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U— Introduction and motivation
IAA

» Indole-3-acetic acid
» Plant hormone
» Member of the auxin family

Transport of IAA
» Leads to accumulation points of IAA
» Plays a central role in pattern formation

Examples

P.Prusinkiewicz and A.Runions.
Computational models of plant development and form.

New Phytologist, 193(3):549-569,2012. [ iniation

Root tip maintenance

How is auxin (IAA) transported throughout a plant and how
do auxin peaks arise?




U— IAA transport

Passive transport °%e o
» Diffusion %%
» From high to low concentration — I
» Requires no energy |

° [ ]

Active transport
» Most IAA is polarly charged e .
» From low to high concentration °
» Requires auxin carriers —

° [ ]
0°.°®
R
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> Active auxin transport
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Auxin exporter PIN1
» Protein
Member of the PIN family

Main auxin efflux carrier
Polar localization
» Influenced by IAA

I complete feedback loop between IAA and PIN1
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> Active auxin transport
IS Demllll
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Auxin importer AUX/LAX

» Protein
» Limited role in comparison with PIN1
» Uniformly distributed on cell membrane
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|9 Geometric representation of tissue
A graph H:

» Cell walls are represented
by the edges e

» Cell vertices are the
vertices v

» Cells are represented as
polygons, the faces of the
graph

» Neighboring cells have
common edges




U— Topological representation of tissue
A graph H*:

» Dual graph of H

» Cellsie{1,...,n}:
vertices

» Connection between
neighboring cells: edges

» N;: cells up to distance 1
from cell i

» Weighted graph: labelling
each edge with relevant
information

» State variables per cell (m)
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H— The transport model

General transport model

Definition (concentration-based model)
A concentration-based model is a set of m x n ODEs of the form

Vi = w(yi) — 8(y) vZ"f ~yi)

Ijen;
T . .
. > iyt YalH) = vy, Yol HY)
I/
JEN;
fori=1,...,nandx,é: RT — R, the production and decay

functions, D € R™*™ js a diagonal diffusion matrix, T € R, is the
active transport parameter, and v : R? x --- x R — R are the active
transport functions.
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> The transport model

General transport model

Definition (concentration-based model)
A concentration-based model is a set of m x n ODEs of the form

yi = W(yi) - lej I

JGN,

.
+ 7 2 iV YalHY) = vi(ye, - Yol HY)
' jeN;

Example: model of Smith et al.

yi = (a,-7p,-)/ . a;. |AA concentrationin cell i
pi: PIN1 concentration in cell i
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U— The transport model

Example: model of Smith et al.

da;
TI‘I =n(y;) — 4(yi) V Z li(Y; —¥i)
/e/\/
v TS it YalH) = vV Yol )
" jen;
dp;

o =m(y;) — o(Yi)
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Example: model of Smith et al.
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U— The transport model

Example: model of Smith et al.

da; Pian
g _ li(
dt 1 +/€|AAa, I V ]EZ/\/ l/ ’
S v Yol )~ vy Yol )

" jen;
api  peng + Pena;
ZF_ PPINg T PPINGG - sy
dt 1 +I€PINpi (yl)
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U— The transport model

Example: model of Smith et al.

da, PIAA

= M e E Ii(

at 1+ Kiaadj Hinagi V N, U ~ Vi)
TSt Yl H) v Y H)

" jen;
% _ PriNg T+ PPING;

ar 1+ Renp; — HUpNPi
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U— The transport model

Example: model of Smith et al.

da, PIAA
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U— The transport model

Example: model of Smith et al.

da, PIAA

= M e E li(a — a;

at 1+ Kiand; Himagi V e S ’
TSt Y H) < vy M)

" jen;
% _ PriNg T+ PPING;
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> The transport model

Example: model of Smith et al.

da; Piaa
—_ = — aj + / a '
at 1+ Kiaa@; Hina g V; ng:/' A ’
2
a T ap)———-

V%\; il p)1—|-/€ 2 Pil p)1+ma2
api  peing Tt PeNa _
dt n 1 + KJPINpI' ,LLPINpI
with

Pi(a,p) = pis 1P (013)

jlap)=

" ke licexp (crax)
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> The transport model
General transport model

Definition (Concentration-based model)

A concentration-based model is a set of m x n ODEs of the form

vio = =(yi) — &) le/ yi)

/eN

T *
+ szﬁ(y1a“'7y”|H )_V/j(y17~~.7Yn|H )
"jen;

I e



> The transport model

General transport model

Definition (Concentration-based model)

A concentration-based model is a set of m x n ODEs of the form

yi = w(y) — & Z/u Vi)
/eN
T *
+szﬁ(y17“'7y”|H )_V[j(Y17...,Yn|H)
"jen;

Hypothesis (Active transport functions)
The active transport functions can be expressed as

lioi(y;)
i) = WY H) =—————, I=1,....m
(i) = iy Yl )Zkej\f,- Teor(Ye) for
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U— An example

Model of Smith et al.

Hypothesis (Active transport functions)
The active transport functions can be expressed as

liei(Y;)
= Uiy Yl H) =P [=1,...,m
(Vi) = ¥i(Yi. il )ZKEM likpi(Yk) Jor
Pj(a,p) a __liexp(cia) a
i 1+ HT&Z Lken; lexp(cra) 1+ w1
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U— An example

Model of Smith et al.

Hypothesis (Active transport functions)
The active transport functions can be expressed as

liei(Y;)
’ _ A H* %7 /:17..-,m
(Vi) = ¥i(Yi. il )ZKEM likpi(Yk) Jor

l,'jexp (C1 aj) a,?

1+ maz "ken; lkexp (cra) 1+ krd?

([ B mt )




U— Type of solutions
System

» Dynamical system
y=F(y,A)
» Fixed geometry

Steady state solutions

» Motivation

» Transport and diffusion measured in seconds
» One cell cycle: 24 hours

»y=F(y,A\)=0

» Dynamical systems approach

» Find steady state solution space in function of the parameters
» Use continuation methods and bifurcation analysis
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Uv Pattern formation in an unbounded tissue
Unbounded regular domain

FEEEEEEEEENEEEEEERREE
» V= V* Vi

» lj=1I" Viandje N;
» Unbounded: |Vj| = |Nj| Vi, j

Homogeneous solution

>y =Yy
» Steady state problem: 0 = w(y*) — d(y*)
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U— Homogeneous steady state

Example: model of Smith et al.
» Unbounded regular domain

g g = -1+ \/1 + 4500 Pian/ Fip
ZKIAA
-1+ \/1 + 4KPIN <pPIN0 + P:,N> /MPIN
P= 2’iplN
» Example:

» File of 20 regular cells
» Zero Neumann BC

L
L}

IAA concentration in a cell
- » ©

o

o
~
°
°
®
o
o
=
>
>



Homogeneous steady state
Example: model of Smith et al.

Branch point
20) Hopf Bifurcation
stable region

g
rho_IAA




Uv Pattern formation in an unbounded tissue

Homogeneous solution exists

solution pattern

512
S 10
S 8
g 6
S 4
>
0 5 10
cell index
Solutions with IAA peaks exist
solution pattern solution pattern solution pattern
512 512 S12
10 S 10 S 10
S 8 S 8 S 8
g 6 g 6 g 6
8 4 8 4 8 4
<o <. <.
0 5 10 15 0 5 10 15 0 5 10 15
cell index cell index cell index

— Peaks form with a Turing instability
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Uv Pattern formation in a bounded tissue

Bounded domain

- < =3 I I B B B =3

Main results
» Homogeneous steady state
» Origin of IAA peaks
» Formation of stable IAA spots
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U— Homogeneous steady state
Steady state problem

0 = =(y") — é&(y VZ’U
jEN
Z( (V5 Y IH) © lip(y) @ Y lwe(y*

/eN keN;
WYY Y IHY) © lip(y) @ > lieply
keN;

Homogeneous solution

» T=0:Vi: y;=y"is steady state solution
» T # 0: Homogeneous distribution is NOT always a steady
state solution
— Peaks do not form with a Turing bifurcation

D e



> Origin of IAA peaks
Steady state problem, zero diffusion

0 = =(yi) — &(yi) VZ( yle®’//¢Yl®Z//k<Pyk
JEN; keN;
— (YL Y) O ljp(¥) @ > Ik (Vi)
KEN;

Steady state solution for 0 < T < 1um3/s
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> Origin of IAA peaks
Steady state problem, zero diffusion

0 = m(y;) — 4(y)) VZ( y/aYl GIIJSOYI ®Z//k$0yk
JEN; keN;
— (YL Y) O ljp(¥) @ > Ik (Vi)
KEN;

Steady state solution for 0 < T < 1um3/s
>y =Y+ Tn+0O(T?) fori=1,....nand (n;); = O(1)
» Taylor expansion around (y*,... ,y*)T € RMM

D e



> Origin of IAA peaks
Irregular domains

Viiyi =y +&T (x'(y*) - 5,(V*))_1

1 Ij
G=—|1-
: VI ( ]gf\:/i Zkej\/j /jk)

— Purely geometric mechanism
Regular domains
» Vi=VE =1
» Peaks form at the boundary

UICARS




U— Origin of IAA peaks in regular domains
1D regular

.....

i=1 i=2 —
n= 150
2.459 ‘ ‘ ‘ ‘ ‘
. D=0.18 um?2/s
..... D =0.06 um” /s
F o p—oum?/s
a; -
(M
2.457

140 i 150




2D irregular

Formation of stable IAA spots

106y

llall2
(uM)

90
0

T/{ls7) (um?/h)

2.4




Formation of stable IAA spots
2D irregular

106y

llall2
(uM)

90 S
0 T/(li;) (um?/h)
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Uv Pattern formation in a growing tissue

Assumptions

» Consider only external layer
» Layer of irregular cells curved in 3D space

» Assume sequential order of processes

Model

» Physically based Mass Spring System
» Auxin transport models
» Material to a cell wall is added when wall

is under tension




Uv Pattern formation in a growing tissue

Assumptions , \
» Consider only external layer \\ ,\
» Layer of irregular cells curved in 3D space
» Assume sequential order of processes

Model

» Physically based Mass Spring System

» Auxin transport models

» Material to a cell wall is added when wall
is under tension
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U— Pattern formation in a growing tissue

Assumptions

» Consider only external layer
» Assume sequential order of processes

/
g 4
Model T
» Physically based Mass Spring System %\ Pas
» Tissue is a damped elastic system /@/
» Each edge e is associated with a spring AWM
» Each vertex v is attached with a mass / \
Relate forces acting on the springs with displacement of
vertices

» Auxin transport models
» Material to a cell wall is added when wall
is under tension
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Uv Pattern formation in a growing tissue

Assumptions

» Consider only external layer
» Assume sequential order of processes

Model

» Physically based Mass Spring System
» Auxin transport models
» Material to a cell wall is added when wall v
is under tension
» Relate with changing restlength over time
» Dependent on |AA concentration

D e



U- Pattern formation in a growing tissue
Domains

o000

Main resulis

» Timeframe till steady state
» Periodic or quasi periodic solutions




> Timeframe till steady state

Trajectory




U-' Periodic solution

Time evolution in several cells

-

A
AW IATATATAATATATRTATATATATATREATATATATATATATATATATATRTATATATATA AT ATARIA I

()] ~

IAA concentration
ul

time (s)
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U-' Periodic solution

Time evolution in several cells
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U-' Periodic solution

Time evolution in several cells

VARVERVARN
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IAA concentration
Py
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1840 1860 1880 1900 1920




U' Periodic solution

Spectrum
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U' Conclusions and Outlook

Conclusions

» Formulated a mathematical description of auxin transport
models
» Introduced a general definition and hypothesis

» Studied auxin transport models as dynamical systems

» Developed PyNCT
» Numerical Continuation Toolbox in Python
» Based on sparse linear algebra

» Examined steady state solutions as a function of model
parameters
» Calculated a homogeneous solution
» Proved the formation of IAA peaks
» Revealed a snaking bifurcation scenario

» Studied a growth model with a complete feedback loop

between growth and IAA d



U' Conclusions and Outlook
Outlook

» Compare and improve auxin transport models
» Classify existing and new auxin transport models
» Transform models to models with dimensionless parameters

» Calculate the complete solution space in function of
parameters
» Extend functionalities PyNCT

» Study automatically the behaviour of new and existing models
when parameters are changed

» Improve growth model

Study the influence of IAA on growth
Investigate cell division mechanism
Eliminate separation of time-scales

Create interface between PyNCT and existing software to
model growth

v

v

v

v
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