Optimization in Chaotic Systems

Korneel Dumon

Conte:

Chaos in Engineering Sensitivity analysis for Chaotic Systems

Shadowing in Dynamical Systems

Shadowing Lemma Least Squares Shadowing

Sensitivity Analysis & Optimization

Conclusior

Optimization in Chaotic Systems : A Least Squares Shadowing Approach

Korneel Dumon

KU Leuven CS Department

korneel.dumon@kuleuven.be

May 13, 2016

Overview

Context Chaos in Engineering Sensitivity analysis for Chaotic Systems

Shadowing in Dynamical Systems Shadowing Lemma Least Squares Shadowing

Sensitivity Analysis & Optimization

Conclusion

Optimization in Chaotic Systems

Korneel Dumon

Conte»

Chaos in Engineering Sensitivity analysis for Chaotic Systems

Shadowing in Dynamical Systems

Shadowing Lemma Least Squares Shadowing

Sensitivity Analysis & Optimization

Chaos in Engineering

Chaos appears frequently in nature

Optimization in Chaotic Systems

Korneel Dumon

Conte>

Chaos in Engineering Sensitivity analysis for Chaotic Systems

Shadowing in Dynamical Systems

Shadowing Lemma Least Squares Shadowing

Sensitivity Analysis & Optimization

Chaos in Engineering

Is there anything to be gained?

1987 America's Cup

Speedo LZR Racer

Optimization in Chaotic Systems

Korneel Dumon

Conte>

Chaos in Engineering Sensitivity analysis for Chaotic Systems

Shadowing ir Dynamical Systems

> Shadowing Lemma Least Squares Shadowing

Sensitivity Analysis & Optimization

Ergodicity

$$\lim_{ au o \infty} rac{1}{ au} \int_0^ au J(u) dt = rac{1}{\mu(X)} \int_X J(u) d\mu$$

 \Longrightarrow Well-defined properties for optimization

Random Process \iff Chaotic Process

Optimization in Chaotic Systems

Korneel Dumon

Contex

Chaos in Engineering Sensitivity analysis for Chaotic Systems

Shadowing in Dynamical Systems

Shadowing Lemma Least Squares Shadowing

Sensitivity Analysis & Optimization

Calculating Sensitivities

$$\dot{u}(t;s) = f(u;s)$$

Tangent equation:

$$\frac{dv(t)}{dt} = \frac{\partial f}{\partial u} \bigg|_{u_r(t)} v(t) + \frac{\partial f}{\partial s} \bigg|_{u_r(t)}$$

where $v(t) = \frac{du(t)}{ds}$ and v(0) = 0.

- Calculate reference trajectory $u_r(t)$
- Calculate state sensitivity v(t)

Optimization in Chaotic Systems

Korneel Dumon

Conte₂

Chaos in Engineering Sensitivity analysis for Chaotic Systems

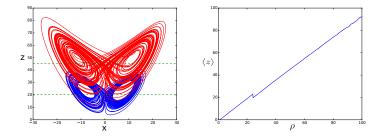
Shadowing in Dynamical Svstems

Shadowing Lemma Least Squares Shadowing

Sensitivity Analysis & Optimization

Sensitivity in Chaotic systems

Ergodic average Lorenz system:
$$\langle J(t) \rangle = \lim_{T \to \infty} \frac{1}{T} \int_0^T z(t) dt$$



 \implies Average value of $z(t) \sim \rho$

Optimization in Chaotic Systems

Korneel Dumon

Conte₂

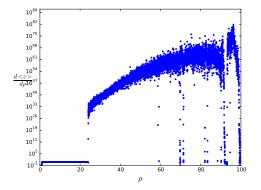
Chaos in Engineering Sensitivity analysis for Chaotic Systems

Shadowing in Dynamical Svstems

Shadowing Lemma Least Squares Shadowing

Sensitivity Analysis & Optimization

Sensitivity in Chaotic systems



In chaotic systems:

$$v(t)\sim e^{\lambda_1 t}$$

with λ_1 the largest positive Lyapunov exponent.

Optimization in Chaotic Systems

Korneel Dumon

Conte>

Chaos in Engineering Sensitivity analysis for Chaotic Systems

Shadowing in Dynamical Systems

Shadowing Lemma Least Squares Shadowing

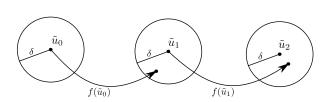
Sensitivity Analysis & Optimization

Conclus<u>ior</u>

Pseudo-trajectory

Consider a discrete time dynamic system: $u_{k+1} = f(u_k)$.

 \implies The sequence $\{\tilde{u}_k\}$ is a δ -pseudo-trajectory if



 $\|\tilde{u}_{k+1} - f(\tilde{u}_k)\| < \delta, \quad \forall k \in \mathbb{N}$

- Local errors in numerical simulation
- Perturbed system dynamics: $\tilde{u}_{k+1} = f(\tilde{u}_k; s + \Delta s) \approx f(\tilde{u}_k; s) + \frac{\partial f}{\partial s} \Delta s$

Optimization in Chaotic Systems

Korneel Dumon

Conte>

Chaos in Engineering Sensitivity analysis for Chaotic Systems

Shadowing in Dynamical Systems

Shadowing Lemma

Least Squares Shadowing

Sensitivity Analysis & Optimization

 \implies True trajectories exist near pseudo-trajectories

Lemma

For all pseudo-trajectories $\tilde{u}(t)$ in the neighbourhood of a hyperbolic set, there exists a true trajectory u(t)for which

$$|\tilde{u}(t) - u(\tau(t))| < \epsilon.$$

Note: free initial condition

Optimization in Chaotic Systems

Korneel Dumon

Conte»

Chaos in Engineering Sensitivity analysis for Chaotic Systems

Shadowing ir Dynamical Systems

Shadowing Lemma

east Squares

Sensitivity Analysis & Optimization

Least Squares Shadowing

Numerically compute a shadow trajectory \implies least squares shadowing [Wang]

$$ar{u},\eta = rgmin \quad rac{1}{2} \int_0^T \left(\|ar{u}(t) - u_r(t)\|^2 + \eta(t)^2
ight) dt$$

s.t. $(1+\eta) rac{dar{u}(t)}{dt} = f(ar{u}(t);s+\delta s), \quad 0 \le au \le T.$

- Calculate reference trajectory u_r(t) at parameter value s
- Solve LSS problem to find shadow $\bar{u}(t)$ at parameter value $s + \delta s$

Optimization in Chaotic Systems

Korneel Dumon

Conte>

Chaos in Engineering Sensitivity analysis for Chaotic Systems

Shadowing in Dynamical

Systems

Shadowing Lemma

Least Squares Shadowing

Sensitivity Analysis & Optimization

LSS Sensitivity Calculation

Linearising around the parameter value s

$$egin{aligned} ar{u}(t;s+\delta s) &pprox u_r(t;s) + \mathbf{v(t)} \delta s \ rac{d au(t;s+\delta s)}{dt} &pprox 1 + oldsymbol{\sigma(t)} \delta s \end{aligned}$$

LSS problem is now parameterized by state sensitivity v(t)and $\sigma(t)$

$$v, \sigma = \operatorname{argmin} \quad \frac{1}{2} \int_0^T \left(\|v(t)\|^2 + \alpha^2 \sigma^2(t) \right) dt$$

s.t.
$$\frac{dv}{dt} = \sigma(t) f(u_r; s) + \frac{\partial f}{\partial u} \Big|_{u_r} v(t) + \frac{\partial f}{\partial s} \Big|_{u_r}$$

 \implies Equivalent of the tangent equation!

Optimization in Chaotic Systems

Korneel Dumon

Conte>

Chaos in Engineering Sensitivity analysis for Chaotic Systems

Shadowing in Dynamical

Systems

Shadowing Lemma

Least Squares Shadowing

Sensitivity Analysis & Optimization

LSS Sensitivity Calculation

Optimality conditions for the QP

$$\begin{cases} \dot{v}(t) = \frac{\partial f}{\partial u} \bigg|_{u_r} v(t) + \frac{\partial f}{\partial s} \bigg|_{u_r} + \sigma(t) f(u_r; s), \\ \dot{w}(t) = -\frac{\partial f}{\partial u}^T w(t) + v(t), \quad w(0) = w(T) = 0, \\ \alpha^2 \sigma(t) - w^T(t) f(u_r; s) = 0. \end{cases}$$

Can be reduced to

$$AW = b$$

where A is block-tridiagonal.

$$A = \begin{bmatrix} T_1 & & & \\ R_1 & T_2 & & \\ & R_2 & T_3 & \\ & & \ddots & \ddots \end{bmatrix} \begin{bmatrix} I & U_1 & & \\ & I & U_2 & \\ & & I & \ddots \\ & & & & \ddots \end{bmatrix}$$

Optimization in Chaotic Systems

Korneel Dumon

Conte₂

Chaos in Engineering Sensitivity analysis for Chaotic Systems

Shadowing in Dynamical

Systems

Shadowing Lemma

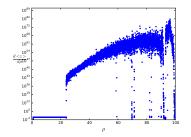
Least Squares Shadowing

Sensitivity Analysis & Optimization

Lorenz Sensitivity Calculation

Lorenz system example: \longrightarrow Finding $\frac{d \langle z \rangle}{d\rho}$.

Tangent equation



LSS

Optimization in Chaotic Systems

Korneel Dumon

Conte₂

Chaos in Engineering Sensitivity analysis for Chaotic Systems

Shadowing in Dynamical Systems

Shadowing Lemma Least Squares Shadowing

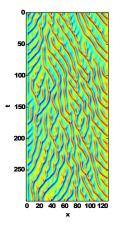
Sensitivity Analysis & Optimization

Kuramoto-Sivashinsky equation

$$\dot{u} = -u_{xx} - u_{xxxx} - (u+c)u_x$$

 \implies simple PDE which exhibits chaos

- Thin film flow
- Flame front



Optimization in Chaotic Systems

Korneel Dumon

Conte₂

Chaos in Engineering Sensitivity analysis for Chaotic Systems

Shadowing in Dynamical Systems

Shadowing Lemma Least Squares Shadowing

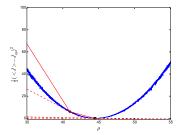
Sensitivity Analysis & Optimization

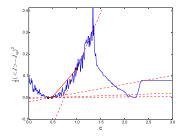
Optimization Results

Setpoint Optimization with

- Lorenz objective: $J_L = \langle z(t) \rangle$
- KS objective: $J_{KS} = < \frac{1}{L} \int_0^L u(x, t) dx >$

Lorenz





Optimization in Chaotic Systems

Korneel Dumon

Conte:

Chaos in Engineering Sensitivity analysis for Chaotic Systems

Shadowing ir Dynamical Systems

Shadowing Lemma Least Squares Shadowing

Sensitivity Analysis & Optimization

Conclusion

Future work:

- Extension to PDEs
 - 2D Kuramoto Sivashinsky
 - turbulent Navier-Stokes
- Large-scale numerical linear algebra
 - multilevel iterative methods
 - double loop optimization
 - efficient optimization methods
- Parallelization
 - parallel numerical algorithms
 - multiple shooting and time-parallelism
 - storage bottleneck: checkpointing
- Applications
 - turbulent flow optimization
 - shape optimization for drag reduction

Optimization in Chaotic Systems

Korneel Dumon

Conte>

Chaos in Engineering Sensitivity analysis for Chaotic Systems

Shadowing in Dynamical Systems

Shadowing Lemma Least Squares Shadowing

Sensitivity Analysis & Optimization