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Mitigation of large power spills in stand-alone 
energy system with wind generation and 

storage
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What is power spill?

Power generation > Power demand
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Why to mitigate large power spills?

Excess power          Grid constraint violations          Physical damage to grid
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What causes power spills?
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Photo-voltaic arrays  Wind turbines 
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What causes power spills?

 Integration of renewable energy sources.

Photo-voltaic arrays  Wind turbines 

Unpredictable nature              Power imbalances                 Power spill
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How can energy storage help?
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How can energy storage help?

1. Energy storage devices act as buffer.

2. Act as peak-shavers.
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What do we want?
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To find the best way to operate the battery such that probability of large 
power spill  is minimal for the energy system.



  

Probability of large power spill (PLPS)

7

● Power generation > Power demand.

● Battery cannot absorb all the excess power generated due 
to battery constraints. 

●  F(t) : Residual power. 

●  F(t) > 0 is power spill.



  

Probability of large power spill (PLPS)

7

● Power generation > Power demand.

● Battery cannot absorb all the excess power generated due 
to battery constraints. 

●  F(t) : Residual power. 

●  F(t) > 0 is power spill.

Large power spill : F(t) ≥ F
0

   (>0 large power spill threshold)

PLPS calculates the probability of large power spill in the system over period T  
 

 γ = P ({ sup
t  [0,T]∈   

F(t)} ≥ F
0 
)



  

Main challenge
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Calculating small values of PLPS using Crude Monte Carlo 
simulation is expensive.   



  

Solution

Use splitting technique for rare-event simulations 
to reduce the workload.     
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System setup
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System setup...

Power injections

● Stochastic wind power generation: W(t)

● Stochastic  power demand: D(t) 

● Power mismatch:  P(t) = W(t) – D(t).  
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System setup...

Battery model
The battery is charged according to:                                                            
                    
                                                                                                                    

B (t+Δ t)=B(t )+ pB
(t)Δ t (1)

pB(t): power flowing in/out of the battery and is related to P(t) by the battery 
constraints : 
              
              1. Capacity constraint : 
                                                                                                                            
              
              2. Ramp constraint :                                                                    

0≤B (t)≤Bmax (2)

−β≤
B(t+Δ t)−B (t)

Δ t
≤β (3)
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Why use Splitting and not CMC?

A =  rare event set of interest. 
γ = P(A) 
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Why use Splitting and not CMC?

A =  rare event set of interest. 
γ = P(A) 

Crude Monte Carlo (CMC)

1
n
∑
j=1

n

1[A∈ j]
● Computes:   γ = 

● Squared relative error :  SRE(γ) = (1 – γ)/(γ n).

●  SRE(γ) →∞ as γ →0

● CMC gets computationally very expensive!
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Splitting technique
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Splitting technique
● Importance Function (IF) measures distance to A.
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Splitting technique
● Importance Function (IF) measures distance to A.

● Decompose distance to A  into various 
'non-rare' levels of the IF.

● Sample paths of stochastic processes 
involved split into multiple copies at
various IF levels till A is reached.

● Probability of hitting each 'not-rare' level

 
 

 R
k 
: number of hits at level k 

 S
k 
: total number of sample paths launched at level k.

Rk

Sk−1

.p
k
 =  
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Splitting technique...

● P(A):

    

 

∏
k=1

m

pkγ  = 
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Splitting technique...

● P(A):

    

● Calculating p
k 
for each level is not expensive!  

∏
k=1

m

pkγ  = 

15



  

Splitting technique...

● P(A):

    

● Calculating p
k 
for each level is not expensive!  

       Importance Function is the most important ingredient of splitting.

∏
k=1

m

pkγ  = 
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Importance Function for PLPS

We take the IF as the distance from the rare-event sets in the 
phase space of B(t) and P(t).

ϕ(P(t ), B(t))={−min(R1, R3) if P(t)<F0

−min(R2, R3) if P (t)⩾F0
} (4)
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 How does the ramp constraint β affect PLPS?
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New battery charging strategy to reduce PLPS
 A fraction of the battery 1-ε is reserved only for absorbing P(t) ≥ F

0
,
 
0≤ε≤1.
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The price of reducing PLPS!

The charging scheme increases the average power spill of the system.

Increase in average power spill is nominal. 19



  

The battle of CMC and Splitting

Probability CPU-time
CMC

/CPU-time
Splitting

1.8 x 10-2 8

3.6 x 10-4 59

7.1 x 10-5 274
20



  

In short

● Ramp constraints play a major role is reducing PLPS.

●  The charging scheme prescribed reduces PLPS but it comes with a trade-off 
of increasing the average power spill.

● We find that using splitting over CMC pays off very well. 
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Optimal Storage Placement in Power Network 
to Enhance Reliability
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What is power network reliability?

Power network is defined as a graph    
               N nodes  
               E edges
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What is power network reliability?

Power network is defined as a graph    
               N nodes  
               E edges

 

For reliable operation network constraints should not be violated.

     1. Voltage constraints  :  Vmin
 
≤ |V(t)| ≤ Vmax

   
t  ∀ ∈ [0,T],

  
N∀

       
(1)

     2. Line current constraints  :   |I(t)| ≤ Imax     t  ∀ ∈ [0,T], E∀
           

(2)  

23



  

How is network reliability challenged?

 Same culprits as the last problem!
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 Energy storage rescues again
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Reliability index for DC power flow 

Probability that one of the line currents have exceeded its allowed maximum 
over period T :
                       
               γ := P{  ∃ (i, j) ∈ E : sup

t  ∈ [0,T] 
                        }               (3)|I(i , j)(t)|≥I(i , j)

max

 Probability of Line Current Violation (PLCV) 
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Optimal storage placement problem

Given a network topology and the total storage installation size 
we wish to optimally place the storage devices in the network 

such that PLCV is minimal.
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Challenges of the problem
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Challenges of the problem

1. Configuration space of storage positions and sizes is very large.
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Challenges of the problem

1. Configuration space of storage positions and sizes is very large.

2. We do not expect PLCV to be convex. 
 
3. Calculation of small values of PLCV is expensive using 
    Crude Monte Carlo (CMC) simulations.
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How to overcome the challenges?
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How to overcome the challenges?

1. Simulated Annealing (SA) to tackle the large configuration 
space and non-convexity of the problem. 
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How to overcome the challenges?

1. Simulated Annealing (SA) to tackle the large configuration 
space and non-convexity of the problem. 

2. Splitting of rare-event simulations to reduce the workload of 
CMC.
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System setup

Power injection

P
i
(t) - net power injection at the i-th node modeled as Ornstein-Uhlenbeck 

processes :

             P
i
(t+∆t) = P

i
(t) + θ

i
[μ

i
 − P

i
(t)] ∆t + σ

i
∆W

i
(t)   t  ∀ ∈ [0,T]

                   
(4)
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System setup

Storage (battery) model
The batteries are charged locally at each node according to:                 
                                                                                    
                                                                                                                 
   

Bi(t +Δ t)=Bi( t)+ pi
B
(t )Δ t (5)

p
i
B(t) : power flowing in/out of the i-th battery. 

The batteries are bounded by 
 
                 1. capacity constraints : 
                                                                                                            
                 2. total installation constraint :                                         
                                                           

0≤B i(t )≤Bi
max

(6)

∑
i=1

N −1

Bi
max=Bmax (7)
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Simulated Annealing (SA)
Performs a local search in the solution space X of the problem to minimize or 

maximize a desired cost function f(X).
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Simulated Annealing (SA)
Performs a local search in the solution space X of the problem to minimize or 

maximize a desired cost function f(X).

Our Problem

● Minimize f(X) : γ

B i
max

● Solution space X : 

32



  

SA Algorithm

1. Start with an initial solution as Xbest . Initialize T
c.
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SA Algorithm

1. Start with an initial solution as Xbest . Initialize T
c.

2. Randomly select a new solution X∗ in the solution configuration space.
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SA Algorithm

1. Start with an initial solution as Xbest . Initialize T
c.

2. Randomly select a new solution X∗ in the solution configuration 
    space .

3. If  ∆E = f(X∗) − f(Xbest) < 0, then Xbest = X∗

    ElseIf  ∆E = f (X∗) − f(Xbest) > 0, 
    accept the worse solution as Xbest

       with acceptance probability, 
               p = exp(−∆E/T

c
 ). 

 
    Helps escape local minima!
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SA Algorithm...

1. Start with an initial solution as Xbest . Initialize T
c.

2. Randomly select a new solution X∗ in the solution configuration 
    space .

3. If  ∆E = f(X∗) − f(Xbest) < 0, then Xbest = X∗.

    ElseIf  ∆E = f (X∗) − f(Xbest) > 0, then accept the new worse 
    solution as the best solution with acceptance probability, 
                                    p = exp(−∆E/T

c
 ).  

    This helps the algorithm to escape local minima.

4. Cool the temperature of the probability of accepting worse    
    solutions p ,  T

c
new = κT

c
old , where 0<κ<1.

5. Repeat 2 until the stopping criterion is reached.
34



  

Splitting technique

 Importance Function for PLCV  

max
(i , j)∈E

|I( i , j)(t)|

I (i , j)
maxφ(|I

(i, j)
(t)| ) = (8)
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IEEE 14 bus 
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Different initial configurations 

● We start from different initial configurations of the battery positions 
and sizes to minimize log(γ). 

● Bmax = 13000 units.                                 
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CMC versus Splitting

Probability CPU-time
CMC

/CPU-time
Splitting

1.0 x 10-2 4

1.25 x 10-3 20

1.0 x 10-4 80
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In short

● Using SA we minimized γ from ~ 10-3 to 10-7. 

● We find that using splitting over CMC pays off very well. 

● For more : http://oai.cwi.nl/oai/asset/23857/23857A.pdf
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Cost function for the problem : log(γ) not γ!

● While minimizing γ values  can go down to ~ 10-5−10−7 or smaller 
depending on the total installation size of the battery.

● The acceptance probability p of the worse solution also depends on 
 ∆E = γ(X∗) − γ(Xbest). 

● As the γ’s are very small, their differences are also small hence  p becomes 
large and the algorithm accepts too many worse solutions and might never 
converge.

● So, instead of minimizing γ we minimize log(γ) so that 
∆E = log(γ(X∗)) − log(γ(Xbest)) is not very small and the algorithm does not 
accept too many worse solutions.
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Perturbations in solution space

Solution space
The solution space of the system is the configuration space of battery 
positions and sizes at each node in the network.                                          

Perturbations
● SA searches in the solution space by randomly perturbing the system.
● To move randomly in the solution configuration space of the battery 

positions and sizes we randomly select two non-slack nodes (i, j)  ∀ i  ∈ N /
{1} and  ∀ j(≠ i)  ∈ N /{1}. 

● Then exchange m units of battery blocks ∆B between the two chosen nodes 
such that the following are true :

          1. The total installation storage capacity remains constant

          2. For i = 1, . . . , N − 1 :                                            

∑
i=1

N −1

Bi
max

=Bmax

0≤ B i
max

≤ Bmax 41
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