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Introduction and motivation
IAA

I Indole-3-acetic acid
I Plant hormone
I Member of the auxin family

Transport of IAA
I Leads to accumulation points of IAA
I Plays a central role in pattern formation

Examples
P.Prusinkiewicz and A.Runions.
Computational models of plant development and form.

New Phytologist, 193(3):549-569,2012.

How is auxin (IAA) transported throughout a plant and how
do auxin peaks arise?
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IAA transport
Passive transport

I Diffusion
I From high to low concentration
I Requires no energy

Active transport
I Most IAA is polarly charged
I From low to high concentration
I Requires auxin carriers

Cell	  membrane

Cell	  membrane
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Active auxin transport

:	  efflux	  carriers

:	  influx	  carriers

:	  direction	  of	  IAA	  flow

Auxin exporter PIN1
I Protein
I Member of the PIN family
I Main auxin efflux carrier
I Polar localization

I Influenced by IAA
! complete feedback loop between IAA and PIN1
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Active auxin transport

:	  efflux	  carriers

:	  influx	  carriers

:	  direction	  of	  IAA	  flow

Auxin importer AUX/LAX
I Protein
I Limited role in comparison with PIN1
I Uniformly distributed on cell membrane
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Geometric representation of tissue
A graph H:

I Cell walls are represented
by the edges e

I Cell vertices are the
vertices v

I Cells are represented as
polygons, the faces of the
graph

I Neighboring cells have
common edges
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Topological representation of tissue
A graph H∗:

I Dual graph of H
I Cells i ∈ {1, . . . ,n}:

vertices
I Connection between

neighboring cells: edges
I Ni : cells up to distance 1

from cell i
I Weighted graph: labelling

each edge with relevant
information

I State variables per cell (m)
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The transport model
General transport model
Definition (concentration-based model)

A concentration-based model is a set of m × n ODEs of the form

ẏi = π(yi) − δ(yi) +
D
Vi

∑

j∈Ni

lij(yj − yi)

+
T
Vi

∑

j∈Ni

νji(y1, . . . ,yn|H∗)− νij(y1, . . . ,yn|H∗)

for i = 1, . . . ,n and π, δ : Rm
+ → Rm

+, the production and decay
functions, D ∈ Rm×m is a diagonal diffusion matrix, T ∈ R+, is the
active transport parameter, and νij : Rm

+ × · · · ×Rm
+ → Rm

+ are the active
transport functions.
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The transport model
General transport model
Definition (concentration-based model)
A concentration-based model is a set of m × n ODEs of the form

ẏi = π(yi) − δ(yi) +
D
Vi

∑

j∈Ni

lij(yj − yi)

+
T
Vi

∑

j∈Ni

νji(y1, . . . ,yn|H∗)− νij(y1, . . . ,yn|H∗)

Example: model of Smith et al.
yi = (ai ,pi)

′
: ai : IAA concentration in cell i

pi : PIN1 concentration in cell i
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The transport model
Example: model of Smith et al.
dai

dt
= π(yi) − δ(yi) +

D
Vi

∑

j∈Ni

lij(yj − yi)

+
T
Vi

∑

j∈Ni

νji(y1, . . . ,yn|H∗)− νij(y1, . . . ,yn|H∗)

dpi

dt
= π(yi) − δ(yi)
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The transport model
Example: model of Smith et al.
dai

dt
=

ρIAA

1 + κIAAai
− δ(yi) +

D
Vi

∑

j∈Ni

lij(yj − yi)

+
T
Vi

∑

j∈Ni

νji(y1, . . . ,yn|H∗)− νij(y1, . . . ,yn|H∗)

dpi

dt
=
ρPIN0 + ρPINai

1 + κPINpi
− δ(yi)
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The transport model
Example: model of Smith et al.
dai

dt
=

ρIAA

1 + κIAAai
− µIAAai +

D
Vi

∑

j∈Ni

lij
(
aj − ai

)

+
T
Vi

∑

j∈Ni

νji(y1, . . . ,yn|H∗)− νij(y1, . . . ,yn|H∗)
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dt
=
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The transport model
Example: model of Smith et al.
dai

dt
=

ρIAA

1 + κIAAai
− µIAAai +

D
Vi

∑

j∈Ni

lij
(
aj − ai

)

+
T
Vi

∑

j∈Ni

[
Pji(a,p)

a2
j

1 + κT a2
i
− Pij(a,p)

a2
i

1 + κT a2
j

]

dpi

dt
=
ρPIN0 + ρPINai

1 + κPINpi
− µPINpi

with

Pij(a,p) = pi
lij exp (c1aj)∑

k∈Ni
lik exp (c1ak )
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The transport model
General transport model
Definition (Concentration-based model)

A concentration-based model is a set of m × n ODEs of the form

ẏi = π(yi) − δ(yi) +
D
Vi

∑
j∈Ni

lij(yj − yi)

+
T
Vi

∑
j∈Ni

νji(y1, . . . , yn|H∗)− νij(y1, . . . , yn|H∗)

Hypothesis (Active transport functions)
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, for l = 1, . . . ,m
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An example
Model of Smith et al.
Hypothesis (Active transport functions)
The active transport functions can be expressed as

(νij)l = ψl(yi ,yj |H∗)
lijϕl(yj)∑

k∈Ni
likϕl(yk )

, for l = 1, . . . ,m

νij = Pij(a,p)
a2

i

1 + κT a2
j
= pi

lij exp (c1aj)∑
k∈Ni

lik exp (c1ak )

a2
i

1 + κT a2
j
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An example
Model of Smith et al.
Hypothesis (Active transport functions)
The active transport functions can be expressed as

(νij)l = ψl(yi ,yj |H∗)
lijϕl(yj)∑

k∈Ni
likϕl(yk )

, for l = 1, . . . ,m

νij = Pij(a,p)
a2

i

1 + κT a2
j
= pi

lijexp (c1aj)∑
k∈Ni

likexp (c1ak )

a2
i

1 + κT a2
j

So

ψ :

([
ai
pi

]
,

[
aj
pj

])
7→ pi

a2
i

1 + κT a2
j
, ϕ :

[
ai
pi

]
7→ exp(c1ai)
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Type of solutions
System

I Dynamical system
ẏ = F (y,λ)

I Fixed geometry

Steady state solutions
I Motivation

I Transport and diffusion measured in seconds
I One cell cycle: 24 hours

I ẏ = F (y,λ) = 0

I Dynamical systems approach
I Find steady state solution space in function of the parameters
I Use continuation methods and bifurcation analysis
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Pattern formation in an unbounded tissue

Unbounded regular domain
−1 0 1 2 i i+1 n−1 n n+1n+2

→ → → →

I Vi = V ∗ ∀i
I lij = l∗ ∀i and j ∈ Ni
I Unbounded: |Ni | =

∣∣Nj
∣∣ ∀i , j

Homogeneous solution
I y∗ = yi
I Steady state problem: 0 = π(y∗) − δ(y∗)
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Homogeneous steady state
Example: model of Smith et al.

I Unbounded regular domain
I

a∗ =
−1 +

√
1 + 4κIAAρIAA/µIAA

2κIAA

p∗ =

−1 +

√
1 + 4κPIN

(
ρPIN0

+ ρ∗
PIN

)
/µPIN

2κPIN

I Example:
I File of 20 regular cells
I Zero Neumann BC
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Homogeneous steady state
Example: model of Smith et al.
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Pattern formation in an unbounded tissue

Homogeneous solution exists
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Solutions with IAA peaks exist
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−→ Peaks form with a Turing instability
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Pattern formation in a bounded tissue

Bounded domain

2.459

2.457
140 150

ai

i

i=1 i=2 i=n

n = 150

D = 0.18 µm2/h
D = 0.06 µm2/h
D = 0 µm2/h

(µM)

Fig. 3.1. Top: geometry of a one-dimensional cellular array of identical cells with no-flux
boundary conditions at i = 1 and free boundary conditions at i = n. This configuration can be
seen as an idealisation of an unbranched plant root with proximal (i = 1) and distal (i = n) sides.
Bottom: approximate solution pattern a⇤ +T↵i towards the boundary i = n for n = 150 and various
values of the di↵usion coe�cient. Parameters: T = 3 · 10�5µm3/h, other parameters as in Table 1
in Supplementary Material.

are found in regular two-dimensional arrays of identical cells, for which peaks are
created close to cells with the fewest neighbours (see Supplementary Material and
Section 3.3) and in suitable models with more than 2 components per cells. This
is a consequence of the fact that, if cells are identical and there is no di↵usion, the
geometry of the cellular array encodes the peaks position: more precisely, deviations
from the homogeneous steady state are proportional to ⇠i = 1 �Pj2Ni

1/|Nj |. A
straightforward calculation shows that in the one-dimensional array ⇠i = 0 for i =
0, . . . , n�2 and ⇠n�1,n = ⌥1/2, which leads to the correction terms in Equation (3.2).
In other words, peaks are present where the number of neighbours di↵ers from the
number of neighbours in the unbounded domain, that is, where the sum in the active
transport in Equation (2.1) is nonzero. In the supplementary material we derive this
result for a class of systems with m ODEs in each cell and generic regular domains. We
remark that the emergence of localised peaks in these models is not the consequence of
an instability of the homogeneous state (as was found for non-localised states in [7]):
solution profiles are stable for both T = 0 µm3/h (for which they are homogeneous)
and for T ⌧ 1 µm3/h (for which they develop localised peaks).

3.1.2. Small-amplitude solution in the finite one-dimensional domain
with di↵usion. Asymptotic calculations can also be carried out in the presence of
di↵usion, leading to a linear system for the perturbations (see Supplementary Mate-
rial). In Figure 3.1 we plot approximate steady states towards the boundary i = n
for T = 3 · 10�5µm3/h and various values of the di↵usion coe�cient. The boundary
conditions are the same as in Section 3.1.1. We notice that, in the regime of small
active transport and comparatively much bigger di↵usion coe�cient, a peak is still
present at the boundary. Inspecting the solid line (D = 0 µm2/h) and the dashed
lines (D = 0.06 µm2/h and D = 0.18 µm2/h) we see that the peaks decrease in
amplitude and are more spread out, as expected.

5

Main results
I Homogeneous steady state
I Origin of IAA peaks
I Formation of stable IAA spots
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Homogeneous steady state
Steady state problem

0 = π(y∗) − δ(y∗) +
D
Vi

∑

j∈Ni

lij(y∗ − y∗)

+
T
Vi

∑

j∈Ni


ψ(y∗,y∗|H∗)� lijϕ(y∗)�

∑

k∈Nj

ljkϕ(y∗)

− ψ(y∗,y∗|H∗)� lijϕ(y∗)�
∑

k∈Ni

likϕ(y∗)




Homogeneous solution
I T = 0 : ∀i : yi = y∗ is steady state solution
I T 6= 0: Homogeneous distribution is NOT always a steady

state solution
→ Peaks do not form with a Turing bifurcation
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Origin of IAA peaks

Steady state problem, zero diffusion

0 = π(yi) − δ(yi) +
T
Vi

∑

j∈Ni


ψ(yj ,yi)� lijϕ(yi)�

∑

k∈Nj

ljkϕ(yk )

− ψ(yi ,yj)� lijϕ(yj)�
∑

k∈Ni

likϕ(yk )




Steady state solution for 0 < T � 1 µm3/s

I yi = y∗ + Tηi +O(T 2) for i = 1, . . . ,n and (ηi)j = O(1)
I Taylor expansion around (y∗, . . . ,y∗)T ∈ Rnm
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Origin of IAA peaks

Irregular domains

∀i : yi = y∗ + ξiT
(
π′(y∗)− δ′(y∗)

)−1
ψ(y∗,y∗)

ξi =
1
Vi


1−

∑

j∈Ni

lij∑
k∈Nj

ljk




−→ Purely geometric mechanism

Regular domains
I Vi = V ∗, lij = l∗

I Peaks form at the boundary

ξi =
1

V ∗


1−

∑

j∈Ni

1
|Nj |
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Origin of IAA peaks in regular domains

1D regular

i = 1 i = 2 i = n

2.459

2.457
140 150
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n = 150
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D = 0 µm2/h
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7.6. CONCLUSIONS AND OUTLOOK 115

argue that a self-organised growth of new primordia is possible without extra
assumptions on specific cells, if a more realistic growthfunction is applied
combined with the correct model parameters.

How growth and IAA are coupled is still an open research question. We
provided a framework in which we can observe all different tissues generated
during growth and for each of these tissues compute the steady state solution
landscape. The resulting distribution patterns of IAA and primordia can be
compared with experimental observations which can give more insight into
the possible coupling mechanisms of growth and IAA. With this framework, it
is possible to analyse the feedback between growth and IAA distribution and
get more insight into the mechanism behind outgrowth of primordia. // // //
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Formation of stable IAA spots
2D irregular
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Fig. 3.6. Bifurcation diagram and selected solution patterns for the Smith et al. model for
an almost-circular domain of 742 irregular cells (geometry taken from [51]). We find an irregular
and slanted bifurcation diagram with stable portion delimited by saddle-node bifurcations. Control
parameters as reported in Table 1 of the Supplementary Material.

with small-amplitude peaks (localised at the boundary) does not involve a bifurcation
of the homogeneous steady state (as it is usually found in reaction–di↵usion PDEs).

We stress that the analysis mentioned above is also directly applicable to other
models such as [7, 6] and could be extended to more detailed systems [17]. Common
between all these models is that the active transport depends on the number of neigh-
bours and as a result the deviations from the homogeneous state will again appear at
the boundaries where the number of neighbours di↵ers from the interior of the organ.

For intermediate values of active transport rate T , large-amplitude peaks are
arranged on a snaking branch (regular snaking on one-dimensional arrays, slanted on
two-dimensional arrays). From a biological perspective, this means that auxin peaks
are formed robustly in the system and that stable patterns with variable number of
peaks can coexist in the same parameter range. Importantly, we find that variations
in the auxin production rate have a deep impact on the solution landscape: the results
in Figure 3.4 support the conclusion that if auxin production rate was decreased quasi-
statically (either actively, or passively), the organism would be able to switch from
fully-patterned states to configurations with few peaks at the boundary.
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with small-amplitude peaks (localised at the boundary) does not involve a bifurcation
of the homogeneous steady state (as it is usually found in reaction–di↵usion PDEs).

We stress that the analysis mentioned above is also directly applicable to other
models such as [7, 6] and could be extended to more detailed systems [17]. Common
between all these models is that the active transport depends on the number of neigh-
bours and as a result the deviations from the homogeneous state will again appear at
the boundaries where the number of neighbours di↵ers from the interior of the organ.

For intermediate values of active transport rate T , large-amplitude peaks are
arranged on a snaking branch (regular snaking on one-dimensional arrays, slanted on
two-dimensional arrays). From a biological perspective, this means that auxin peaks
are formed robustly in the system and that stable patterns with variable number of
peaks can coexist in the same parameter range. Importantly, we find that variations
in the auxin production rate have a deep impact on the solution landscape: the results
in Figure 3.4 support the conclusion that if auxin production rate was decreased quasi-
statically (either actively, or passively), the organism would be able to switch from
fully-patterned states to configurations with few peaks at the boundary.
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Pattern formation in a growing tissue

Assumptions
I Consider only external layer

I Layer of irregular cells curved in 3D space
I Assume sequential order of processes

Model
I Physically based Mass Spring System
I Auxin transport models
I Material to a cell wall is added when wall

is under tension
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Pattern formation in a growing tissue

Assumptions
I Consider only external layer
I Assume sequential order of processes

Model
I Physically based Mass Spring System

I Tissue is a damped elastic system
I Each edge e is associated with a spring
I Each vertex v is attached with a mass

Relate forces acting on the springs with displacement of
vertices

I Auxin transport models
I Material to a cell wall is added when wall

is under tension
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Pattern formation in a growing tissue

Assumptions
I Consider only external layer
I Assume sequential order of processes

Model
I Physically based Mass Spring System
I Auxin transport models
I Material to a cell wall is added when wall

is under tension
I Relate with changing restlength over time
I Dependent on IAA concentration
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Pattern formation in a growing tissue

Domains

Main results
I Timeframe till steady state
I Periodic or quasi periodic solutions
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Timeframe till steady state
Trajectory
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Periodic solution
Time evolution in several cells
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Periodic solution
Time evolution in several cells
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Periodic solution
Spectrum
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Conclusions and Outlook
Conclusions

I Formulated a mathematical description of auxin transport
models

I Introduced a general definition and hypothesis
I Studied auxin transport models as dynamical systems

I Developed PyNCT
I Numerical Continuation Toolbox in Python
I Based on sparse linear algebra

I Examined steady state solutions as a function of model
parameters

I Calculated a homogeneous solution
I Proved the formation of IAA peaks
I Revealed a snaking bifurcation scenario

I Studied a growth model with a complete feedback loop
between growth and IAA
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Conclusions and Outlook
Outlook

I Compare and improve auxin transport models
I Classify existing and new auxin transport models
I Transform models to models with dimensionless parameters
I Calculate the complete solution space in function of

parameters
I Extend functionalities PyNCT
I Study automatically the behaviour of new and existing models

when parameters are changed

I Improve growth model
I Study the influence of IAA on growth
I Investigate cell division mechanism
I Eliminate separation of time-scales
I Create interface between PyNCT and existing software to

model growth
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