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Chaos in Engineering

Chaos appears frequently in nature
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Chaos in Engineering

Is there anything to be gained?

Speedo LZR Racer

1987 America’s Cup
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Ergodicity

lim
T→∞

1

T

∫ T

0
J(u)dt =

1

µ(X )

∫
X
J(u)dµ

=⇒ Well-defined properties for optimization

Random Process ⇐⇒ Chaotic Process
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Calculating Sensitivities

u̇(t; s) = f (u; s)

Tangent equation:

dv(t)

dt
=
∂f

∂u

∣∣∣∣
ur (t)

v(t) +
∂f

∂s

∣∣∣∣
ur (t)

where v(t) = du(t)
ds and v(0) = 0.

I Calculate reference trajectory ur (t)

I Calculate state sensitivity v(t)
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Sensitivity in Chaotic systems

Ergodic average Lorenz system: 〈J(t)〉 = lim
T→∞

1
T

∫ T
0 z(t)dt
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=⇒ Average value of z(t) ∼ ρ
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Sensitivity in Chaotic systems
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In chaotic systems:
v(t) ∼ eλ1t

with λ1 the largest positive Lyapunov exponent.

8 / 17



Optimization in
Chaotic Systems

Korneel Dumon

Context

Chaos in Engineering

Sensitivity analysis for
Chaotic Systems

Shadowing in
Dynamical
Systems

Shadowing Lemma

Least Squares
Shadowing

Sensitivity Analysis
& Optimization

Conclusion

Pseudo-trajectory

Consider a discrete time dynamic system: uk+1 = f (uk).

=⇒ The sequence {ũk} is a δ-pseudo-trajectory if

‖ũk+1 − f (ũk)‖ < δ, ∀k ∈ N

I Local errors in numerical simulation

I Perturbed system dynamics:
ũk+1 = f (ũk ; s + ∆s) ≈ f (ũk ; s) + ∂f

∂s ∆s
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Shadowing Lemma

=⇒ True trajectories exist near pseudo-trajectories

Lemma
For all pseudo-trajectories ũ(t) in the neighbourhood
of a hyperbolic set, there exists a true trajectory u(t)
for which

|ũ(t)− u(τ(t))| < ε.

Note: free initial condition
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Least Squares Shadowing

Numerically compute a shadow trajectory
=⇒ least squares shadowing [Wang]

ū, η = arg min
1

2

∫ T

0

(
‖ū(t)− ur (t)‖2 + η(t)2

)
dt

s.t. (1 + η)
dū(t)

dt
= f (ū(t); s + δs), 0 ≤ τ ≤ T .

I Calculate reference trajectory ur (t) at parameter value s

I Solve LSS problem to find shadow ū(t) at parameter
value s + δs
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LSS Sensitivity Calculation

Linearising around the parameter value s

ū(t; s + δs) ≈ ur (t; s) + v(t)δs

dτ(t; s + δs)

dt
≈ 1 + σ(t)δs

LSS problem is now parameterized by state sensitivity v(t)
and σ(t)

v , σ =argmin
1

2

∫ T

0

(
‖v(t)‖2 + α2σ2(t)

)
dt

s.t.
dv

dt
= σ(t)f (ur ; s) +

∂f

∂u

∣∣∣∣
ur

v(t) +
∂f

∂s

∣∣∣∣
ur

=⇒ Equivalent of the tangent equation!
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LSS Sensitivity Calculation

Optimality conditions for the QP


v̇(t) = ∂f

∂u

∣∣∣∣
ur

v(t) + ∂f
∂s

∣∣∣∣
ur

+ σ(t)f (ur ; s),

ẇ(t) = − ∂f
∂u

T
w(t) + v(t), w(0) = w(T ) = 0,

α2σ(t)− wT (t)f (ur ; s) = 0.

Can be reduced to
AW = b

where A is block-tridiagonal.

A =


T1

R1 T2

R2 T3

. . .
. . .



I U1

I U2

I
. . .
. . .
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Lorenz Sensitivity Calculation

Lorenz system example:
−→ Finding d<z>

dρ .

Tangent equation
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Kuramoto-Sivashinsky equation

u̇ = −uxx − uxxxx − (u + c)ux

=⇒ simple PDE which exhibits chaos

I Thin film flow

I Flame front
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Optimization Results

Setpoint Optimization with

I Lorenz objective: JL =< z(t) >

I KS objective: JKS =< 1
L

∫ L
0 u(x , t)dx >

Lorenz
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Conclusion

Future work:
I Extension to PDEs

I 2D Kuramoto Sivashinsky
I turbulent Navier-Stokes

I Large-scale numerical linear algebra
I multilevel iterative methods
I double loop optimization
I efficient optimization methods

I Parallelization
I parallel numerical algorithms
I multiple shooting and time-parallelism
I storage bottleneck: checkpointing

I Applications
I turbulent flow optimization
I shape optimization for drag reduction
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