

Numerical analysis of pattern formation in auxin transport models

Delphine Draelants

Universiteit Antwerpen

- Introduction and motivation
- Concentration-based transport models
- Pattern formation in an unbounded tissue
- Pattern formation in a bounded tissue
- Pattern formation in a growing tissue
- Conclusions and outlook

Introduction and motivation

- Concentration-based transport models
- Pattern formation in an unbounded tissue
- Pattern formation in a bounded tissue
- Pattern formation in a growing tissue
- Conclusions and outlook

Introduction and motivation

Pattern formation

6

Introduction and motivation

- Indole-3-acetic acid
- Plant hormone
- Member of the auxin family

Transport of IAA

- Leads to accumulation points of IAA
- Plays a central role in pattern formation

Examples

P.Prusinkiewicz and A.Runions. Computational models of plant development and form.

New Phytologist, 193(3):549-569,2012.

How is auxin (IAA) transported throughout a plant and how do auxin peaks arise?

Passive transport

- Diffusion
- From high to low concentration
- Requires no energy

Active transport

- Most IAA is polarly charged
- From low to high concentration
- Requires auxin carriers

IAA transport

Auxin exporter PIN1

- Protein
- Member of the PIN family
- Main auxin efflux carrier
- Polar localization
 - Influenced by IAA
 - ! complete feedback loop between IAA and PIN1

Auxin exporter PIN1

- Protein
- Member of the PIN family
- Main auxin efflux carrier
- Polar localization

Different hypotheses

- Influenced by IAA
- ! complete feedback loop between IAA and PIN1

Auxin importer AUX/LAX

- Protein
- Limited role in comparison with PIN1
- Uniformly distributed on cell membrane

- Introduction and motivation
- Concentration-based transport models
- Pattern formation in an unbounded tissue
- Pattern formation in a bounded tissue
- Pattern formation in a growing tissue
- Conclusions and outlook

Geometric representation of tissue A graph *H*:

- Cell walls are represented by the edges e
- Cell vertices are the vertices v
- Cells are represented as polygons, the faces of the graph
- Neighboring cells have common edges

Topological representation of tissue A graph *H**:

- Dual graph of H
- ► Cells *i* ∈ {1,..., *n*}: vertices
- Connection between neighboring cells: edges
- *N_i*: cells up to distance 1 from cell *i*
- Weighted graph: labelling each edge with relevant information
- ► State variables per cell (m)

The transport model General transport model

Definition (concentration-based model)

A concentration-based model is a set of $m \times n$ ODEs of the form

$$\begin{split} \dot{\mathbf{y}}_i &= \pi(\mathbf{y}_i) - \delta(\mathbf{y}_i) + \frac{\mathbf{D}}{V_i} \sum_{j \in \mathcal{N}_i} l_{ij}(\mathbf{y}_j - \mathbf{y}_i) \\ &+ \frac{\mathbf{T}}{V_i} \sum_{j \in \mathcal{N}_i} \nu_{ji}(\mathbf{y}_1, \dots, \mathbf{y}_n | H^*) - \nu_{ij}(\mathbf{y}_1, \dots, \mathbf{y}_n | H^*) \end{split}$$

for i = 1, ..., n and $\pi, \delta : \mathbb{R}^m_+ \to \mathbb{R}^m_+$, the production and decay functions, $\mathbf{D} \in \mathbb{R}^{m \times m}$ is a diagonal diffusion matrix, $T \in \mathbb{R}_+$, is the active transport parameter, and $\nu_{ij} : \mathbb{R}^m_+ \times \cdots \times \mathbb{R}^m_+ \to \mathbb{R}^m_+$ are the active transport functions.

The transport model General transport model

Definition (concentration-based model)

A concentration-based model is a set of $m \times n$ ODEs of the form

$$\begin{split} \dot{\mathbf{y}}_i &= \pi(\mathbf{y}_i) - \delta(\mathbf{y}_i) + \frac{\mathbf{D}}{V_i} \sum_{j \in \mathcal{N}_i} l_{ij}(\mathbf{y}_j - \mathbf{y}_i) \\ &+ \frac{\mathbf{T}}{V_i} \sum_{j \in \mathcal{N}_i} \nu_{ji}(\mathbf{y}_1, \dots, \mathbf{y}_n | H^*) - \nu_{ij}(\mathbf{y}_1, \dots, \mathbf{y}_n | H^*) \end{split}$$

Example: model of Smith et al. $\mathbf{y}_i = (a_i, p_i)^{'}$: a_i : IAA concentration in cell *i* p_i : PIN1 concentration in cell *i*

$$\begin{aligned} \frac{da_i}{dt} &= \pi(\mathbf{y}_i) - \delta(\mathbf{y}_i) + \frac{D}{V_i} \sum_{j \in \mathcal{N}_i} l_{ij}(\mathbf{y}_j - \mathbf{y}_i) \\ &+ \frac{T}{V_i} \sum_{j \in \mathcal{N}_i} \nu_{ji}(\mathbf{y}_1, \dots, \mathbf{y}_n | H^*) - \nu_{ij}(\mathbf{y}_1, \dots, \mathbf{y}_n | H^*) \\ \frac{dp_i}{dt} &= \pi(\mathbf{y}_i) - \delta(\mathbf{y}_i) \end{aligned}$$

$$\begin{aligned} \frac{da_i}{dt} &= \boldsymbol{\pi}(\mathbf{y}_i) - \delta(\mathbf{y}_i) + \frac{D}{V_i} \sum_{j \in \mathcal{N}_i} l_{ij}(\mathbf{y}_j - \mathbf{y}_i) \\ &+ \frac{T}{V_i} \sum_{j \in \mathcal{N}_i} \nu_{ji}(\mathbf{y}_1, \dots, \mathbf{y}_n | H^*) - \nu_{ij}(\mathbf{y}_1, \dots, \mathbf{y}_n | H^*) \\ \frac{dp_i}{dt} &= \boldsymbol{\pi}(\mathbf{y}_i) - \delta(\mathbf{y}_i) \end{aligned}$$

$$\begin{aligned} \frac{da_i}{dt} &= \frac{\rho_{\text{IAA}}}{1 + \kappa_{\text{IAA}} a_i} - \delta(\mathbf{y}_i) + \frac{D}{V_i} \sum_{j \in \mathcal{N}_i} l_{ij} (\mathbf{y}_j - \mathbf{y}_i) \\ &+ \frac{T}{V_i} \sum_{j \in \mathcal{N}_i} \nu_{ji} (\mathbf{y}_1, \dots, \mathbf{y}_n | H^*) - \nu_{ij} (\mathbf{y}_1, \dots, \mathbf{y}_n | H^*) \\ \frac{dp_i}{dt} &= \frac{\rho_{\text{PIN}_0} + \rho_{\text{PIN}} a_i}{1 + \kappa_{\text{PIN}} p_i} - \delta(\mathbf{y}_i) \end{aligned}$$

$$\begin{aligned} \frac{da_i}{dt} &= \frac{\rho_{\text{IAA}}}{1 + \kappa_{\text{IAA}} a_i} - \delta(\mathbf{y}_i) + \frac{D}{V_i} \sum_{j \in \mathcal{N}_i} l_{ij} (\mathbf{y}_j - \mathbf{y}_i) \\ &+ \frac{T}{V_i} \sum_{j \in \mathcal{N}_i} \nu_{ji} (\mathbf{y}_1, \dots, \mathbf{y}_n | H^*) - \nu_{ij} (\mathbf{y}_1, \dots, \mathbf{y}_n | H^*) \\ \frac{dp_i}{dt} &= \frac{\rho_{\text{PIN}_0} + \rho_{\text{PIN}} a_i}{1 + \kappa_{\text{PIN}} p_i} - \delta(\mathbf{y}_i) \end{aligned}$$

$$\begin{split} \frac{d\boldsymbol{a}_{i}}{dt} &= \frac{\rho_{\text{IAA}}}{1 + \kappa_{\text{IAA}}\boldsymbol{a}_{i}} - \mu_{\text{IAA}}\boldsymbol{a}_{i} + \frac{D}{V_{i}}\sum_{j\in\mathcal{N}_{i}}l_{ij}(\boldsymbol{y}_{j} - \boldsymbol{y}_{i}) \\ &+ \frac{T}{V_{i}}\sum_{j\in\mathcal{N}_{i}}\boldsymbol{\nu}_{ji}(\boldsymbol{y}_{1}, \dots, \boldsymbol{y}_{n}|H^{*}) - \boldsymbol{\nu}_{ij}(\boldsymbol{y}_{1}, \dots, \boldsymbol{y}_{n}|H^{*}) \\ \frac{d\boldsymbol{p}_{i}}{dt} &= \frac{\rho_{\text{PIN}_{0}} + \rho_{\text{PIN}}\boldsymbol{a}_{i}}{1 + \kappa_{\text{PIN}}\boldsymbol{p}_{i}} - \mu_{\text{PIN}}\boldsymbol{p}_{i} \end{split}$$

$$\begin{split} \frac{da_i}{dt} &= \frac{\rho_{\text{IAA}}}{1 + \kappa_{\text{IAA}} a_i} - \mu_{\text{IAA}} a_i + \frac{D}{V_i} \sum_{j \in \mathcal{N}_i} l_{ij} (\mathbf{y}_j - \mathbf{y}_i) \\ &+ \frac{T}{V_i} \sum_{j \in \mathcal{N}_i} \nu_{ji} (\mathbf{y}_1, \dots, \mathbf{y}_n | H^*) - \nu_{ij} (\mathbf{y}_1, \dots, \mathbf{y}_n | H^*) \\ \frac{dp_i}{dt} &= \frac{\rho_{\text{PIN}_0} + \rho_{\text{PIN}} a_i}{1 + \kappa_{\text{PIN}} p_i} - \mu_{\text{PIN}} p_i \end{split}$$

The transport model

Example: model of Smith et al.

$$\begin{aligned} \frac{da_i}{dt} &= \frac{\rho_{\text{IAA}}}{1 + \kappa_{\text{IAA}} a_i} - \mu_{\text{IAA}} a_i + \frac{D}{V_i} \sum_{j \in \mathcal{N}_i} l_{ij} (a_j - a_i) \\ &+ \frac{T}{V_i} \sum_{j \in \mathcal{N}_i} \nu_{ji} (\mathbf{y}_1, \dots, \mathbf{y}_n | H^*) - \nu_{ij} (\mathbf{y}_1, \dots, \mathbf{y}_n | H^*) \\ \frac{dp_i}{dt} &= \frac{\rho_{\text{PIN}_0} + \rho_{\text{PIN}} a_i}{1 + \kappa_{\text{PIN}} p_i} - \mu_{\text{PIN}} p_i \end{aligned}$$

$$\begin{split} \frac{da_i}{dt} &= \frac{\rho_{\text{IAA}}}{1 + \kappa_{\text{IAA}} a_i} - \mu_{\text{IAA}} a_i + \frac{D}{V_i} \sum_{j \in \mathcal{N}_i} I_{ij} (a_j - a_i) \\ &+ \frac{T}{V_i} \sum_{j \in \mathcal{N}_i} \nu_{ji} (\mathbf{y}_1, \dots, \mathbf{y}_n | H^*) - \nu_{ij} (\mathbf{y}_1, \dots, \mathbf{y}_n | H^*) \\ \frac{dp_i}{dt} &= \frac{\rho_{\text{PIN}_0} + \rho_{\text{PIN}} a_i}{1 + \kappa_{\text{PIN}} p_i} - \mu_{\text{PIN}} p_i \end{split}$$

The transport model

Example: model of Smith et al.

$$\begin{aligned} \frac{da_i}{dt} &= \frac{\rho_{\text{IAA}}}{1 + \kappa_{\text{IAA}} a_j} - \mu_{\text{IAA}} a_i + \frac{D}{V_i} \sum_{j \in \mathcal{N}_i} l_{ij} (a_j - a_i) \\ &+ \frac{T}{V_i} \sum_{j \in \mathcal{N}_i} \left[P_{ji}(\boldsymbol{a}, \boldsymbol{p}) \frac{a_j^2}{1 + \kappa_T a_i^2} - P_{ij}(\boldsymbol{a}, \boldsymbol{p}) \frac{a_i^2}{1 + \kappa_T a_j^2} \right] \\ \frac{dp_i}{dt} &= \frac{\rho_{\text{PIN}_0} + \rho_{\text{PIN}} a_i}{1 + \kappa_{\text{PIN}} p_i} - \mu_{\text{PIN}} p_i \end{aligned}$$
with
$$P_{ii}(\boldsymbol{a}, \boldsymbol{p}) = p_i \frac{l_{ij} \exp(c_1 a_j)}{1 + \kappa_T a_j}$$

$$\mathcal{P}_{ij}(\boldsymbol{a}, \boldsymbol{p}) = p_i \frac{n_j \exp(c_1 a_j)}{\sum_{k \in \mathcal{N}_i} l_{ik} \exp(c_1 a_k)}$$

The transport model General transport model

Definition (Concentration-based model)

A concentration-based model is a set of $m \times n$ ODEs of the form

$$\begin{split} \dot{\mathbf{y}}_i &= \pi(\mathbf{y}_i) - \delta(\mathbf{y}_i) + \frac{\mathbf{D}}{V_i} \sum_{j \in \mathcal{N}_i} l_{ij}(\mathbf{y}_j - \mathbf{y}_i) \\ &+ \frac{\mathbf{T}}{V_i} \sum_{j \in \mathcal{N}_i} \nu_{ji}(\mathbf{y}_1, \dots, \mathbf{y}_n | H^*) - \nu_{ij}(\mathbf{y}_1, \dots, \mathbf{y}_n | H^*) \end{split}$$

The transport model General transport model

Definition (Concentration-based model)

A concentration-based model is a set of $m \times n$ ODEs of the form

$$\begin{split} \dot{\mathbf{y}}_i &= \pi(\mathbf{y}_i) - \delta(\mathbf{y}_i) + \frac{\mathbf{D}}{V_i} \sum_{j \in \mathcal{N}_i} l_{ij}(\mathbf{y}_j - \mathbf{y}_i) \\ &+ \frac{\mathbf{T}}{V_i} \sum_{j \in \mathcal{N}_i} \nu_{ji}(\mathbf{y}_1, \dots, \mathbf{y}_n | H^*) - \nu_{ij}(\mathbf{y}_1, \dots, \mathbf{y}_n | H^*) \end{split}$$

Hypothesis (Active transport functions)

The active transport functions can be expressed as

$$(\boldsymbol{\nu}_{ij})_{l} = \psi_{l}(\mathbf{y}_{i}, \mathbf{y}_{j} | H^{*}) \frac{I_{ij}\varphi_{l}(\mathbf{y}_{j})}{\sum_{k \in \mathcal{N}_{i}} I_{ik}\varphi_{l}(\mathbf{y}_{k})}, \quad for \ l = 1, \dots, m$$

Model of Smith et al.

An example

Hypothesis (Active transport functions)

The active transport functions can be expressed as

$$(\boldsymbol{\nu}_{ij})_l = \psi_l(\mathbf{y}_i, \mathbf{y}_j | H^*) \frac{l_{ij} \varphi_l(\mathbf{y}_j)}{\sum_{k \in \mathcal{N}_i} l_{ik} \varphi_l(\mathbf{y}_k)}, \quad for \ l = 1, \dots, m$$

$$\boldsymbol{\nu}_{ij} = P_{ij}(\boldsymbol{a}, \boldsymbol{p}) \frac{a_i^2}{1 + \kappa_T a_j^2} = \rho_i \frac{I_{ij} \exp{(c_1 a_j)}}{\sum_{k \in \mathcal{N}_i} I_{ik} \exp{(c_1 a_k)}} \frac{a_i^2}{1 + \kappa_T a_j^2}$$

Model of Smith et al.

An example

Hypothesis (Active transport functions)

The active transport functions can be expressed as

$$(\boldsymbol{\nu}_{ij})_l = \psi_l(\mathbf{y}_i, \mathbf{y}_j | H^*) \frac{l_{ij} \varphi_l(\mathbf{y}_j)}{\sum_{k \in \mathcal{N}_i} l_{ik} \varphi_l(\mathbf{y}_k)}, \quad for \ l = 1, \dots, m$$

$$\boldsymbol{\nu}_{ij} = \boldsymbol{P}_{ij}(\boldsymbol{a}, \boldsymbol{p}) \frac{\boldsymbol{a}_i^2}{1 + \kappa_T \boldsymbol{a}_j^2} = \boldsymbol{p}_i \frac{\boldsymbol{l}_{ij} \exp\left(\boldsymbol{c}_1 \boldsymbol{a}_j\right)}{\sum_{k \in \mathcal{N}_i} \boldsymbol{l}_{ik} \exp\left(\boldsymbol{c}_1 \boldsymbol{a}_k\right)} \frac{\boldsymbol{a}_i^2}{1 + \kappa_T \boldsymbol{a}_j^2}$$

So

$$\psi:\left(\begin{bmatrix}a_i\\p_i\end{bmatrix},\begin{bmatrix}a_j\\p_j\end{bmatrix}\right)\mapsto p_i\frac{a_i^2}{1+\kappa_T a_j^2}, \quad \varphi:\begin{bmatrix}a_i\\p_i\end{bmatrix}\mapsto \exp(c_1a_i)$$

Type of solutions

Dynamical system

$$\dot{\mathbf{y}} = F(\mathbf{y}, \boldsymbol{\lambda})$$

Fixed geometry

Steady state solutions

- Motivation
 - Transport and diffusion measured in seconds
 - One cell cycle: 24 hours
- $\blacktriangleright \dot{\mathbf{y}} = F(\mathbf{y}, \boldsymbol{\lambda}) = \mathbf{0}$

Dynamical systems approach

- Find steady state solution space in function of the parameters
- Use continuation methods and bifurcation analysis

- Introduction and motivation
- Concentration-based transport models
- Pattern formation in an unbounded tissue
- Pattern formation in a bounded tissue
- Pattern formation in a growing tissue
- Conclusions and outlook

Pattern formation in an unbounded tissue Unbounded regular domain

$$\blacktriangleright V_i = V^* \quad \forall i$$

•
$$I_{ij} = I^* \quad \forall i \text{ and } j \in \mathcal{N}_i$$

• Unbounded: $|\mathcal{N}_i| = |\mathcal{N}_j| \quad \forall i, j$

Homogeneous solution

- $\mathbf{y}^* = \mathbf{y}_i$
- Steady state problem: $0 = \pi(\mathbf{y}^*) \delta(\mathbf{y}^*)$

Homogeneous steady state

Example: model of Smith et al.

Unbounded regular domain

Homogeneous steady state Example: model of Smith et al.

Homogeneous solution exists

Solutions with IAA peaks exist

- Introduction and motivation
- Concentration-based transport models
- Pattern formation in an unbounded tissue
- Pattern formation in a bounded tissue
- Pattern formation in a growing tissue
- Conclusions and outlook

Bounded domain

Main results

- Homogeneous steady state
- Origin of IAA peaks
- Formation of stable IAA spots

Homogeneous steady state Steady state problem $0 = \pi(\mathbf{y}^*) - \delta(\mathbf{y}^*) + \frac{\mathbf{D}}{V_i} \sum_{j \in \mathcal{N}_i} l_{ij}(\mathbf{y}^* - \mathbf{y}^*) \\ + \frac{\mathbf{T}}{V_i} \sum_{j \in \mathcal{N}_i} \left(\psi(\mathbf{y}^*, \mathbf{y}^* | H^*) \odot l_{ij} \varphi(\mathbf{y}^*) \oslash \sum_{k \in \mathcal{N}_j} l_{jk} \varphi(\mathbf{y}^*) \\ - \psi(\mathbf{y}^*, \mathbf{y}^* | H^*) \odot l_{ij} \varphi(\mathbf{y}^*) \oslash \sum_{k \in \mathcal{N}_i} l_{ik} \varphi(\mathbf{y}^*) \right)$

Homogeneous solution

- T = 0: $\forall i$: $\mathbf{y}_i = \mathbf{y}^*$ is steady state solution
- $T \neq 0$: Homogeneous distribution is NOT always a steady state solution

 \rightarrow Peaks do not form with a Turing bifurcation

Origin of IAA peaks
Steady state problem, zero diffusion

$$0 = \pi(\mathbf{y}_i) - \delta(\mathbf{y}_i) + \frac{\mathbf{T}}{V_i} \sum_{j \in \mathcal{N}_i} \left(\psi(\mathbf{y}_j, \mathbf{y}_i) \odot l_{ij} \varphi(\mathbf{y}_i) \oslash \sum_{k \in \mathcal{N}_j} l_{jk} \varphi(\mathbf{y}_k) - \psi(\mathbf{y}_i, \mathbf{y}_j) \odot l_{ij} \varphi(\mathbf{y}_j) \oslash \sum_{k \in \mathcal{N}_i} l_{ik} \varphi(\mathbf{y}_k) \right)$$

Steady state solution for $0 < T \ll 1 \, \mu m^3/s$

Origin of IAA peaks
Steady state problem, zero diffusion

$$0 = \pi(\mathbf{y}_i) - \delta(\mathbf{y}_i) + \frac{\mathbf{T}}{V_i} \sum_{j \in \mathcal{N}_i} \left(\psi(\mathbf{y}_j, \mathbf{y}_i) \odot l_{ij} \varphi(\mathbf{y}_i) \oslash \sum_{k \in \mathcal{N}_j} l_{jk} \varphi(\mathbf{y}_k) - \psi(\mathbf{y}_i, \mathbf{y}_j) \odot l_{ij} \varphi(\mathbf{y}_j) \oslash \sum_{k \in \mathcal{N}_i} l_{ik} \varphi(\mathbf{y}_k) \right)$$

Steady state solution for $0 < T \ll 1 \, \mu m^3/s$

- $\mathbf{y}_i = \mathbf{y}^* + T\eta_i + \mathcal{O}(T^2)$ for i = 1, ..., n and $(\eta_i)_j = \mathcal{O}(1)$
- \blacktriangleright Taylor expansion around $(\bm{y}^*,\ldots,\bm{y}^*)^{T}\in\mathbb{R}^{nm}$

U Irregular domains

Origin of IAA peaks

$$\forall i: \ \mathbf{y}_i = \mathbf{y}^* + \xi_i T \left(\pi'(\mathbf{y}^*) - \delta'(\mathbf{y}^*) \right)^{-1} \psi(\mathbf{y}^*, \mathbf{y}^*)$$

$$\xi_i = \frac{1}{V_i} \left(1 - \sum_{j \in \mathcal{N}_i} \frac{I_{ij}}{\sum_{k \in \mathcal{N}_j} I_{jk}} \right)$$

 \longrightarrow Purely geometric mechanism

Regular domains

$$\blacktriangleright V_i = V^*, \ I_{ij} = I^*$$

Peaks form at the boundary

$$\xi_i = \frac{1}{V^*} \left(1 - \sum_{j \in \mathcal{N}_i} \frac{1}{|\mathcal{N}_j|} \right)$$

Origin of IAA peaks in regular domains **1D regular** i = 2i=1i = nn = 1502.459 $\begin{array}{c} \hline D = 0.18 \ \mu m^2 / s \\ \hline D = 0.06 \ \mu m^2 / s \\ \hline D = 0 \ \mu m^2 / s \end{array}$ a_i (μM) 2.457 140150 i

28/42

^{30/42}

- Introduction and motivation
- Concentration-based transport models
- Pattern formation in an unbounded tissue
- Pattern formation in a bounded tissue
- Pattern formation in a growing tissue
- Conclusions and outlook

Pattern formation in a growing tissue

Assumptions

- Consider only external layer
 - Layer of irregular cells curved in 3D space
- Assume sequential order of processes

Model

- Physically based Mass Spring System
- Auxin transport models
- Material to a cell wall is added when wall is under tension

Pattern formation in a growing tissue

Assumptions

- Consider only external layer
 - Layer of irregular cells curved in 3D space
- Assume sequential order of processes

Model

- Physically based Mass Spring System
- Auxin transport models
- Material to a cell wall is added when wall is under tension

Pattern formation in a growing tissue

Assumptions

- Consider only external layer
- Assume sequential order of processes

Model

- Physically based Mass Spring System
 - Tissue is a damped elastic system
 - Each edge e is associated with a spring
 - Each vertex v is attached with a mass

Relate forces acting on the springs with displacement of vertices

- Auxin transport models
- Material to a cell wall is added when wall is under tension

Pattern formation in a growing tissue

Assumptions

- Consider only external layer
- Assume sequential order of processes

Model

- Physically based Mass Spring System
- Auxin transport models
- Material to a cell wall is added when wall is under tension
 - Relate with changing restlength over time
 - Dependent on IAA concentration

Main results

- Timeframe till steady state
- Periodic or quasi periodic solutions

Timeframe till steady state

34/42

0.2

-0.4

Periodic solution

- Introduction and motivation
- Concentration-based transport models
- Pattern formation in an unbounded tissue
- Pattern formation in a bounded tissue
- Pattern formation in a growing tissue
- Conclusions and outlook

Conclusions and Outlook

Conclusions

- Formulated a mathematical description of auxin transport models
 - Introduced a general definition and hypothesis
 - Studied auxin transport models as dynamical systems
- Developed PyNCT
 - Numerical Continuation Toolbox in Python
 - Based on sparse linear algebra
- Examined steady state solutions as a function of model parameters
 - Calculated a homogeneous solution
 - Proved the formation of IAA peaks
 - Revealed a snaking bifurcation scenario
- Studied a growth model with a complete feedback loop between growth and IAA

Outlook

Conclusions and Outlook

- Compare and improve auxin transport models
 - Classify existing and new auxin transport models
 - Transform models to models with dimensionless parameters
 - Calculate the complete solution space in function of parameters
 - Extend functionalities PyNCT
 - Study automatically the behaviour of new and existing models when parameters are changed
- Improve growth model
 - Study the influence of IAA on growth
 - Investigate cell division mechanism
 - Eliminate separation of time-scales
 - Create interface between PyNCT and existing software to model growth

Selected publications

- **[P1]** Draelants D., Vanroose W., Broeckhove J., Beemster G.T.S.: Influence of an exogeneous model parameter on the steady states in an auxin transport model, Proceedings PMA, 2012.
- [A1] Draelants D., Broeckhove J., Beemster G.T.S., Vanroose W.: Pattern formation in a cell based auxin transport model with numerical bifurcation analysis, J Math Biol, 2013.
- [A1] Draelants D.¹, Avitabile D.¹, Vanroose W.: Localized auxin peaks in concentration-based transport models of the shoot apical meristem, J. R. Soc. Interface, 2015.
- [P1] Draelants D., Kłosiewicz P., Broeckhove J., Vanroose W.: Solving general auxin transport models with a numerical continuation toolbox in Python: PyNCT, LNCS, 2015.

¹These authors contributed equally and should be considered as joint first authors.