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Dynamics

Dynamical systems and flows

ẋ = f (x)

xn+1 = F (xn)
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Dynamics

Lorenz ’63 model

ẋ = σ(y − z), ẏ = x(ρ− z)− y , ż = xy − βz . (Lorenz, 1963)
Parameters: σ = 10, β = 8

3 and ρ = 28.
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What is data assimilation?

What is data assimilation

Model xn+1 = F (xn), xn ∈ Rd ,

Observations yn = H(Xn) + ηn, yn ∈ Rb≤d , n = −M, . . . ,N.

Data assimilation problem

Find u = {u−M , u−M+1, . . . , uN}, un ∈ Rd , with small residual
‖yn − H(un)‖, n = −M, . . . ,N and mismatch

‖G (u)‖ = ‖
(
G−M G−M+1 . . . GN−1

)T ‖, with
Gn(u) = un+1 − F (un).

u is the best approximation to the truth X given the available data.

Example application: weather prediction: relatively accurate chaotic
models with uncertain initial condition
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What is data assimilation?

How well can we do?

Non-chaotic model: assimilation can become arbitrarily good as the
number of observations is increased.

Chaotic model with observations extending to past infinity: states
connected by the unstable manifold are indistinguishable if noise is
unbounded (f.e. Gaussian) (Judd & Smith, 2001)
Chaotic model with bi-infinite sequence of observations: no
algorithm can reconstruct the true trajectory consistently (technically:
there is no measurable function from observation space to Rd that equals
x0 with probability 1) (Lalley, 1999)
Conclusion: for chaotic models, we will not be able to reconstruct the
truth. A method finding one solution can at best aim for a likely solution.
The best we can possibly do is constructing a probability density function
over all possible solutions.
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Shadowing for data assimilation

Shadowing lemma

If ||Gn(u)|| ≤ ε for all n, then u is called an ε-orbit.

Shadowing lemma

In a neighbourhood of a hyperbolic set of the map F , for every δ > 0
there exists ε > 0 such that for all ε-orbits u there exists an orbit X with
G (X ) = 0 and ||un − Xn|| < δ for all n.

If the is sufficiently good, applying Newton’s method starting at u
yields X .

With larger errors, convergence to another indistinguishable solution
is possible

Note there is no special point in time: all times being equal
stabilizes the method
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Shadowing for data assimilation

Pseudo-orbit data assimilation

Shadowing method for data assimilation, based on minimization of
||Gn(u)||2 by gradient descent.

In implementation a fixed number of steps is taken and minimization
does not converge, hence pseudo-orbits.

Orbits are obtained by taking the mid-point of the pseudo-orbit and
propagating forward in time.

Can be turned into an importance sampler.

References: (Judd&Smith, 2001; Bröcker&Parlitz, 2001) etc.
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Shadowing for data assimilation

Newton’s method for data assimilation

Analogous to shadowing, we apply Newton iterations (starting with
observations as initial condition) to solve

G (u(k))→ 0, u(0) = y .

We use the Lorenz ’63 model, with noise covariance E = σ2I , σ2 = 1 and
consider only one window of length 10.
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Shadowing for data assimilation
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Figure: Different components of the solution are in different colours, with
observations as small circles in the corresponding colours. The true trajectory is
in black, but the differences between truth and assimilation are so small there is
almost complete overlap between truth and assimilation.
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What is synchronization?

Coupling two systems

Driver system xn+1 = Fn(xn),

Receiver system zn+1 = PnFn(xn) + (I − Pn)Fn(zn).

Define wn = zn − xn; the transverse dynamics is given by

wn+1 = PnFn(xn) + (I − Pn)Fn(zn)− Fn(xn),

= (I − Pn) [Fn(xn + wn)− Fn(xn)] ,

≈ (I − Pn)Fn
′(xn)wn.

Goal: Choose the matrices Pn such that wn → 0.
Necessary: Conditional Lyapunov exponents of the receiver all
nonpositive (Pecora & Carroll, 1991)
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What is synchronization?

Synchronization in chaotic systems

(Lorenz, 1963) : ẋ = σ(y − z), ẏ = x(ρ− z)− y , ż = xy − βz .
(Pecora&Caroll, 1990) : Ẏ = x(ρ− Z )− Y , Ż = xY − βZ .

Figure: Synchronization between two copies of the Lorenz ’63 model, coupled
through the x-variable. The differences ∆y := |Y − y | and ∆z := |Z − z |
decay exponentially in time. Note that even in this chaotic model, adding more
data from the x-coordinate time series helps for convergence.
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Projection

There exist data assimilation algorithms that focus on using
observations to control error in only the unstable direction, e.g.
(Trevisan, D’Isodoro & Talagrand, 2010).

Newton’s method may be too expensive.
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Summary of the algorithm

Solve G (u(k)) = 0 with starting guess u(0) = y :

Iterate to convergence

Compute the projections on the unstable direction P
(k)
n along u(k).

Do a projected Newton step to compute û(k) = u(k) + Pδ(k).

Synchronize in the stable directions by a forward integration:

u
(k+1)
n+1 = P

(k)
n+1û

(k)
n+1 + (I − P

(k)
n+1)Fn(u

(k+1)
n ).
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Lorenz ’63

Lorenz ’63

Model: ẋ1 = σ(x2 − x1), ẋ2 = x1(ρ− x3)− x2, ẋ3 = x1x2 − βx3.
We choose: σ = 10, β = 8

3 and ρ = 28 and add noise with coveriance
E = σ2I , with σ = 2. We take `∗ = 2.
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Figure: Applying Newton’s method to the positive and neutral directions yields
good results. Observational error level is in black, reduced error is in blue.
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Lorenz ’63

Lorenz ’63
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Property Value
Average number of iterations 6.6
Average squared initial error 3.9
Average squared final error 0.09
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Lorenz ’63

Incomplete observations (only y)
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Property Value
Average number of iterations 6.2
Average squared initial error in y 4.0
Average squared final error in y 0.11
Average squared final error 0.08
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Conclusions

We have developped a new data assimilation algorithm based on
numerical shadowing ideas.

With this method, it is possible to treat error components in
strongly stable directions different from errors in non-strongly stable
directions.

The splitting of the root-finding problem is independent from the
methods chosen to solve the splitted equations.

The use of synchronization decreases the cost of the algorithm.

The projected Newton algorithm succeeds in finding piecewise model
trajectories.
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Outlook

Incomplete observations

Parameter estimation

Zero Lyapunov exponents

Forecasting

Applying the method to other models

More rigourous analysis of the method

Uncertainty quantification
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Thank you for listening

Questions?
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