About source term models to include vortex generator effects in CFD codes

TUDelft

Liesbeth Florentie, A.H. van Zuijlen, S.J. Hulshoff & H. Bijl

- 2. VG modelling
- 3. Factors that influence performance BAY mode
- Optimization of source term
- 5. Conclusions

Many areas of application...

Airplane wings, engine inlets, cars

... including wind turbines

ŤUDelft

2. VG modelling

- 3. Factors that influence performance BAY mode
- Optimization of source term
- . Conclusions

How to include VG effects in CFD simulations?

Model VG effect instead of geometry

2. VG modelling

 Factors that influence performance BAY mod

Delft

- Optimization of source term
- 5. Conclusions

Adapt governing equations instead of mesh:

BAY model^[2]

- Local body force triggers formation of vortex
- Formulation based on thin airfoil theory:

$$\mathbf{f}_{i} = \frac{V_{i}}{\sum V_{i}} cS\rho \left(\mathbf{u}_{i} \cdot \hat{\mathbf{n}}\right) \left(\mathbf{u}_{i} \times \hat{\mathbf{b}}\right) \left(\frac{\mathbf{u}_{i}}{|\mathbf{u}_{i}|} \cdot \hat{\mathbf{t}}\right)$$

$$(\mathbf{u} \cdot \nabla)\mathbf{u} + \nabla p - \nabla \cdot (2\nu D(\mathbf{u})) \bigcirc = 0$$
$$\nabla \cdot \mathbf{u} = 0$$

[2] Bender, E.E., Anderson, B.H. and Yagle, P.J. Vortex generator modeling for Navier-Stokes codes. FEDSSM99-6919, 1999

3. Factors that influence

What factors influence success of BAY model?

)elft

(* Extracted from simulation with resolved VG)

2. VG modelling

3. Factors that influence performance BAY model - test cases

- mesh resolutior

- total forcing &

distribution

- 4. Optimization of source term
- 5. Conclusions

Test case A: Flat plate flow (zero pressure gradient)

Steady, incompressible flow, RANS with k-ω SST turbulence model

Flat plate with counter-rotating common down rectangular VG pair

- Symmetry b.c.
- $h = \delta/3$ and $h = \delta$
- U_∞ = 15 m/s
- Re_x = 1.2 million
- δ = 15 mm

Mesh

- $\Delta_{bf} \approx 0.08h$
- $\Delta_{\text{BAY}} \approx 0.4$ h, 0.2h, 0.1h
- y⁺ ≈ 1

ŤUDelft

2. VG modelling

3. Factors that influence performance BAY model - test cases

- mesh resolutio

- total forcing &

distribution

 Optimization of source term

)elft

5. Conclusions

Test case B: Airfoil section (adverse pressure gradient)

Steady, incompressible flow, RANS with k-ω SST turbulence model

Half a counter-rotating common up rectangular VG pair @ 30% of chord

- Symmetry b.c.
- h = δ
- $U_{\infty} = 24 \text{ m/s}$
- Re_c = 0.87 million
- δ = 6 mm

Mesh

- $\Delta_{bf} \approx 0.07h$
- $\Delta_{BAY} \approx 0.4h, 0.2h, 0.1h$
- y⁺ ≈ 1

Fig: Cross stream kinetic energy evolution downstream of VG pair.

UDelft

- 3. Factors that influence performance BAY model
 - mesh resolution

ŤUDelft

Mesh resolution: shape factor profiles

$$\rightarrow \quad \text{Unreliable prediction of boundary layer state} H = \frac{\delta^*}{\theta} = \frac{\int_0^{\delta} \left(1 - \frac{U}{U_{\infty}}\right) d}{\int_0^{\delta} \frac{U}{U_{\infty}} \left(1 - \frac{U}{U_{\infty}}\right)}$$

11

 $\mathrm{d}z$

 $\mathrm{d}z$

- 1. Introduction
- 2. VG modelling
- 3. Factors that influence performance BAY model
 - mesh resolution
 - distribution
- I. Optimization of source term
- 5. Conclusions

Large effect mesh resolution on separation location

• Use of BAY model introduces an additional uncertainty w.r.t. flow separation

Fig: Locations of sign reversal in the streamwise component of the wall shear stress, indicating lines of boundary layer separation, BAY model with different mesh resolutions.

TUDelft

3. Factors that influence

distribution

performance BAY model

Effect of source term properties: **Total forcing & distribution**

- (Strong) underestimation magnitude total VG force ٠
- Error in orientation •

- 2. VG modelling
- 3. Factors that influence performance BAY model - test cases
 - total forcing &
 - distribution
- Optimization of source term
- 5. Conclusions

Effect of source term properties: Total forcing & distribution

Large spread in separation locations - Body fitted - BAY Even F_{exact} yields poor result ٠ uniform BAY $-\mathbf{F}_{exact}$ – uniform \mathbf{F}_{eract} - - no VGs 0.5 0.4 0.3 y/D0.2 0.1 0 0.7 0.75 0.8 0.85 0.9 0.95 x/c

Fig: Locations of sign reversal in the streamwise component of the wall shear stress, indicating lines of boundary layer separation, for different source term models.

ŤUDelft

- 1. Introduction
- 2. VG modelling
- 3. Factors that influence performance BAY model
 - test cases
 - mesn resolution

 - distribution
- 4. Optimization of source term
- 5. Conclusions

Conclusions w.r.t. BAY model concept

Successful representation of flow field, but

- Performance Strong dependence on mesh resolution
- Accuracy Additional error in prediction of flow separation

Errors due to

- Low mesh resolution
- Discrete application forcing term
- Approximation of VG force

Drop BAY model assumption

Ideal source term?

Can we do better?

TUDelft

- 1. Introduction
- 2. VG modelling
- Factors that influence performance BAY mod
- 4. Optimization of source term

JDelft

5. Conclusions

Find optimal source term \mathbf{f}^* to reproduce flow field on given mesh

Gradient optimization

 $\widetilde{\mathbf{u}}$ = high-fidelity result mapped on coarse mesh

2. VG modelling

 Factors that influence performance BAY mode

4. Optimization of source term

5. Conclusions

TUDelft

- 1. Introduction
- 2. VG modelling
- Factors that influence performance BAY mod
- 4. Optimization of source term
- 5. Conclusions

Visual improvement of obtained flow field

*f***U**Delft

- 1. Introduction
- 2. VG modelling
- Factors that influence performance BAY mode
- 4. Optimization of source term
- 5. Conclusions

Large improvement in shape factor possible with optimized source term

Fig: Shape factor profiles at 5h, 10h and 15h behind the VG trailing edge for different source term formulations, flat plate flow with low VG pair.

Large improvement in shape factor possible with

optimized source term

Fig: Shape factor profiles at 5h, 10h and 15h behind the VG trailing edge for different source term formulations, flat plate flow with low VG pair (different inflow velocity).

TUDelft

4. Optimization of source term

21

Resultant optimized forcing vector is tilted in streamwise direction

- 1. Introduction
- 2. VG modelling
- Factors that influence performance BAY mod
- 4. Optimization of source term
- 5. Conclusions

Conclusions

BAY model

- Performance strongly depends on mesh resolution
- Errors w.r.t. vortex strength and shape \longrightarrow unreliable separation prediction

Improvement for BAY model is desired...

... and possible!

- 1. Introduction
- 2. VG modelling
- Factors that influence performance BAY mod
- 4. Optimization of source term
- 5. Conclusions

Conclusions

Improvement for BAY model is possible!

- Better estimate for total VG force
 - Also tangential component is important
- Highly accurate result possible with optimized source term
 - Low mesh resolution not as big a problem as expected
 - Limited number of cells where source term should be applied

Proof of source term modeling concept

Optimization tool = Generic methodology to identify dominant patterns in optimal source term distributions for a given mesh

to construct improved VC may

Aid to construct improved VG model

ŤUDelft

References:

Manolesos, M., Voutsinas, S., Experimental investigation of the flow past passive vortex generators on an airfoil experiencing three-dimensional separation, J. Wing Eng. Ind. Aerodyn., 142, p. 130-148, 2015
Bender, E.E., Anderson, B.H. and Yagle, P.J. Vortex generator modeling for Navier-Stokes codes. FEDSSM99-6919, 1999

