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Problem statement

Discrepancy between observation level and available model

In this talk: bacterial chemotaxis and tumor growth

Correlation of swimming behaviour
and flagellar rotation in E. colf
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Macroscopic simulation with microscopic models too costly!

Widespread applications: plasma physics, radiative transfer,
polymeric physics, quantitative sociology, etc.




Mathematical setting: model problem

- Microscopic scale
- stochastic differential equation
dX; = a(Xy)dt + o(Xy)dW,
- equivalent Fokker-Planck equation )
Oup(,t) + 0, (ala)pla,t) = O (5 plert))
- Macroscopic scale

- moments of the distribution function
M(t) = /m(x)p(w,t)dw

- ordinary differential equation for evolution not closed

- Examples: polymer flow, systemic risk, ...



Mathematical setting: model problem 2

- Microscopic scale

- High-dimensional slow-fast stochastic differential equation
dXt — —VV(Xt, Yt)dt —|— dUt

1 1
dY; = = (X = Y)dt + —=dV,
- Macroscopic scale ¢ Ve

- Marginal distribution of the slow degrees of freedom
plart) = [ ey t)dy

- Partial differential equation for evolution not closed

- Examples: molecular dynamics, climate, ...



Mathematical setting: model problem 3

- Microscopic scale
» Particles in position-velocity phase space (X, V4, 1)
- Kinetic equation for evolution of distribution
O f(x,v,t) +v0,f(x,v,t) = Q(f(x,v,1))
- Macroscopic scale

- Moments over velocity space
u(z,t) = /m(v)f(x,v,t)dv

- Partial differential equation for evolution not closed

- Examples: bacterial chemotaxis, tumor growth, nuclear fusion,...



Computational multiscale framework
Based on coarse projective integration

Microscopic level “~ |
 model available W

+ simulate over shorttime  f(z, v, ¢) f(x,v,t+ 0t)

interval
Lifting ﬁ A @ Restriction
0t < t» p(x,t+ 6t)

Macroscopic level ple
« model incomplete or Ap(z,t \ /

insufficiently accurate

- want to simulate over
long time interval

| At |
E.g. macroscopic forward Euler "
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Kevrekidis et al, 2003 - ...
E et al, 2003 - ...




Outline of the talk

- Model problems and algorithmic framework

- Kinetic models for bacterial chemotaxis

* Variance-reduced stochastic simulation

- Variance reduced simulation for tumor growth

* Projective integration for kinetic equations



Velocity-jump models for chemotaxis

comsmonasunmes e =—— -+ Egch bacterium moves with a
constant speed in a given
;: W\ direction. %
Nl a2t _ vy,
(/ S \ dt
cw o\ /o * Direction changes at jump times,
<wwgw' o generated via a Poisson process.
Tht1
[ Mot = -rog@),  Un=u0)

- The modeling effort goes into the
definition of the intensity of the
Poisson process (turning rate).



Turning rates for velocity jump models

- Constant turning rate (leads to pure diffusion)

A(t) = Ao

- Turning rate biased by chemoattractant concentration
A(t) = o — g (V=S(X(1)))" V(2)

- Turning rate biased by internal state (for small bacteria)

v,
dt

- Internal state induces memory

= F(Y, 5(X1))



—xample: cartoon internal dynamics

- Excitation/adaptation mechanism

(dyr  S(z) —w

) di T yM
dya  S(z) — (y1 + o)

L dt te ’

- Alignment with desired direction

)\(y) = >‘O — byg
A(y) > Ao for y2 < 0 A

- Bacterium has a higher jump rate
if moving in unfavorable direction.
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Asymptotic regime

- Non-dimensionalize:
- t, :time scale associated with environmental changes

* t) :typical time between two jumps
-ty : time scale associated with evolution of internal state

€ :=1t)/t, T =1,/ e<T <K

dX

= GV;H HV;/H =1

dt Z, =Y, — S(X)
‘/t — Vn t - [Tn,Tn_+_1)

Trt1
/ AY,)dt = 6, . MZi) =X — bT Z, + O(|1Z4|?)

T,

dY; _

2%t _ By, S(X,)) - F(Zy) = =17 Z; + O(|Z4|?)

dt 11



Kinetic model and macroscopic [Imit

- Equivalent continuum model for probability density p(z,v,y, t)

Orp +€v - Vap +V, (F(y, S(z))p) = Q(p)

advection internal dynamics collisions

- On long time scales (t — t/ ), an advection-diffusion equation
arises for the position density ...

n(@.t)= | [ oo, t)dudy

. ... inthe limit of € — 0
-

On = Vg (lvmn — T(x)n) T(z) =b" N7+ vas(x)

2

Erban and Othmer, SIAM J. Applied Math., 65(2):361-391, 2004.

Rousset and S, M3AS 23(11):2005-2037, 2013. 19



Macroscopic limit for gradient sensing model

- Velocity-jump process without internal dynamics
axy _ eV’

dt ’

Ve=Vs  tel[T5Tea] = 0+ ev- Vap® = Q(p)

Trf+1
/ \( X, Vi)dt = 0,

I3

A( X, Vi) = Ao — eT(m)TV}
 For this model, we have the same macroscopic limit !

on = Vg (%Vxn — T(a:)n)

Erban and Othmer, SIAM J. Applied Math., 65(2):361-391, 2004.

Rousset and S, M3AS 23(11):2005-2037, 2013. 13



The numerical problem of variance

Simulation using N = 3750 particles at time t = 100, using € = 1
S(z) = exp(—(z — 7.5)%) + exp(—(z — 12.5)%)
1 for z € [13, 15]

n(x,0) = « ,
k0 otherwise
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Outline of the talk

- Model problems and algorithmic framework

- Kinetic models for bacterial chemotaxis

- Variance-reduced stochastic simulation

- Variance reduced simulation for tumor growth

* Projective integration for kinetic equations



Aim of asymptotic variance reduction

- Standard error on the computed density Std(p) = O(1/v N)
- Goal is to measure differences of size O(e)

- Two possible solutions :
-Use N = O(1/€*) realizations (computationally expensive ! )

- Use an asymptotic variance reduction technique such

that
Std(p) = O(e) VN)

16



Coupled simulation / control variates

Model with internal state

dX
—- =V, V=1

V; — Vn t - [Tn,Tn+1)

Tn+1
/ A(Y;)dt = 0,
T

a,

- Couple both processes by taking

Direct gradient sensing
model (control variate)
dX¢

il
V=V, tell,, T,

Tria
/ (X, Vi)dt = 6,
TS

- the same random numbers for the jump times

Trt1 TS
/ A(Y)dt =6, = /
T, T

)\C(Xta I/t)dt

- the same new velocities V,, = V¢

Rousset and S, M3AS 23(12):2155-2191, 2013.
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Coupled simulation / control variates (2)

M\ - Density via ‘kernel density estimation’
- / Az, t) = ;Kh(:c — X}

N

/ 7z, 1) = NhZKh (z — X5°)

@ 1=1

- Compute deterministic solution n°(z,t) for control variate via
O0ip® + ev - Vop® = Q(p)

- Then compute variance reduced density estimate
n(z,t) = n(z,t)

AN

. same expectation
similar fluctuations
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A theoretical result : asymptotic variance reduction

« The variance of the coupling behaves like
Var (A(z,t) — n°(z,t)) = O(e?/N)

- The proof is pathwise, and is obtained using a random time shift argument :
8 e 9
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- Watch out for time discretization effects!! 19



Numerical results on the coupling (2)

- Variance degrades a function of simulated time
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« Variance quickly increases as a function of time

* Linear increase on long time scales probably due to double-well
chemoattractant

- Restore coupling frequently by reinitializing control particles

e =0.10

- € =0.05

e = 0.02

- €=0.01
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Density computation with variance reduction

- Differences between models are statistically significant

- Variance is higher where the two models differ the most
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Outline of the talk

- Model problems and algorithmic framework

- Kinetic models for bacterial chemotaxis

* Variance-reduced stochastic simulation

- Variance reduced simulation for tumor growth

* Projective integration for kinetic equations



Agent-based model for tumor growth

« Cell motion: biased Brownian motion

dXp = (\/E +xpVV () (1 — np/np,maw)) dt

- Each cell also has internal dynamics
depending on the type.

DRUGS VEGF O,

% — C(Xpa t)
dt 1 min C C(X ,t
- Normal cells (p=1) pmin(Cy + C(Xp, 1))
- Cancer cells (p=2) -, = H(Ctr = C(Xp,t))A = BzH(C(X,,1) — Cur)

* Endothelial cells (p=3) . Environment influences motion, but

also speed of cell cycle (cell division)
and apoptosis (cell death)

 Environment: reaction-

diffusion equations, 4. o+ Gancer Res., 71(8):2826-37, 2011.
coupled with agents!  Lejon, Mortier, S, arXiv:1509.06346, submitted, 2015. o1



Approximate macroscopic model

- Advection-diffusion via Fokker-Planck equation

Oyn, = DyVn, — x,V - [vv (1 _ ) np]

Np max

- What about reactions?
-Births and deaths depend on intracellular dynamics

- Difficult to obtain as a function of density

P, max

—-Such a closure appears impossible to obtain!




Variance reduction technigue (1)

- Variance due to random motion that impacts internal
dynamics, and hence the precise location of reaction

- Random motion is identical in the advection-diffusion model
without reactions

- Simulate simultaneously
- Stochastic model with internal state (and hence reactions)
- Stochastic model without reactions
» Deterministic model without reactions

» Use stochastic model to estimate reaction term only !




Variance reduction technique (2)

- Stochastic model with internal state (and hence reactions)
I, (t+At)

np(t + At) = Z wi(t 4 At)Ox, p(t+At)

i=1
- Stochastic model without reactions
I (t)
st + At) = Y wi(t)dx, pie+an

1=1

- Use stochastic model to estimate reaction term only !

a(t 4+ At) = ng(t + At) + (7 (t + At) — 05 (8 + At))



Numerical test 1: expectation
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Numerical test 1: variance

Var(pynormal (T, t)) Var(ppormal (€5 1))
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Numerical test with angiogenesis

Angiogenesis modeled via tip cell that moves chemotactically
and sprouts
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Conclusions

- Often, microscopic simulation needs to be done via Monte
Carlo simulation of stochastic models, because of high-
dimensionality.

* Due to the statistical noise, the relevance of the extra
modeling detail is not always very clear.

- If an approximate macroscopic model is known, it can be
used for variance reduction.

- Such methods can significantly extend the size of systems
that can be simulated (to the vascular case for tumor growth).
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