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Problem statement
Discrepancy between observation level and available model
In this talk: bacterial chemotaxis and tumor growth

Widespread applications: plasma physics, radiative transfer, 
polymeric physics, quantitative sociology, etc.

Macroscopic simulation with microscopic models too costly!
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Mathematical setting: model problem 1
• Microscopic scale

• stochastic differential equation

• equivalent Fokker-Planck equation

• Macroscopic scale
• moments of the distribution function

• ordinary differential equation for evolution not closed
• Examples: polymer flow, systemic risk, …
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Mathematical setting: model problem 2
• Microscopic scale

• High-dimensional slow-fast stochastic differential equation

• Macroscopic scale
• Marginal distribution of the slow degrees of freedom

• Partial differential equation for evolution not closed
• Examples: molecular dynamics, climate, …
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Mathematical setting: model problem 3
• Microscopic scale

• Particles in position-velocity phase space
• Kinetic equation for evolution of distribution

• Macroscopic scale
• Moments over velocity space

• Partial differential equation for evolution not closed
• Examples: bacterial chemotaxis, tumor growth, nuclear fusion,…
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Computational multiscale framework
Based on coarse projective integration

Microscopic level
• model available  
• simulate over short time 

interval

Macroscopic level
• model incomplete or    

insufficiently accurate
• want to simulate over 

long time interval
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Outline of the talk

• Model problems and algorithmic framework

• Kinetic models for bacterial chemotaxis

• Variance-reduced stochastic simulation

• Variance reduced simulation for tumor growth

• Projective integration for kinetic equations 



• Each bacterium moves with a 
constant speed in a given 
direction.

• Direction changes at jump times, 
generated via a Poisson process.

• The modeling effort goes into the 
definition of the intensity of the 
Poisson process (turning rate). 

Velocity-jump models for chemotaxis
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• Constant turning rate (leads to pure diffusion)

• Turning rate biased by chemoattractant concentration 

• Turning rate biased by internal state (for small bacteria)

- Internal state induces memory 

Turning rates for velocity jump models
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Example: cartoon internal dynamics
• Excitation/adaptation mechanism

• Alignment with desired direction

• Bacterium has a higher jump rate 
if moving in unfavorable direction.
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Asymptotic regime
• Non-dimensionalize:  

• : time scale associated with environmental changes
• : typical time between two jumps
• : time scale associated with evolution of internal state
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• Equivalent continuum model for probability density

• On long time scales (                ), an advection-diffusion equation 
arises for the position density …

• … in the limit of 

Kinetic model and macroscopic limit

advection internal dynamics collisions
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Macroscopic limit for gradient sensing model
• Velocity-jump process without internal dynamics

• For this model, we have the same macroscopic limit !

Erban and Othmer, SIAM J. Applied Math., 65(2):361–391, 2004.
Rousset and S, M3AS 23(11):2005-2037, 2013. 13



The numerical problem of variance 
Simulation using N = 3750 particles at time t = 100, using 
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Outline of the talk

• Model problems and algorithmic framework

• Kinetic models for bacterial chemotaxis

• Variance-reduced stochastic simulation

• Variance reduced simulation for tumor growth

• Projective integration for kinetic equations 



Aim of asymptotic variance reduction
• Standard error on the computed density

• Goal is to measure differences of size 

• Two possible solutions :

- Use                          realizations (computationally expensive ! )

- Use an asymptotic variance reduction technique such 
that

O(✏)
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Coupled simulation / control variates

• Couple both processes by taking
• the same random numbers for the jump times

• the same new velocities

Model with internal state Direct gradient sensing 
model (control variate)

17Rousset and S, M3AS 23(12):2155-2191, 2013.



• Compute deterministic solution                for control variate via

• Then compute variance reduced density estimate

Coupled simulation / control variates (2)

similar fluctuations same expectation

• Density via‘kernel density estimation’
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A theoretical result : asymptotic variance reduction

• The variance of the coupling behaves like

• The proof is pathwise, and is obtained using a random time shift argument :

• Watch out for time discretization effects!! 19



Numerical results on the coupling (2)

• Variance degrades a function of simulated time

• Variance quickly increases as a function of time

• Linear increase on long time scales probably due to double-well 
chemoattractant

• Restore coupling frequently by reinitializing control particles 20



Density computation with variance reduction

• Differences between models are statistically significant
• Variance is higher where the two models differ the most
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Outline of the talk

• Model problems and algorithmic framework

• Kinetic models for bacterial chemotaxis

• Variance-reduced stochastic simulation

• Variance reduced simulation for tumor growth 

• Projective integration for kinetic equations



• Cell motion: biased Brownian motion

• Each cell also has internal dynamics 
depending on the type.

• Environment influences motion, but 
also speed of cell cycle (cell division) 
and apoptosis (cell death)

Agent-based model for tumor growth
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• Normal cells (p=1)
• Cancer cells (p=2)
• Endothelial cells (p=3)

• Environment: reaction-
diffusion equations, 
coupled with agents!
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Approximate macroscopic model
• Advection-diffusion via Fokker-Planck equation

• What about reactions?
-Births and deaths depend on intracellular dynamics

-Difficult to obtain as a function of density

-Such a closure appears impossible to obtain!
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Variance reduction technique (1)

• Variance due to random motion that impacts internal 
dynamics, and hence the precise location of reaction 

• Random motion is identical in the advection-diffusion model 
without reactions

• Simulate simultaneously 

• Stochastic model with internal state (and hence reactions)

• Stochastic model without reactions

• Deterministic model without reactions

• Use stochastic model to estimate reaction term only !



Variance reduction technique (2)

• Stochastic model with internal state (and hence reactions)

• Stochastic model without reactions

• Use stochastic model to estimate reaction term only !
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Numerical test 1: expectation
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Numerical test 1: variance
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Numerical test with angiogenesis
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Conclusions

• Often, microscopic simulation needs to be done via Monte 
Carlo simulation of stochastic models, because of high-
dimensionality.

• Due to the statistical noise, the relevance of the extra 
modeling detail is not always very clear.

• If an approximate macroscopic model is known, it can be 
used for variance reduction.

• Such methods can significantly extend the size of systems 
that can be simulated (to the vascular case for tumor growth).




