyk 13])

For an overview on model order reduction see for instance [Benner, Cohen, Ohlberger, Willcox 2017].

Efficient computational procedure

• assume affine parameter dependence of operator $A(\mu)$ and linear form $f(\mu)$:

$$A(\mu) = \sum_{q=1}^{Q_a} \theta_q^a(\mu) A_q, \quad f(\mu)(\cdot) = \sum_{q=1}^{Q_f} \theta_q^f(\mu) f_q(\cdot)$$

or use Empirical Interpolation Method [Barraul et al 04] otherwise • Offline ($\mathcal{O}(\mathcal{N}^a)$ cost):

- Compute snapshot matrix $S = [u^{\mathcal{N}}(\bar{\mu}_1)|...|u^{\mathcal{N}}(\bar{\mu}_N)]$
- Preassemble data: $\widetilde{A}_{N,q} = S^t \widetilde{A}_q S$, $\widetilde{F}_{N,q} = S^t \widetilde{F}_q$
- Online ($\mathcal{O}(N^b)$ cost):
 - assemble reduced system:

$$\widetilde{A}_{N}(\mu^{*}) = \sum_{q=1}^{Q_{a}} \theta_{q}^{*}(\mu^{*}) \widetilde{A}_{N,q}, \widetilde{F}_{N}(\mu^{*}) = \sum_{q=1}^{Q_{f}} \theta_{q}^{f}(\mu^{*}) \widetilde{F}_{N,q} \quad (\mathcal{O}(QN^{2}))$$

• solve reduced system $\widetilde{A}_N(\mu^*) u_{coeff}^N(\mu^*) = \widetilde{F}_N(\mu^*)$ ($\mathcal{O}(N^3)$) and obtain $\underline{u}^N(\mu^*) = Su_{coeff}^N(\mu^*)$

Algorithm 1: Greedy algorithm

```
input : finite dimensional training set \mathcal{P}^{train} \subset \mathcal{P}, tolerance tol
output: S_N, X^N
Initialize: S_1 = \emptyset, X^0 = \{0\}, \Delta_0(\mu) = ||u^{\mathcal{N}}(\mu)||_X
for N = 1: N_{max} do
                                                  Find: \mu_N = \arg \max_{\mu \in \mathcal{D}^{train}} \Delta_{N-1}(\mu).
       Solve for u^{\mathcal{N}}(\mu_{\mathcal{N}}).
                      Extend: S_N = S_{N-1} \cup \mu_N and X^N = \operatorname{span}\{u^N(\mu_1), \ldots, u^N(\mu_N)\}.
       Compute \Delta_N(\mu) for all \mu \in \mathcal{P}^{train}.
      if \arg \max_{\mu \in \mathcal{P}^{train}} \Delta_N(\mu) \leq tol then
             break
       end
end
```

A posteriori error estimator should also be offline/online decomposable

・ロト ・四ト ・ヨト ・ヨト

Certification via a posteriori error bound

- Define residual $r(\mu) := f(\mu) A(\mu)u^N(\mu) \in X^{\mathcal{N}'}$
- Define Riesz representation $\mathcal{R}(\mu)$ of $r(\mu)$ as solution of

$$(\mathcal{R}(\mu), \mathbf{v}^{\mathcal{N}})_{\mathbf{X}} = \langle r(\mu), \mathbf{v}^{\mathcal{N}} \rangle \quad \forall \mathbf{v}^{\mathcal{N}} \in \mathbf{X}^{\mathcal{N}},$$

• inf-sup constant:
$$\beta_{\mathcal{N}}(\mu) = \inf_{v^{\mathcal{N}} \in X^{\mathcal{N}}} \sup_{w^{\mathcal{N}} \in X^{\mathcal{N}}} \frac{\langle A(\mu)v^{\mathcal{N}}, w^{\mathcal{N}} \rangle}{\|v^{\mathcal{N}}\|_{X} \|w^{\mathcal{N}}\|_{X}}$$

• continuity constant: $\gamma_{\mathcal{N}}(\mu) = \sup_{v^{\mathcal{N}} \in X^{\mathcal{N}}} \sup_{w^{\mathcal{N}} \in X^{\mathcal{N}}} \frac{\langle A(\mu)v^{\mathcal{N}}, w^{\mathcal{N}} \rangle}{\|v^{\mathcal{N}}\|_{X} \|w^{\mathcal{N}}\|_{X}}$

Proposition (A posteriori error bound)

The error estimator $\Delta_N(\mu) = \beta_{LB}(\mu)^{-1} ||\mathcal{R}(\mu)||_X$ with $\beta_{LB}(\mu) \leq \beta_N(\mu)$ satisfies

$$\|\boldsymbol{e}(\boldsymbol{\mu})\|_{\boldsymbol{X}} = \|\boldsymbol{u}^{\mathcal{N}}(\boldsymbol{\mu}) - \boldsymbol{u}^{\boldsymbol{N}}(\boldsymbol{\mu})\|_{\boldsymbol{X}} \leq \Delta_{\boldsymbol{N}}(\boldsymbol{\mu}) \leq \frac{\gamma_{\mathcal{N}}(\boldsymbol{\mu})}{\beta_{\boldsymbol{LB}}(\boldsymbol{\mu})} \|\boldsymbol{u}^{\mathcal{N}}(\boldsymbol{\mu}) - \boldsymbol{u}^{\boldsymbol{N}}(\boldsymbol{\mu})\|_{\boldsymbol{X}}.$$

Randomized Numerical Linear Algebra

э

Randomized Numerical Linear Algebra

- produce random "sketch" of a matrix and then use the sketch as a surrogate for computations
 - sketch is a smaller or sparser matrix that represents the essential information in the original matrix
 - generated by random sampling
- How to generate a sketch?
 - Element-wise sampling (unfavorable error bounds)
 - Row/column sampling \rightarrow CUR decomposition
 - $\bullet\,$ apply given matrix to random matrix $\rightarrow\,$ SVD, QR decomposition

For an overview on algorithms and associated error estimates see for instance: [Halko et al 2011], [Mahoney 2011], [Drineas, Mahoney, 2016]

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Why can randomization work?

- Goal: Given a matrix $B \in \mathbb{R}^{m \times n}$ and an integer k find an orthonormal matrix Q of rank k such that $B \approx QQ^*B$.
- Approach:
- Draw k random vectors $r_j \in \mathbb{R}^n$ (say standard Gaussian)
- Form sample vectors $y_j = Br_j \in \mathbb{R}^m$ $j = 1, \dots, k$.
- Orthonormalize $y_j \longrightarrow q_j$, $= 1, \ldots, k$ and define $Q = [q_1, \ldots, q_k]$
- ▶ Result: If B has exactly rank k then q_j, = 1,..., k span the range of B at probability 1. But also in the general case q_j, = 1,..., k often perform nearly as good as the k leading left singular vectors of B
- Compute randomized SVD:
- Form $C = Q^*B$ which yields $B \approx QC$
- Compute SVD of of the small matrix $C = \widetilde{U}\Sigma V^*$ and set $U = Q\widetilde{U}$

E SQA

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Subspace embeddings and concentration inequalities

Proposition (Concentration inequality; Johnson-Lindenstrauss)

- Choose rows of a matrix $\Phi : \mathbb{R}^N \to \mathbb{R}^K$ say as K independent copies of standard Gaussian random vectors scaled by $1/\sqrt{K}$
- 0 < ε < 1
- $\mathcal{S} \subset \mathbb{R}^{\mathcal{N}}$ a finite set
- assume $K \ge (C(z)/\varepsilon^2) \log(\#S/\delta)$.

Then we have

$$\mathbb{P}\left\{(1-\varepsilon)\|x-y\|_2^2 \leqslant \|\Phi x - \Phi y\|_2^2 \leqslant (1+\varepsilon)\|x-y\|_2^2 \quad \forall x, y \in \mathcal{S}\right\} \ge 1-\delta.$$

see for instance [Boucheron, Lugosi, Massart 2012], [Vershynin 2012], [Vershynin 2018+]

▲日▼ ▲冊▼ ▲目▼ ▲目▼ 目 ろの⊙

References for randomization in reduced order modelling

Exploiting randomization for construction of reduced spaces:

- Hochman et al 2014
- Alla, Kutz 2015
- Zahm, Nouy 2016
- Balabanov, Nouy 2018

Randomization within error estimation:

- Cao, Petzold 2004, Homescu, Petzold, Serban 2005
- Drohmann, Carlberg 2015, Trehan, Carlberg, and Durlofsky 2017
- Manzoni, Pagani, Lassila 2016
- Janon, Nodet, Prieur 2016
- Giraldi, Nouy 2017
- Balabanov, Nouy 2018

Randomized local model order reduction (joint work with A. Buhr)

A. Buhr and K. Smetana, Randomized local model order reduction, SIAM J. Sci. Comput., accepted for publication

Localized model order reduction

Limitations of standard model order reduction approach:

- Curse of parameter dimensionality: many parameters require prohibitively large reduced spaces
- No topological flexibility (although geometric variation is possible)
- Possibly high computational costs in the offline stage

Motivation for localized model order reduction

Localized model order reduction

Limitations of standard model order reduction approach:

- Curse of parameter dimensionality: many parameters require prohibitively large reduced spaces
- No topological flexibility (although geometric variation is possible)
- Possibly high computational costs in the offline stage

\rightarrow Localized model order reduction

Further advantages:

- Allows to use different (sizes of) reduced spaces in different parts of the domain (similar to hp-methods)
- (Local) changes of the PDE, the geometry in the online stage are possible

3

イロト イポト イヨト イヨト

Many localized model order reduction approaches:

- Component Mode Synthesis: [Bampton, Craig 68], [Hurty 65], [Bourguin 92], [Hetmaniuk, Lehoucq 10], [Jakobsson, Bengzon, Larson 11], [Hetmaniuk, Klawonn 14], ...
- Generalized Finite Element Method: [Babuška, Caloz, Osborn 94], [Babuška, Melenk 97], [Strouboulis, Babuška, K. Copps 01], [Babuška, Lipton 11], ...
- Reduced Basis Element Method: [Maday, Rønguist 02,04], ...
- Multiscale Reduced Basis Method: [Nguyen 08]
- Reduced Basis Hybrid Method: [lapichino, Quarteroni, Rozza 12]
- Localized Reduced Basis Multiscale Method: [Schindler, Haasdonk, Kaulmann, Ohlberger 12], [Ohlberger, Schindler 15], ...
- Static Condensation Reduced Basis Element Method: [Huynh, Knezevic, Patera 13], [Eftang, Patera 13], [Smetana 15], [Smetana, Patera 16], ...
- Generalized Multiscale Finite Element Method: [Efendiev, Galvis, Hou 13], [Calo, Efendiev, Galvis, Li 16], ...

3

(日) (同) (三) (三)

Many localized model order reduction approaches:

- Reduced Basis Multiscale Finite Element Methods: [Hesthaven, Zhang, X. Zhu 15]
- Reduced Basis methods combined with a Dirichlet-Neumann scheme: [Maier Haasdonk 14]
- Reduced Basis methods combined with a heterogeneous Domain Decomposition scheme: [Martini, Rozza, Haasdonk 15]
- ArbiLoMod: [Buhr, Engwer, Ohlberger, Rave 15], ...
- RDF method: [lapichino, Quarteroni, Rozza 16]
- Discontinuous Galerkin Reduced Basis Element Method: [Antonietti, Pacciarini, Quarteroni 16], ...
- ▶ and many, many more ...

- 本語 と 本 き と 一 き

Localized model order reduction

Challenges:

- We can only exploit that the global solution solves PDE locally
- But: No knowledge of the trace of the global solution on Γ_{out}
- → Infinite dimensional parameter space

How can we construct local approximation spaces that ...

- ... yield a very rapidly converging approximation,
- ... are even optimal in the sense that they minimize the approximation error on Γ_{in} or Ω_{in} among all spaces of the same dimension, or, more precisely, minimizes the Kolmogorov n-width:

Definition (Kolmogorov n-width, optimal subspaces (Kolmogoroff 1936))

R Hilbert space, $A \subset R$, R^n : subspace of *R*, dim $R^n = n$. The Kolmogorov *n*-width is defined as

$$d_n(A; R) := \inf_{\dim R^n = n} \sup_{\eta \in A} \inf_{\zeta \in R^n} \|\eta - \zeta\|_R$$

A subspace \mathbb{R}^n with dim $\mathbb{R}^n \leq n$, that satisfies

$$d_n(A; R) = \sup_{n \in A} \inf_{\zeta \in R^n} \|\eta - \zeta\|_R$$

is called an optimal subspace.

June 1, 2018 17 / 42

• Consider
$$\Omega = (-5,5) \times (0,1)$$

$$-\Delta u = 0, \text{ in } \Omega,$$

$$\frac{du}{dy}(x,1) = \frac{du}{dy}(x,0) = 0.$$
(1)

• plus: arbitrary Dirichlet boundary conditions on Γ_{out} .

• Consider
$$\Omega = (-5,5) \times (0,1)$$

$$-\Delta u = 0, \quad \text{in } \Omega, \qquad \frac{du}{dy}(x,1) = \frac{du}{dy}(x,0) = 0.$$
 (1)

- plus: arbitrary Dirichlet boundary conditions on Γ_{out} .
- separation of variables: all local solutions of (1) on Ω have the form

$$u(x, y) = a_0 + b_0 x + \sum_{n=1}^{\infty} \cos(n\pi y) [a_n \cosh(n\pi x) + b_n \sinh(n\pi x)]$$

• Example: Prescribe $cos(3\pi y)$ on on Γ_{out} and thus n = 3:

• Consider
$$\Omega = (-5,5) \times (0,1)$$

$$-\Delta u = 0, \quad \text{in } \Omega, \qquad \frac{du}{dy}(x,1) = \frac{du}{dy}(x,0) = 0. \tag{1}$$

- plus: arbitrary Dirichlet boundary conditions on Γ_{out} .
- separation of variables: all local solutions of (1) on Ω have the form

$$u(x,y) = a_0 + b_0 x + \sum_{n=1}^{\infty} \cos(n\pi y) [a_n \cosh(n\pi x) + b_n \sinh(n\pi x)]$$

- \implies Extremely rapid and exponential decay of the summands in the interior of Ω for higher *n*.
- \implies Most terms in the sum are practically zero on Γ_{in} .
- \implies A very small port space on Γ_{in} will already yield a very good approximation!

ヘロト 不得 とうき とうとう ほう

• Consider
$$\Omega = (-5,5) \times (0,1)$$

$$-\Delta u = 0, \quad \text{in } \Omega, \qquad \frac{du}{dy}(x,1) = \frac{du}{dy}(x,0) = 0. \tag{1}$$

- plus: arbitrary Dirichlet boundary conditions on Γ_{out} .
- separation of variables: all local solutions of (1) on Ω have the form

$$u(x,y) = a_0 + b_0 x + \sum_{n=1}^{\infty} \cos(n\pi y) [a_n \cosh(n\pi x) + b_n \sinh(n\pi x)]$$

 \implies Extremely rapid and exponential decay of the summands in the interior of Ω for higher *n*.

Question: How can we generalize this idea?

The space of all local solutions of the PDE on $\boldsymbol{\Omega}$

 \blacktriangleright Consider the space of all local solutions of the PDE1 on Ω

$$\mathcal{H} := \{ w \in H^1(\Omega) : \text{with } Aw = 0 \in X' \}.$$

- global solution of the PDE restricted to Ω lies in \mathcal{H} !
- We are interested in $u|_{\Gamma_{in}}$ or $u|_{\Omega_{in}}$ and thus introduce

$$R := \{ w|_{\Gamma_{in}}, w \in \mathcal{H} \} \text{ or } R := \{ w|_{\Omega_{in}}, w \in \mathcal{H} \},$$

and $S := \{ w|_{\Gamma_{out}}, w \in \mathcal{H} \}.$

¹For theoretical purposes one needs to consider the quotient space $\tilde{\mathcal{H}} := \mathcal{H}/\ker(A)$ at certain instances.

We introduce a transfer operator

 $T: S \to R$

• For $w \in \mathcal{H}$ and thus $w|_{\Gamma_{out}} \in S$ we define

$$T(w|_{\Gamma_{out}}) := w|_{\Gamma_{in}}$$
 or $T(w|_{\Gamma_{out}}) := w|_{\Omega_{in}}$.

э

We introduce a transfer operator

 $T: S \to R$

• For $w \in \mathcal{H}$ and thus $w|_{\Gamma_{out}} \in S$ we define

$$T(w|_{\Gamma_{out}}) := w|_{\Gamma_{in}}$$
 or $T(w|_{\Gamma_{out}}) := w|_{\Omega_{in}}$.

We introduce a transfer operator

 $T: S \to R$

• For $w \in \mathcal{H}$ and thus $w|_{\Gamma_{out}} \in S$ we define

 $T(w|_{\Gamma_{out}}) := w|_{\Gamma_{in}}$ or $T(w|_{\Gamma_{out}}) := w|_{\Omega_{in}}$.

3

We introduce a transfer operator

 $T: S \to R$

• For $w \in \mathcal{H}$ and thus $w|_{\Gamma_{out}} \in S$ we define

 $T(w|_{\Gamma_{out}}) := w|_{\Gamma_{in}}$ or $T(w|_{\Gamma_{out}}) := w|_{\Omega_{in}}$.

- T is compact thanks to the Caccioppoli inequality.
- Introduce adjoint operator T^* and consider the eigenvalue problem

 $T^*Tw|_{out} = \lambda w|_{out}$ for $w \in \mathcal{H}$.

• Equivalent formulation: Find $(\varphi_j, \lambda_j) \in (\mathcal{H}, \mathbb{R}^+)$ such that

 $(\varphi_j|_{D_{in}}, w|_{D_{in}})_R = \lambda_j (\varphi_j|_{\Gamma_{out}}, w|_{\Gamma_{out}})_S \forall w \in \mathcal{H}, D_{in} = \Gamma_{in}, \Omega_{in}$

Transfer eigenvalue problem

Proposition (Transfer eigenvalue problem)

• φ_j and λ_j : eigenfunctions and eigenvalues of the transfer eigenvalue problem: Find $(\varphi_j, \lambda_j) \in (\mathcal{H}, \mathbb{R}^+)$ such that

 $(\varphi_j|_{D_{in}}, w|_{D_{in}})_R = \lambda_j (\varphi_j|_{\Gamma_{out}}, w|_{\Gamma_{out}})_S \forall w \in \mathcal{H}, D_{in} = \Gamma_{in}, \Omega_{in}$

- List λ_j such that $\lambda_1 \ge \lambda_2 \ge ...$, and $\lambda_j \to 0$ as $j \to \infty$.
- The optimal space on Γ_{in} or Ω_{in} is given by

$$R^n := \operatorname{span}\{\phi_1^{sp}, ..., \phi_n^{sp}\}, \ \phi_j^{sp} = T\varphi_j|_{\Gamma_{out}}, \quad j = 1, ..., n.$$

$$d_n(T(S); R) = \sup_{\xi \in S} \inf_{\zeta \in R^n} \frac{\|T\xi - \zeta\|_R}{\|\xi\|_S} = \sqrt{\lambda_{n+1}}$$

< ∃→

▲ @ ▶ < ∃ ▶</p>

Exponential convergence of optimal modes

- Heat conduction, linear elasticity: [Babuška, Lipton 11], [Babuška, Huang, Lipton 2014]: Proof that eigenvalues of the transfer eigenvalue problem decay almost exponentially, i.e. superalgebraically
- Numerical Experiments: Eigenvalues converge exponentially even for irregular domains [Smetana, Patera 16]:

Figure: eigenvalues λ_n

Figure: mesh in Ω_i

・ロト ・ 一下 ・ ・ 三 ト ・ 三 ト

22 / 42

Computing an approximation of the transfer eigenvalue problem

Transfer eigenvalue problem: Find $(\varphi_j,\lambda_j)\in (\mathcal{H},\mathbb{R}^+)$ such that

 $(T^{h}(\varphi_{j}|_{\Gamma_{out}}), T^{h}(w|_{\Gamma_{out}}))_{R} = \lambda_{j} (\varphi_{j}|_{\Gamma_{out}}, w|_{\Gamma_{out}})_{S} \forall w \in \mathcal{H}$

 $\mathcal{H}=\{ \text{ set of all local solutions of the PDE with arbitrary Dirichlet b. c. } \}$

- Introduce a FE discretization with N_{out} degrees of freedom (DOFs) on Γ_{out} and N_{in} DOFs on Γ_{in} or Ω_{in}
- Solve for each basis function on Γ_{out} the PDE locally
 mumber of required local solutions of the PDE scales with the number of DOFs on Γ_{out} and thus depends on the discretization
- Assemble and solve generalized eigenvalue problem

$$\Gamma_{out} \qquad \Gamma_{in} \qquad \Gamma_{out} \qquad \Gamma_{out} \qquad \qquad \Gamma_{out} \qquad \Gamma_{out}$$

Computing an approximation of the transfer eigenvalue problem

Transfer eigenvalue problem: Find $(\varphi_j, \lambda_j) \in (\mathcal{H}, \mathbb{R}^+)$ such that

 $(T^{h}(\varphi_{j}|_{\Gamma_{out}}), T^{h}(w|_{\Gamma_{out}}))_{R} = \lambda_{j} (\varphi_{j}|_{\Gamma_{out}}, w|_{\Gamma_{out}})_{S} \forall w \in \mathcal{H}$

 $\mathcal{H}=\{\text{ set of all local solutions of the PDE with arbitrary Dirichlet b. c. }\}$

- Introduce a FE discretization with N_{out} degrees of freedom (DOFs) on Γ_{out} and N_{in} DOFs on Γ_{in} or Ω_{in}
- Solve for each basis function on Γ_{out} the PDE locally
 mumber of required local solutions of the PDE scales with the number of DOFs on Γ_{out} and thus depends on the discretization
- Semicle and solve generalized eigenvalue problem

Problem: For large number of DOFs on Γ_{out} the approximation of the transfer eigenvalue problem can be very/prohibitively expensive especially in 3D

▲日▼ ▲冊▼ ▲目▼ ▲目▼ 目 ろの⊙

Approximating optimal local spaces with Randomized Linear Algebra²

- Prescribe random boundary conditions; in detail choose every coeffcient of a FEM basis function on Γ_{out} as a (mutually independent) Gaussion random variable with zero mean and variance one
- Solve PDE for random boundary conditions numerically and store evaluation of local solution of PDE u^h|_{Γin} or u^h|_{Ωin}.
- Define reduced space R^n_{rand} as the span of n such evaluations $u^h|_{\Gamma_{in}}$ or $u^h|_{\Omega_{in}}$

Approximating optimal local spaces with Randomized Linear Algebra²

- Prescribe random boundary conditions; in detail choose every coeffcient of a FEM basis function on Γ_{out} as a (mutually independent) Gaussion random variable with zero mean and variance one
- Solve PDE for random boundary conditions numerically and store evaluation of local solution of PDE $u^h|_{\Gamma_{in}}$ or $u^h|_{\Omega_{in}}$.
- Define reduced space R^n_{rand} as the span of n such evaluations $u^h|_{\Gamma_{in}}$ or $u^h|_{\Omega_{in}}$

Questions: What is the quality of such an approximation? (How) can we determine the dimension of the reduced space for a given tolerance?

Probalistic a priori error bound³

Proposition (A priori error bound (Buhr, Smetana 17))

Under the above assumptions there holds for $n,p \geqslant 2$

$$\mathbb{E}\left[\sup_{\xi\in S^{h}}\inf_{\zeta\in R_{rand}^{n+p}}\frac{\|T^{h}\xi-\zeta\|_{R}}{\|\xi\|_{S}}\right] \leq \underbrace{C_{h}\left\{\left(1+\frac{\sqrt{n}}{\sqrt{p-1}}\right)\sqrt{\lambda_{n+1}^{h}}+\frac{e\sqrt{n+p}}{p}\left(\sum_{j>n}\lambda_{j}^{h}\right)^{1/2}\right\}}_{\sim c\sqrt{n}\sqrt{\lambda_{n+1}^{h}}}$$

Optimal convergence rate achieved with transfer eigenvalue problem:

$$d_n(T(S); R) = \sup_{\xi \in S} \inf_{\zeta \in R^n} \frac{\|T\xi - \zeta\|_R}{\|\xi\|_S} = \sqrt{\lambda_{n+1}}$$

 ³based on results in [Halko, Martinsson, Tropp 11]
 <□ > <∃ > <∃ > <≡ > <≡ > <≡ <</td>
 > <≡ <</td>
 > <≡ <</td>
 > <</td>
 <</td>
 >

 >

 >

 >

 >

 >

 >

 > <</td>
 <</td>
 >

 >

 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 > <

Probalistic a priori error bound³

Proposition (A priori error bound (Buhr, Smetana 17))

Under the above assumptions there holds for $n, p \ge 2$

$$\mathbb{E}\left[\sup_{\xi\in S^{h}}\inf_{\zeta\in R_{rand}^{n+p}}\frac{\|T^{h}\xi-\zeta\|_{R}}{\|\xi\|_{S}}\right] \leq \underbrace{C_{h}\left\{\left(1+\frac{\sqrt{n}}{\sqrt{p-1}}\right)\sqrt{\lambda_{n+1}^{h}}+\frac{e\sqrt{n+p}}{p}\left(\sum_{j>n}\lambda_{j}^{h}\right)^{1/2}\right\}}_{\sim c\sqrt{n}\sqrt{\lambda_{n+1}^{h}}}$$

where

•
$$C_h = \sqrt{\frac{\lambda_{max}(\underline{M}_R)}{\lambda_{min}(\underline{M}_R)}} \sqrt{\frac{\lambda_{max}(\underline{M}_S)}{\lambda_{min}(\underline{M}_S)}}$$

- $(\underline{M}_R)_{i,j} = (\psi_j, \psi_i)_R$, ψ_i : FE basis functions
- $(\underline{M}_{S})_{i,j} = (\psi_j, \psi_i)_{S}$, ψ_i : FE basis functions
- p: oversampling parameter

Probablistic a posteriori error bound⁴

Proposition (Probablistic a posteriori error bound (Buhr, Smetana 2017))

•
$$\{\underline{\omega}^{(i)} : i = 1, 2, ..., n_t\}$$
: standard Gaussian vectors

•
$$D_{S} : \mathbb{R}^{\mathcal{N}_{out}} \to S^{h}$$
; $(c_{1}, ..., c_{\mathcal{N}_{out}}) \mapsto \chi$, $\chi = \sum_{i=1}^{\mathcal{N}_{out}} c_{i}\psi_{i}$, $\psi_{i} : FE$ basis functions

• N_T : bound for the dimension of the range of operator T^h

Define

$$\Delta(n_t, \delta_{\mathrm{tf}}) := \frac{c_{\mathrm{est}}(n_t, \delta_{\mathrm{tf}})}{\sqrt{\lambda_{\min}^{M_s}}} \max_{i \in 1, \dots, n_t} \left(\inf_{\zeta \in R_{rand}^n} \| T^h D_S \underline{\omega}^{(i)} - \zeta \|_R \right)$$

Then there holds

$$\sup_{\xi\in S^h}\inf_{\zeta\in R^n_{rand}}\frac{\|T^h\xi-\zeta\|_R}{\|\xi\|_S}\leqslant \Delta(n_t,\delta_{\mathrm{tf}})\leqslant \left(\frac{\lambda_{max}^M}{\lambda_{min}^M}\right)^{1/2}c_{\mathrm{eff}}(n_t,\delta_{\mathrm{tf}})\sup_{\xi\in S^h}\inf_{\zeta\in R^n_{rand}}\frac{\|T^h\xi-\zeta\|_R}{\|\xi\|_S}$$

with a probability of at least $1 - \delta_{\rm tf}$.

 ⁴Estimator extends results in [Halko, Martinsson, Tropp:11]; effectivity bound newsack

 K Smetana@utwente.nl)
 Randomized Model Order Reduction

 June 1, 2018
 26 / 42

Algorithm 2: Adaptive randomized range finder

input : T^h , N_T , target tolerance tol, number of test vectors n_t , maximum failure probability $\delta_{algofail}$

output:
$$R_{rand}^n$$
 such that $P\left(\sup_{\xi\in S^h} \inf_{\zeta\in R_{rand}^n} \frac{\|T\xi-\zeta\|_R}{\|\xi\|_S} \leqslant \texttt{tol}\right) \geqslant 1-\delta_{\mathrm{algofail}}$.

Initialize n_t test functions: $\tau^{(i)} = T^h D_S \underline{\omega}^{(i)}$, $i = 1, ..., n_t$, $\underline{\omega}^{(i)}$: standard Gaussian vector $\delta_{tf} = \delta_{algofail} / N_T$. Initialize j = 0.

while
$$\Delta(n_t, \delta_{tf}) > tol$$
 do
 $j = j + 1$
Compute a new basis function:
 $\zeta^{(j)} = T^h D_S \underline{\omega}^{(j+n_t)}, \underline{\omega}^{(j+n_t)}$: standard Gaussian vector
 $\zeta^{(j)} \leftarrow \zeta^{(j)} - \sum_{l=1}^{j-1} (\phi_l^{rand}, \zeta^{(j)})_R \phi_l^{rand}$
 $\phi_j^{rand} = \zeta^{(j)} / \|\zeta^{(j)}\|_R$
Update test functions $\tau^{(i)}$ and therefore $\Delta(n_t, \delta_{tf})$:
 $\tau^{(i)} \leftarrow \tau^{(i)} - (\phi_l^{rand}, \tau^{(i)})_R \phi_l^{rand}, i = 1, ..., n_t$

end

$$n = j; R_{rand}^n = \operatorname{span}\{\phi_1^{rand}, ..., \phi_n^{rand}\}$$

Numerical Experiments for analytic test problem

Numerical Experiments: interfaces

- local (oversampling) domain $\Omega:=(-1,1)\times(0,1)$
- Consider PDE: $-\Delta u = 0$ in Ω
- Goal: Construct reduced space on Γ_{in}

$$\Gamma_{out} \Gamma_{in} \Gamma_{out}$$
Figure: Ω

Heat conduction: $-\Delta u = 0$ on $\Omega = (-1, 1) \times (0, 1)$

Figure: optimal basis

basis generated by randomized range finder algorithm

< A > <

э

Heat conduction: $-\Delta u = 0$ on $\Omega = (-1, 1) \times (0, 1)$

3

・ロト ・ 一下 ・ ・ 三 ト ・ 三 ト

Heat conduction: $-\Delta u = 0$ on $\Omega = (-1, 1) \times (0, 8)$

CPU times

Properties of basis generation

	Algorithm 2	Scipy/ARPACK
(resulting) basis size <i>n</i>	39	39
operator evaluations	59	79
adjoint operator evaluations	0	79
execution time in s (without factorization)	20.4 s	47.9 s

Table: CPU times; Target accuracy tol= 10^{-4} , number of testvectors $n_t = 20$, failure probability $\delta_{\text{algofail}} = 10^{-15}$; unknowns of corresponding problem 638,799

Numerical Experiments for a transfer operator with slowly decaying singular values

Numerical Experiments: subdomains

- ▶ local (oversampling) domain $\Omega := (-2, 2) \times (-0.25, 0.25) \times (-2, 2)$
- Consider PDE: linear elasticity in Ω (isotropic, homogeneous)
- Goal: Construct reduced space on $\Omega_{in} = (-0.5, 0.5) \times (-0.25, 0.25) \times (-0.5, 0.5)$

Figure: $\Omega \setminus \Omega_{in}$

・ロト ・ 一下 ・ ・ 三 ト ・ 三 ト

Linear elasticity on $\Omega := (-2, 2) \times (-0.25, 0.25) \times (-2, 2)$

э

Linear elasticity on $\Omega:=(-2,2)\times(-0.5,0.5)\times(-2,2)$

Figure: Convergence behavior of adaptive algorithm (left) and effectivity of a posteriori error estimator $\Delta/||T^h - P_{R_{rand}^n}T^h||$ (right) for increasing number of test vectors n_t .

Randomized residual-based error estimators for parametrized equations

(joint work with A. T. Patera and O. Zahm)

Goal/Motivation

- Goal: Develop a posteriori error estimator for projection-based model order reduction that does not contain constants whose estimation is expensive (inf-sup constant)
- Setting: We query a finite number of parameters in the online stage for which we want to estimate the approximation error.
- Approach: Exploit results for random subspace embeddings

Proposition (Concentration inequality, Johnson-Lindenstrauss)

Choose rows of matrix Φ say as K independent copies of standard Gaussian random vectors scaled by $1/\sqrt{K}$ and let $S \subset \mathbb{R}^N$ be a finite set. Moreover, assume $K \ge (C(z)/\varepsilon^2)\log(\#S/\delta)$. Then we have

$$\mathbb{P}\left\{(1-\varepsilon)\|x-y\|_{2}^{2} \leq \|\Phi x - \Phi y\|_{2}^{2} \leq (1+\varepsilon)\|x-y\|_{2}^{2} \quad \forall x, y \in \mathcal{S}\right\} \geq 1-\delta.$$

Assumptions on random vector

• $Z \in \mathbb{R}^{\mathcal{N}}$: random vector such that

$$\|v\|_{\Sigma}^{2} = v^{T} \Sigma v = \mathbb{E}((Z^{T} v)^{2}) \quad \forall v \in \mathbb{R}^{\mathcal{N}}$$

where Σ is matrix e.g. associated with $H^1\text{-}$ or $L^2\text{-}\text{inner}$ product or a quantity of interest

 $\implies (Z^T v)^2$ is an unbiased estimator of $||v||_{\Sigma}^2$

Assumptions on random vector

• $Z \in \mathbb{R}^{\mathcal{N}}$: random vector such that

$$\|v\|_{\Sigma}^2 = v^T \Sigma v = \mathbb{E}((Z^T v)^2) \quad \forall v \in \mathbb{R}^N$$

where Σ is matrix e.g. associated with H^1 - or L^2 -inner product or a quantity of interest

- $\implies (Z^T v)^2$ is an unbiased estimator of $||v||_{\Sigma}^2$
 - For simplicity: Assume $Z\sim \mathcal{N}(0,\Sigma)$ is a Gaussian vector with zero mean and covariance matrix Σ

Assumptions on random vector

• $Z \in \mathbb{R}^{\mathcal{N}}$: random vector such that

$$\|v\|_{\Sigma}^2 = v^T \Sigma v = \mathbb{E}((Z^T v)^2) \quad \forall v \in \mathbb{R}^N,$$

where Σ is matrix e.g. associated with $H^1\text{-}$ or $L^2\text{-}\text{inner}$ product or a quantity of interest

- $\implies (Z^{\mathcal{T}} v)^2$ is an unbiased estimator of $\|v\|_{\Sigma}^2$
 - \blacktriangleright For simplicity: Assume $Z\sim \mathcal{N}(0,\Sigma)$ is a Gaussian vector with zero mean and covariance matrix Σ
 - Z_1, \ldots, Z_K : *K* independent copies of *Z*
 - Consider the following (unbiased) Monte-Carlo estimator of $\|v\|_{\Sigma}^2$

$$\frac{1}{K}\sum_{i=1}^{K}(Z_i^T v)^2.$$

Proposition (Concentration inequality)

For any given $w \in \mathbb{R}$, $w > \sqrt{e}$ and $K \ge 3$ we have for one fixed but arbitrary $\mu_j \in \mathcal{P}$

$$\mathbb{P}\left\{\frac{\|\underline{e}(\mu_j)\|_{\Sigma}^2}{w^2} \leqslant \frac{1}{K} \sum_{i=1}^{K} (Z_i^T \underline{e}(\mu_j))^2 \leqslant w^2 \|\underline{e}(\mu_j)\|_{\Sigma}^2\right\} \geqslant 1 - \left(\frac{\sqrt{e}}{w}\right)^K,$$

where $\underline{e}(\mu_j) = \underline{u}^{\mathcal{N}}(\mu_j) - \underline{u}^{\mathcal{N}}(\mu_j).$

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Proposition (Concentration inequality for set of vectors)

Given a finite set of parameters $S = \{\mu_1, \ldots, \mu_S\} \subset P$, a failure probability $0 < \delta < 1$, $w \in \mathbb{R}$, $w > \sqrt{e}$, we have for

$${\cal K} \geqslant rac{ \log(\#{\cal S}) + \log(\delta^{-1}) }{\log(w/\sqrt{e})} \qquad that$$

$$\mathbb{P}\left\{\frac{\|\underline{e}(\mu_j)\|_{\Sigma}^2}{w^2} \leqslant \frac{1}{\mathcal{K}} \sum_{i=1}^{\mathcal{K}} (Z_i^T \underline{e}(\mu_j))^2 \leqslant w^2 \|\underline{e}(\mu_j)\|_{\Sigma}^2, \ \forall \mu_j \in \mathcal{S}\right\} \ge 1 - \delta.$$

Proof: union bound argument

<ロ> <問> <問> < 回> < 回> < 回> < 回</p>

Proposition (Concentration inequality for set of vectors)

Given a finite set of parameters $S = \{\mu_1, \ldots, \mu_S\} \subset P$, a failure probability $0 < \delta < 1$, $w \in \mathbb{R}$, $w > \sqrt{e}$, we have for

$${\cal K} \geqslant rac{ \log(\#{\cal S}) + \log(\delta^{-1}) }{\log(w/\sqrt{e})} \qquad that$$

$$\mathbb{P}\left\{\frac{\|\underline{e}(\mu_j)\|_{\Sigma}^2}{w^2} \leqslant \frac{1}{K} \sum_{i=1}^{K} (Z_i^T \underline{e}(\mu_j))^2 \leqslant w^2 \|\underline{e}(\mu_j)\|_{\Sigma}^2, \ \forall \mu_j \in \mathcal{S}\right\} \ge 1-\delta.$$

	<i>w</i> = 2	<i>w</i> = 3	<i>w</i> = 4	<i>w</i> = 5	w = 10
#S = 1	24	8	6	5	3
#S = 100	48	16	11	9	6
#S = 1000	60	20	13	11	7
$\#\mathcal{S}=10^{6}$	96	31	21	17	11

Table: Values for K that guarantee (1) for all $\mu_j \in S$ with $\delta = 10^{-2}$.

・ロト ・ 一下 ・ ・ 三 ト ・ 三 ト

Proposition (Concentration inequality for set of vectors)

Given a finite set of parameters $S = \{\mu_1, \ldots, \mu_S\} \subset P$, a failure probability $0 < \delta < 1$, $w \in \mathbb{R}$, $w > \sqrt{e}$, we have for

$${\cal K} \geqslant rac{ \log(\#{\cal S}) + \log(\delta^{-1}) }{\log(w/\sqrt{e})} \qquad that$$

$$\mathbb{P}\left\{\frac{\|\underline{e}(\mu_j)\|_{\Sigma}^2}{w^2} \leqslant \frac{1}{K} \sum_{i=1}^K (Z_i^T \underline{e}(\mu_j))^2 \leqslant w^2 \|\underline{e}(\mu_j)\|_{\Sigma}^2, \ \forall \mu_j \in \mathcal{S}\right\} \geqslant 1 - \delta.$$

Define
$$\Delta(\mu) := \left(\frac{1}{K} \sum_{i=1}^{K} (Z_i^T \underline{e}(\mu))^2\right)^{1/2}$$

Problem: estimator $\Delta(\mu) = \left(\frac{1}{K}\sum_{i=1}^{K} (Z_i^T(\underline{u}^N(\mu_j) - \underline{u}^N(\mu_j)))^2\right)^{1/2}$ involves high-dimensional finite element solution \implies Computationally infeasible in the online stage

June 1, 2018 38 / 42

A constant-free, randomized a posteriori error estimator

Exploit error residual relationship

$$Z_{i}^{T}(\underline{u}^{\mathcal{N}}(\mu) - \underline{u}^{\mathcal{N}}(\mu)) = Z_{i}^{T}\underline{A}(\mu)^{-1}\underline{A}(\mu)(\underline{u}^{\mathcal{N}}(\mu) - \underline{u}^{\mathcal{N}}(\mu))$$
$$= Z_{i}^{T}\underline{A}(\mu)^{-1}\underbrace{(\underline{f}(\mu) - \underline{A}(\mu)\underline{u}^{\mathcal{N}}(\mu))}_{\text{residual}}$$
$$= (\underbrace{\underline{A}(\mu)^{-T}Z_{i}}_{\text{dual problem}})^{T}\underbrace{(\underline{f}(\mu) - \underline{A}(\mu)\underline{u}^{\mathcal{N}}(\mu))}_{r(\mu):=}$$

• Define solutions of dual problem with random right-hand sides $Z_i:$ $\underline{y}_i^{\mathcal{N}}(\mu) := \underline{A}(\mu)^{-T} Z_i$

A constant-free, randomized a posteriori error estimator

Exploit error residual relationship

$$Z_{i}^{T}(\underline{u}^{\mathcal{N}}(\mu) - \underline{u}^{\mathcal{N}}(\mu)) = Z_{i}^{T}\underline{A}(\mu)^{-1}\underline{A}(\mu)(\underline{u}^{\mathcal{N}}(\mu) - \underline{u}^{\mathcal{N}}(\mu))$$
$$= Z_{i}^{T}\underline{A}(\mu)^{-1}\underbrace{(\underline{f}(\mu) - \underline{A}(\mu)\underline{u}^{\mathcal{N}}(\mu))}_{\text{residual}}$$
$$= (\underbrace{\underline{A}(\mu)^{-T}Z_{i}}_{\text{dual problem}})^{T}\underbrace{(\underline{f}(\mu) - \underline{A}(\mu)\underline{u}^{\mathcal{N}}(\mu))}_{r(\mu):=}$$

- Define solutions of dual problem with random right-hand sides $Z_i:$ $\underline{y}_i^{\mathcal{N}}(\mu) := \underline{A}(\mu)^{-T} Z_i$
- Rewrite randomized a posteriori error estimator

$$\Delta(\mu) = \left(\frac{1}{K} \sum_{i=1}^{K} (\underline{y}_{i}^{\mathcal{N}}(\mu)^{T} \underline{r}(\mu))^{2}\right)^{1/2}$$

A fast-to-evaluate randomized error estimator

 Approximation of the dual solutions via projection-based model order reduction:

$$\underline{y}_{i}^{\mathcal{N}}(\mu) \approx \underline{y}_{i}^{N_{du}}(\mu) \in Y^{N_{du}} \subset X^{\mathcal{N}},$$

where $Y^{N_{du}}$ dual reduced space (we use one space for all K dual problems)

Define fast-to-evaluate randomized error estimator

$$\Delta^{N_{du}}(\mu) := \left(\frac{1}{K} \sum_{i=1}^{K} (\underline{y}_{i}^{N_{du}}(\mu)^{T} \underline{r}(\mu))^{2} \right)^{1/2}$$

By using an auxiliary problem Δ^{N_{du}}(μ) can be evaluated by solving one (and not K) linear system of equations of size N_{du}
 → computational complexity of Δ^{N_{du}}(μ) in general O(N³_{du})

A D N A D N A D N A D N

A fast-to-evaluate randomized error estimator

Proposition

Choose $S \in \mathbb{N}$ in the offline stage. Then, in the online stage for any given $w > \sqrt{e}$ and $\delta > 0$ we have for S different parameters values μ_j , j = 1, ..., S in a finite parameter set $S = \{\mu_1, ..., \mu_S\}$ and

$$K \ge \frac{\log(S) + \log(\delta^{-1})}{\log(w/\sqrt{e})} \qquad that \quad \Delta^{N_{du}}(\mu_j) := \left(\frac{1}{K} \sum_{i=1}^{K} (\underline{y}_i^{N_{du}}(\mu_j)^T \underline{r}(\mu_j))^2 \right)^{1/2}$$

satisfies

$$\mathbb{P}\Big\{(\alpha w)^{-1}\Delta^{N_{du}}(\mu_j) \leqslant \|\underline{e}(\mu_j)\|_{\Sigma} \leqslant (\alpha w)\Delta^{N_{du}}(\mu_j), \quad \mu_j \in \mathcal{S}, \Big\} \ge 1-\delta,$$

where

$$\alpha = \max_{\mu \in \mathcal{P}} \left(\max\left\{ \frac{\Delta(\mu)}{\Delta^{\textit{N}_{\textit{du}}}(\mu)} \,,\, \frac{\Delta^{\textit{N}_{\textit{du}}}(\mu)}{\Delta(\mu)} \right\} \right) \geqslant 1.$$

Summary

- Reduced local approximation spaces generated by methods from Randomized Linear Algebra
 - Probabilistic a priori error bound/Numerical experiments: convergence rate is only slightly worse compared to the optimal rate (factor \sqrt{n}).
 - Probabilistic a posteriori error bound allows to build the reduced space adaptively
 - required number of local solutions of PDE scale (roughly) with size of the reduced space; Numerical experiments: faster than Lanczos
- Proposed randomized a posteriori error estimator for projection-based model order reduction methods that...
 - ... is based on concentration inequalities, error-residual relationship, and random dual problem
 - ... does only contain computable constants
 - ... is reliable and efficient at high (given) probability
 - ... has a favorable computational complexity as N_{du} can be chosen relatively small

▲日本 人間本 ▲日本 人住た 一造 … のなべ

Summary

- Reduced local approximation spaces generated by methods from Randomized Linear Algebra
 - Probabilistic a priori error bound/Numerical experiments: convergence rate is only slightly worse compared to the optimal rate (factor \sqrt{n}).
 - Probabilistic a posteriori error bound allows to build the reduced space adaptively
 - required number of local solutions of PDE scale (roughly) with size of the reduced space; Numerical experiments: faster than Lanczos
- Proposed randomized a posteriori error estimator for projection-based model order reduction methods that...
 - ... is based on concentration inequalities, error-residual relationship, and random dual problem
 - ... does only contain computable constants
 - ... is reliable and efficient at high (given) probability
 - ... has a favorable computational complexity as N_{du} can be chosen relatively small

Thank you very much for your attention. June 1, 2018 42 / 42

K Smetana (k.smetana@utwente.nl)

Randomized Model Order Reduction