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Convection-Diffusion equations
Let ε > 0. We are interested in approximating the solution to{

−εu′′ + u′ = f on (0, 1) =: Ω,
u(0) = u(1) = 0,

(1)

by a finite element method (FEM).

The Galerkin variational
formulation reads as: Find u ∈ H1

0 (Ω) such that

b(u, v) :=

∫ 1

0
εu′v ′ + u′v dx =

∫ 1

0
fv dx (v ∈ H1

0 (Ω)). (2)

Let Ωh be a partitioning of Ω into subintervals, say of equal length
h. Define Uh := H1

0 (Ω) ∩
∏

K∈Ωh
P1(K ). The Galerkin finite

element approximation is given by uh ∈ Uh that solves

b(uh, vh) =

∫ 1

0
fvh dx (vh ∈ Uh). (3)
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Convection-Diffusion equations
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Figure : Exact solution of (1) and Galerkin approximation, for f (x) = x
with h = 1

16 .
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Petrov-Galerkin FEM with optimal test functions

For some real Hilbert spaces U and V , let b : U × V 7→ R be a
bilinear form. Given f ∈ V ′ (the dual of V ), consider the
variational problem of finding u ∈ U such that

b(u, v) = f (v) (v ∈ V ). (4)

Define
B : U 7→ V ′, (Bu)(v) = b(u, v)

and suppose B is boundedly invertible. In a finite element method,
we replace U and V by finite-dimensional subspaces Uh ⊂ U and
Vh ⊂ V and find uh ∈ Uh such that

b(uh, vh) = f (vh) (vh ∈ Vh). (5)

We wish to find a test space Vh that guarantees that uh is the best
approximation from the trial space Uh.
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Let R ∈ B(V ,V ′) be the Riesz map, i.e. (Rv)(w) = 〈v ,w〉V .

Define T = R−1B ∈ B(U,V ), which satisfies

〈Tu, v〉V = b(u, v) (u ∈ U, v ∈ V ).

Given a closed linear trial space Uh ⊂ U, we set the optimal test
space (cf. [DG11]) as

Vh := =(T |Uh
).
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Given f ∈ V ′, consider the following Petrov-Galerkin problem:
Find uh ∈ Uh such that

b(uh, vh) = f (vh) (vh ∈ Vh = =(T |Uh
)).

Proposition

It holds that uh = argminūh∈Uh
‖f − Būh‖V ′ .

Proof.
For any uh,wh ∈ Uh,

〈f − Buh,Bwh〉V ′ = 〈R−1(f − Buh),R−1Bwh〉V
= (f − Buh)(R−1Bwh) = f (vh)− b(uh, vh).

where vh := R−1Bwh.



PG with optimal test space PG for convection-diffusion PG for the transport problem

Given f ∈ V ′, consider the following Petrov-Galerkin problem:
Find uh ∈ Uh such that

b(uh, vh) = f (vh) (vh ∈ Vh = =(T |Uh
)).

Proposition

It holds that uh = argminūh∈Uh
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Given f ∈ V ′, consider the following Petrov-Galerkin problem:
Find uh ∈ Uh such that

b(uh, vh) = f (vh) (vh ∈ Vh = =(T |Uh
)).

Proposition

It holds that uh = argminūh∈Uh
‖f − Būh‖V ′ .

Corollary

Equipping U with the energy norm,

‖ · ‖E := ‖B · ‖V ′ ,

we find that
uh = argmin

ūh∈Uh

‖u − ūh‖E .

• For the convection-diffusion problem, ‖ · ‖E can be some
ε-dependent norm and may not be the norm of interest.
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Choosing the norm on V

We can equip V with the optimal test norm ‖B ′ · ‖U′ , so that for
w ∈ U :

‖w‖E = ‖Bw‖V ′ = sup
06=v∈V

|(Bw)(v)|
‖B ′v‖U′

= sup
0 6=v∈V

|(B ′v)(w)|
‖B ′v‖U′

= ‖w‖U .
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PG with optimal test space

Given a trial space Uh ⊂ U, the optimal test space Vh = =(T |Uh
),

is determined by solving for each uh ∈ Uh :

〈Tuh, v〉V = b(uh, v) ( v ∈ V ).

• It is rarely possible to find an exact expression for Tuh.
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PG with projected optimal test space

Given a trial space Uh ⊂ U, the projected optimal test space
Vh = =(Th|Uh

), is determined by

〈Thuh, ṽh〉V = b(uh, ṽh) (uh ∈ Uh, ṽh ∈ Ṽh).

with test search space Ṽh ⊂ V closed, sufficiently large, i.e.

γh := inf
06=wh∈Uh

sup
06=ṽh∈Ṽh

b(wh, ṽh)

‖wh‖U‖ṽh‖V
> 0.

(Indeed, if ‖ · ‖U = ‖ · ‖E and Ṽh = V , then γh = 1.) This method
gives a near-best approximation in the energy norm:

‖u − uh‖E ≤
1

γh
inf

wh∈Uh

‖u − wh‖E .
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> 0.

(Indeed, if ‖ · ‖U = ‖ · ‖E and Ṽh = V , then γh = 1.)
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PG for the convection-diffusion problem
On a domain Ω ⊂ Rn, for ε > 0 consider the boundary value
problem {

−ε∆u + b · ∇u = f on Ω,
u = g on ∂Ω,

which can be written in mixed form:
σ −
√
ε∇u = 0 on Ω,

−
√
ε divσ + b · ∇u = f on Ω,

u = g on ∂Ω.

The ultra-weak formulation of this problem reads as :

Find (σ, u, θ) ∈ L2(Ω)2 × L2(Ω)× H
1
2

00(∂Ω \ Γ+)′ such that{ ∫
Ω σ · τ +

√
εu div τ =

∫
∂Ω

√
εgτ · n,∫

Ω

√
εσ · ∇v − ub · ∇v +

√
ε
∫
∂Ω\Γ+

θv =
∫

Ω fv −
∫

Γ−
gvb · n,

for all v ∈ H0,Γ+(Ω) and τ ∈ H(div,Ω).
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For the current problem, the (squared) optimal test norm reads as

‖τ+
√
ε∇v‖2

L2(Ω)2+‖
√
ε div τ−div bv‖2

L2(Ω)+‖
√
εv |∂Ω\Γ+

‖2

H
1
2

00(∂Ω\Γ+)
.

Using this norm in a finite element discretizaton, we expect
near-best approximations from Uh in the L2-norm.
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Numerical experiments
We look at the domain Ω = [0, 1]2 and use uniform partitions Ωh

as in the figure.

Uh = {(σh, uh,−σh|∂Ω\Γ+
· n) : uh ∈ Ph,σh ∈ Σh},

• Ph = {uh ∈ L2(Ω) : uh|K is linear on each K ∈ Ωh}.
• Σh = RT1h, the first-order Raviart-Thomas space on Ωh.
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We look at the domain Ω = [0, 1]2 and use uniform partitions Ωh

as in the figure.

Uh = {(σh, uh,−σh|∂Ω\Γ+
· n) : uh ∈ Ph,σh ∈ Σh},

• Ph = {uh ∈ L2(Ω) : uh|K is linear on each K ∈ Ωh}.
• Σh = RT1h, the first-order Raviart-Thomas space on Ωh.

For the test search space we used Ṽh = RT1h/2 × P̃3
h/2 :

• RT1h/2 the first order RT-space on an extra refinement Ωh/2.

• P̃3
h/2 the space of continuous piecewise cubics on Ωh/2.
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Experiment 1: a solution with boundary layer

Here b = [2, 1]> and f is prescribed such that the exact solution is

u(x , y) = [x+(eb1x/ε−1)/(1−eb1/ε)] ·[y +(eb1y/ε−1)/(1−eb2/ε)].
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Figure : Our method (left) compared to SUPG (right), h = 1
16 , ε = 10−2
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h error in uh of the best L2-approximation (left) and our
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Experiment 2: a solution with internal layer that is not
aligned with the mesh

Here b = [2, 1]> and

f =

{
1− x , if y − 2x > 1/2

0, otherwise.
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Figure : The approximate solution uh for our method(left) and SUPG
(right) h = 1

16 , ε = 10−6.



PG with optimal test space PG for convection-diffusion PG for the transport problem

Experiment 2: the local L2- error in the case ε = 0
Here b = [2, 1]> and

f =

{
1− x , if y − 2x > 1/2

0, otherwise.
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16 and ε = 0, for our method

(left) and the best approximation (right).
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Experiment 3: example from [DH13]
Here b = [1, 0]> and right-hand side f such that

u(x , y) =

(
er1(x−1) − er2(x−1)

e−r1 − e−r2
+ x − 1

)
sinπy ,

where r1,2 = −1±
√

1+4ε2π2

−2ε .
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Figure : The approximate solution uh for our method(left) and
Demkowicz/Heuer ([DH13]) (right) h = 1

16 , ε = 10−4.
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Experiment 4: Peterson’s mesh
Here b = [0, 1]> and {

f = 0,

u|Γ− = x2.

With Peterson’s mesh, Discontinuous Galerkin (DG) has an error

rate of O(h
3
2 ) (cf. [Pet1991]).
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Figure : Example of Peterson’s mesh (left) and L2-error vs. 1
h in uh for

OM and DG (right).
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Test search space

• Although the above results are promising, we have not yet
been able to prove that the test search space is large enough
to satisfy the inf-sup condition.

• Most recent work: a method for the transport problem for
which we can prove stability.

• In fact: if the convection term is constant, then the optimal
test functions for this problem can be determined exactly.
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The transport problem

Let Ω be a domain. The transport problem reads as:{
b · ∇u + cu = f on Ω,

u = g on Γ−.

To get to the variational form, this time we apply integration by
parts on each element separately (earlier proposed in [DG11]). The
variational problem reads as follows: Let
U := L2(Ω)× H0,Γ−(b; ∂Ωh), V := H(b; Ωh). Given f ∈ H(b; Ωh)′,
find (u, θ) ∈ U such that

bh(u, θ; v) :=

∫
Ω

(cv−b·∇hv−v div b)u dx+

∫
∂Ωh

JvbKθ ds = f (v).

for all v ∈ V .
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The case where b is constant

Let (u, θ) ∈ U. On each K ∈ Ωh, the restriction tK = T (u, θ)|K of
the optimal test function is the unique function that satisfies

〈tK , v〉H(b,K) =

∫
K

(cv − b · ∇hv) dx +

∫
∂K

vθb · n ds

for all v ∈ H(b,K ). Suppose u is a polynomial and θ = w |∂K for
some polynomial w . The above is then equivalent to:{

−∂2
btK + tK = ∂bu + cu on K ,

∂btK = θ − u on ∂K+ ∪ ∂K−,

• Solving this often leads to non-polynomial optimal test
functions that are difficult to use in implementations.



PG with optimal test space PG for convection-diffusion PG for the transport problem

The case where b is constant

We can replace the inner product on H(b,K ) by the equivalent
inner product (see also [DG11])

〈〈v , z〉〉K ,b := 〈∂bv , ∂bz〉L2(K) +

∫
∂K+

v(s)z(s)|( b
|b| · nK )(s)|r+(s)ds,

where r+(s) denotes the distance of x+(s) to ∂K− along b.

b

(x+(y), y)(x−(y), y)
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The case where b is constant
Using this inner product we can rewrite the equations for the
optimal test functions as:

−∂2
btK = ∂bu + cu on K ,

∂btK + tK
|b·nK |
|b|b·nK r+ = θ − u on ∂K+,

∂btK = θ − u on ∂K−.

The optimal test function is then a (piecewise) polynomial of
degree k + 2 :

|b| tK (x , y) = −|b|−1

∫ x

x+(b)

∫ z

x+(y)
(∂bu + cu)(q, y)dqdz

+
(
θ(x−(y), y)− u(x+(y), y) + |b|−1

∫ x−(y)

x+(y)
cu(q, y)dq

)(
x − x+(y)

)
+ |b|2

θ(x+(y), y)− θ(x−(y), y) + |b|−1
∫ x+(y)
x−(y) cu(q, y)dq

x+(y)− x−(y)
.
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The case of variable b

• Approximate b and c by piecewise constants on Ωh or on a
uniform refinement Ωh̃.

• For a trial space Uh determine the corresponding exact
optimal test space with respect to Ωh̃.

• Using (a slight modification of) this space as test search space
allows us to prove stability.

• In practice we can replace the test search space by its
containing space

∏
K∈Ωh̃

Pk+2(K )
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Numerical experiments

In the experiments presented below we took Uh = Ph,0 × Qh,1 as
trial space, with

• Ph,0 = {uh ∈ L2(Ω) : uh|K ∈ P0(K ) ∀ K ∈ Ωh}.
• Qh,1 = {wh|∂Ωh

: wh ∈ C0,Γ−(Ω) and wh|K ∈ P1(K ) ∀ K ∈
Ωh}.

As test search space we took

• Vh̃ = {vh ∈ H(b,Ωh̃) : vh|K̃ ∈ P2(K̃ ) ∀ K̃ ∈ Ωh̃}.
It turned out that for the test search space no additional
refinements of Ωh were needed.
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Numerical experiment: Peterson’s mesh again

Here b = [0, 1]>, c = 0, f = 0 and u|Γ− = x2.
With Peterson’s mesh, Discontinuous Galerkin (DG) has an error
rate of O(h0.75).
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Figure : Example of Peterson’s mesh (left) and L2-error vs. 1
h in uh for

OM and DG (right).
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An adaptive experiment
Here b = [y ,−x ]>, c = 0, f = 0,

u(0, y) =

{
0, y ≤ 1/4
1, y > 1/4

and an approximation of ‖f − Bh(uh, θh)‖V ′ is being used as an
error estimator.
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Figure : The mesh after some adaptive refinements (left) and the
approximated solution at the last iteration (right)
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An adaptive experiment
Here b = [y ,−x ]>, c = 0, f = 0,

u(0, y) =

{
0, y ≤ 1/4
1, y > 1/4

and an approximation of ‖f − Bh(uh, θh)‖V ′ is being used as an
error estimator.
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Figure : The mesh after some adaptive refinements (left) and plot of the
true and estimated error (right)
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Postprocessing

Notice that, for the best L2-approximation ũ ∈
∏

K∈Ωh
P1(K ) of u,

for any K ∈ Ωh :

•
∫
K ũ dx =

∫
K u dx.

• ũ(bK) = 1
|K |
∫
K u dx, where bK denotes the barycenter of K .

• In particular minx∈K u(x) ≤ ũ(bK) ≤ maxx∈K u(x).

Locate the elements K where the overshoots show up and replace
uh|K by the constant function uh(bK ).
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Postprocessing

Figure : The approximation of u by our method using piecewise linear
functions, before postprocessing (left) and after (right), for f = 1− x ,
with u(x , 0) ≡ 0, u(0, y) ≡ 1.
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