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Computational models

e Computational model as black box

input parameters model response

£ R M(€) € RY
- ; ; o displacement
« geometrical e governing equations
. . . . o stress
» material properties o discretization
.. e temperature
« boundary conditions o solvers

e If input parameters or model are subject to uncertainty
= uncertainty quantification or UQ

1/23



Specific industrial challenges

What makes industrial UQ problems hard?

e Computational models are complex: nonlinearity, coupled
problems (thermo-mechanics), plasticity, contact zones, . ..

e Simulations are costly: a single run can take up to several
hours or days, or more

e Number of inputs is typically 10-1000: high-dimensional
problems (possibly even infinite-dimensional)

e UQ code comes on top of well defined simulation procedures
Engineers focus on a so-called quantity of interest g = F[M(€)],

such as maximum displacement, average stress, ...
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Typical engineering questions

Typical outcomes of the uncertainty propagation

e Statistics of the quantity of interest

e Distribution of the quantity of interest

e Failure probability of the quantity of interest
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Motivational example

insulator
constant flux ¢ conductor

Ib

2a

Idealized model for a two-dimensional heat exchanger

Conductor material k™™ modelled with “smooth” variation

Insulator material k™ modelled with “rough” variation

Quantity of interest g is maximum temperature
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Motivational example

e Some example visualisations of the material

e Example mesh and mean temperature field
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Modeling spatial variation

e Represent the conductivity as a lognormal random field
K(x,w) = exp(Z(x,))

with Z(x,w) a Gaussian random field
e Every sample w € Q yields a realisation of the random field

o Classical technique to generate realisations of k(x,w) is the
KL-expansion

k(xw)—exp +Z\ff
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The KL expansion

e Approximation quality of the KL expansion determined by

eigenvalue decay rate
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The KL expansion

e Eigenvalues and eigenfunctions are solutions of the Fredholm
equation

/D Clx, y)ey)dy = 0,£(y), x.y €D

where C(x,y) is the covariance function of the random field

e Faster decay of the eigenvalues 6, gives a more smooth
random field

e In practice, the expansion must be truncated after a finite
number of terms s

e Higher s means better approximation, but also higher cost
(eigenvalue problem + evaluation)

e Algorithms that take advantage of this property?
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Governing equations

e Linear anisotropic steady-state stochastic heat equation on
a domain D € R? with d = 2 and boundary 9D

e We wish to compute the temperature field
T:DxQ— R:(x,w)— T(x,w) that solves almost surely

—V - |k(x,w)VT(x,w)| = F(x) forxeDandweQ

where the event w belongs to a probability space (Q2, F, P)
e For the KL expansion of a Gaussian field, we take 2 = IR®

e Given (deterministic) boundary conditions

T(x,) = Ti(x) for x € 01D
n(x) - (k(x,)VT(x,-)) = Ta(x) for x € 9,D
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Uncertainty propagation using Monte Carlo

o A sample set {&;,&,,...,&,} is drawn according to the input
distributions fx
e For each sample, the quantity of interest is evaluated

&1 —» M(&)
& —» M(&)
gn I _> M(sn)

e The set of output quantities {M(&;), M(&,),..., M(&,)} is
then used for analysis, for example

E[g] ~ wa(g
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Advantages/drawbacks of Monte Carlo

Advantages

e Universal: only requires samples from an input pdf and
repeated model evaluations

e Convergence under mild conditions: law of large numbers
and central limit theorem, requires L, integrability

e Parallel: all samples are independent, hence suitable for
high-perfomance computing

Drawbacks

e Statistical uncertainty: result is typically given with
confidence interval: Y = a+ b with c% confidence

e Low efficiency: convergence rate is O(1/vV'N), where N is
the number of realisations
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Multilevel idea

Implicitly assumed that model is discretized

Multilevel idea: suppose we have multiple
discrete approximations gy available with
different accuracies, called levels £ =0,1,2,... oo

Telescoping sum:

L L
Elgi] = Elgo] + > Elgr —ge-1] = > E[Ag]
=1 =0

Huge cost reduction if

V[Agi] — 0 fast for £ — oo
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Multi-index idea

e Extension: assume that g is discretized to gy, where the
components of £ = (¢1,...,¢,) are different discretization
dimensions

e Define difference operator in direction |

—gre ifl;i>0
Aige = Bt~ Bt—e; 115 o fori=1,...,m,
ge otherwise,

where e; is the j-th unit vector in R™

e Define multi-index difference A as tensor product
A=A1® @A,

where differences are taken with respect to all backward
neighbours
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A simple example

lh =2

=1
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i
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c=9
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A simple example

e Example: suppose m =2 and ¢ = (1,2), then
Agp) = D2 (L1g(2)) .

=02 (g(1,2) — 80,2))

= Dog1,2) — D28(0,2)

Z(&La'—&Ln)—(&Q@‘—&QU)

= 8(1,2) — &(1,1) — 8(0,2) T &(0,1)
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Multi-Index Monte Carlo

e The MIMC estimator for IE[g] can be formulated as

)= Y Qag)

LeI(L)

see [Haji-Ali, Nobile, Tempone, 2016]
e The downward closed set Z(L) is called the index set
e Classical examples are

R(L) = {F € N™: # < ¢} Ts(L) ={FecNm:§-7<L}
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The optimal index set

e For a finite index set Z(L) the error is given by

e(Z(L) =| > E[dgl < > [E[Lgl]

£¢I(L) 0¢7(L)

e Minimize (,/7) total cost such that error is controlled

min Z NgCg
) LeT(L)
st.  e(Z(L)) < TOL

e Has no general solution unless other assumptions on the
structure of the problem are made, see [Haji-Ali, Nobile, 2016]

e Alternative strategy: build up quasi-optimal index set
adaptively using a greedy approach
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Adaptive MIMC

e Formulation as a binary (or 0-1) knapsack problem by
assigning profit indicator to each index

error contribution

~ cost contribution

E[Age|

vV V[Age]Ce

e Objective: find downward closed index set such that total
profit is as large as possible given maximum amount of work

e Use the active set algorithm used in dimension-adaptive
quadrature using sparse grids [Gerstner, Griebel, 2003]
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Results

e Back to the example heat exchanger

insulator

constant flux ®p, conductor
\
\ Is
Te
: O
TC
_

2a

e Set up an adaptive MIMC simulation with £ = (¢1, (2, (3)
¢ spatial discretization
¢>  number of terms in KL expansion of conductor
¢3  number of terms in KL expansion of insulator

e Number of terms in KL expansion doubles between levels

° Further algorithm details
index (+,0,0) corresponds to an approximation using 16 terms for
conductor material and 800 terms for insulator material
— start from index set T(3 1 1)(2) (simplex) to ensure robust estimates at
coarser levels
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Stacking bricks

L error!

10 8.4666
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1 estimated root-mean-square error 20/23




Stacking bricks

L error
10 8.4666
11  3.4669
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Stacking bricks
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Stacking bricks
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Stacking bricks
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Results

non-adaptive MIMC

adaptive MIMC

€rel mean RMSE time [s] mean RMSE time [s]
0.160 136.09 8.4703 39.81 136.09 8.4703 40.72 A
0.080 136.09 8.4666 39.92 136.09 8.4666 40.98 a
0.040 135.82 3.8659 50.21 136.63 3.6797 4551 v
0.030 135.03 3.6890 51.93 136.08 3.4669 48.43 v
0.024 136.38 2.2673 78.91 136.37 3.2660 5181 v
0.020 136.38 2.2673 79.90 138.07 1.6287 56.29 v
0.016 136.92 1.9614 132.60 138.07 1.6287 78.94 v
0.012 136.90 1.6252 583.90 137.74 1.5057 107.26 v
0.010 137.91 1.4636 4076.46 137.93 1.3762 176.91 v
0.009 138.91 1.4436 4082.30 136.68 1.2319 24263 v
0.008 - - - 138.18 0.9681 33527 v
0.006 - - - 138.94 0.7543 1174.60 v
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Extensions

What's next?
e Combination with faster sampling techniques
(such as quasi-Monte Carlo)
— already illustrated for non-adaptive MIMC in
[R., Nuyens, Vandewalle, 2017]
— expect significant speed-up
e Combination of MIMC with fast solvers, such as multigrid
(similar to [Kumar, Oosterlee, Dwight, 2017])
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Closing thoughts

e UQ for industrial applications faces unique challenges:
dealing with high-dimensional complex models

e Use of multiple levels decreases computational cost of classic
Monte Carlo

e We illustrated dimension-adaptive MIMC for approximating
the expected value of a quantity of interest that is a function
of the solution of a PDE with random coefficients,
see [R., Nuyens, Vandewalle, 2017]

e The method does not require a priori knowledge of the
structure of the problem (impossible to obtain in an industrial
setting)

e Error of the adaptive index set (for fixed cost) is smaller
compared to other classical index sets
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