
Physics-Enhanced Machine Learning
School of Computation, Information and Technology
Technical University of Munich

Woudschoten conference, talk #1
Learning dynamical systems from data

Felix Dietrich
Technical University of Munich
2025-09-25 In collaboration with:

Yannis Kevrekidis
Igor Mezić
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Constructing good base spaces
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Laplace-Beltrami operators on manifolds
Geometry of data

[∆f ](x) :=
1√
|G|

∂i

(√
|G|Gij

∂j f
)

The function f ∈ C2(M,R) is differentiated twice by ∇2 =∆.
Here: G is the metric tensor of the Riemannian manifold (M,G).

Benefits:
1. Extension of Laplace operator on Euclidean space: ∆f = ∑∂i∂i f .
2. Definition is independent of the ambient space and invariant to isometries.
3. Eigenfunctions can be used as low-dimensional embedding coordinates: Diffusion maps.
4. ∆ captures the entire geometry of (M,G).
5. Direct connection to Diffusion/Heat PDE, ∂t f =∆f .
6. Higher-order operators also tractable (deRahm/Hodge): numerical exterior calculus.
7. Locality can be turned into efficient numerical scheme.
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Heat kernel approximation: exp(ε∆)
Diffusion Maps [Coifman and Lafon, 2006]
with several adaptations from Berry, Sauer, Maggioni, ...

Challenges: Steps 1 (distances), 2 (kernel with parameters), 7 (eigenproblem).
[Optional] Other kernels, other distance functions.
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Laplace Operator: case study
Constructing good base spaces for dynamical systems (here: PDE)

(a,b) Solutions of Kuramoto-Sivashinsky PDE in quasiperiodic domain (Torus (c) is conceptual).
(d-i) Multi-scale torus reconstruction in eigenfunction space.
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Laplace Operator: Spectral exterior calculus
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System identification with ordinary and partial differential equations
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System identification with ODE
Equations with one derivative of the unknown

d
dt

x(t) = f (x(t)).

Problem statement
Given: time series {x(t)} of observations.
Goal: identify the function f .
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System identification with ODE
Equations with one derivative of the unknown
d
dt x(t) = f (x(t))≈ σ(Wx(t)+b).

Work before the last AI winter [1,2,3]

[1] González-García, Rico-Martínez, and Kevrekidis. 1998.
“Identification of Distributed Parameter Systems: A Neural
Net Based Approach.” Computers & Chemical Engineering.
https://doi.org/10.1016/s0098-1354(98)00191-4.
[2] Rico-Martinez, Anderson, and Kevrekidis. 1994.
“Continuous-Time Nonlinear Signal Processing: A Neural
Network Based Approach for Gray Box Identification.” Proc.
of IEEE Workshop on Neural Networks for Signal Processing.
https://doi.org/10.1109/nnsp.1994.366006.
[3] Rico-Martínez, Krischer, Kevrekidis, Kube, and
Hudson. 1992. “Discrete- vs. Continuous-Time
Nonlinear Signal Processing of Cu Electrodissolu-
tion Data.” Chemical Engineering Communications.
https://doi.org/10.1080/00986449208936084.
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Identification of Hamiltonian dynamics
Problem statement
Given: time series {p(t),q(t)} of observations of a Hamiltonian system.
Goal: identify the Hamiltonian function H(p,q), so that

d
dt
(p,q) = J ·∇H(p,q), J :=

(
0 1
−1 0

)

Main idea, neural networks
1. Parameterize H as neural network Ĥ.
2. Approximate time derivatives from time series with finite-differences.
3. Train network to minimize ∥ d

dt (p,q)−J ·∇Ĥ(p,q)∥2.

Main idea, Gaussian processes
1. Use Gaussian process Ĥ as ansatz for unknown Hamiltonian: Ĥ = k∗K−1H.
2. Approximate time derivatives from time series with finite-differences.

3. Solve linear PDE through least squares: J ·∇Ĥ = J ·∇k∗K−1︸ ︷︷ ︸
A

H︸︷︷︸
x

=
d
dt
(p,q)︸ ︷︷ ︸

b

.
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1. Use Gaussian process Ĥ as ansatz for unknown Hamiltonian: Ĥ = k∗K−1H.
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Identification of Hamiltonian dynamics
Examples

Non-linear pendulum Hamiltonian systems in latent
spaces

Identification in
high-dimensional ambient

spaces (image data)

Felix Dietrich—2025, Woudschoten conference 12 / 33

Data points: ANN 20,000; GP 625
Bertalan, D., Mezić, Kevrekidis, 2019



Learning Hamiltonian dynamics on graphs

Hamiltonian graph neural network constructed with random feature layers. The network solves a
linear PDE defined on a high-dimensional base space (all nodes of the graph combined) for H, so that

q̇ =
∂H
∂p

, ṗ =−∂H
∂q

.

Rahma, Datar, Cukarska, and D. “Rapid Training of Hamiltonian Graph Networks without Gradient Descent.” Preprint,
http://arxiv.org/abs/2506.06558.

More on this in my talk tomorrow (Friday, 9:00)!
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System identification with PDE
Equations with more than one derivative of the unknown

d
dt

x(t ,s) = f (x(t ,s),
d
ds

x(t ,s)).

Problem statement
Given: time series {x(t ,s)} of observations.
Goal: identify the function f .
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Identification of PDE for oscillator systems
Problem statement
Given: time series {w(t)} of observations of a system of oscillators.
Goal: identify a good base space and the PDE on it.

Main idea
1. Parameterize short, individual oscillator trajectories with φ .

2. Observe how the oscillators “move” on the new space: d
dt w(t ,φ) = f (w , d

dφ
w , d2

dφ2 w , d3

dφ3 w).

3. Estimate the function f .

Left: observations w(t). Center: Re[w(t)] on new coordinate φ . Right: integrated, learned PDE.
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System identification with stochastic differential equations
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Identify SDE to coarse-grain particle dynamics

1. Coarse-graining particle dynamics

2. Identifying SDE for coarse observables

3. Here: Coarse-graining agent-based models: local infection models

From particle dynamics to coarse-grained SDE.
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Introduction: SDE
Stochastic ordinary differential equations (SDE)?

dXt = f (Xt)dt +σ(Xt)dWt

where f : Rn → Rn, σ : Rn → SPD(n)⊂ Rn×n are drift and diffusivity, respectively, Wt are n
independent Wiener processs, with Wt −Ws ∼ N (0, t −s).

Example: double-well potential
Let f (x) =−(4x3−8x +3)/2, and σ(x) = (0.1x +1)/2.

Figure: Sample paths from the SDE and the network. Figure: Density at t = 0.5.
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Our approach to identify SDE
Problem statement
Data: snapshots (x(t),x(t +∆t)) all over the state space, possibly with different ∆t for each snapshot.
Goal: approximate drift f and diffusivity σ .
Challenge: We do not have (a) long time series or (b) constant time steps.
Assumptions:
(a) diffusivity is an SPD matrix everywhere;
(b) drift and diffusivity are continuous w.r.t. the input;
(c) our dataset samples the state space well.

Figure: Network architecture to learn drift and (diagonal) diffusivity.
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D., Makeev, Kevrekidis, Evangelou, Bertalan,

Reich, Kevrekidis, Chaos, 2022; pre-print: arXiv:2106.09004



Our approach to identify SDE
Main idea
We assume the data is generated by the SDE:

dXt = f (Xt)dt +σ(Xt)dWt

This SDE can be approximated with the Euler-Maruyama scheme:

X (t +∆t)−X (t) = f (X (t))∆t +σ(X (t))ξ , ξ ∼ N (0,∆t)

Therefore: We can assume that

X (t +∆t)∼ N
(
X (t)+ f (X (t))∆t ,σ(X (t))2∆t

)
If p : Rn → R+ is the probability density of this normal distribution, and we set fθ , σθ to be our neural
network, then

θ := argmax
ξ

E
[
logpξ (Xk+1|Xk)

]
≈ argmax

ξ

[
1
N

N

∑
i=1

logpξ

(
X (i)

k+1|X
(i)
k

)]
.

Since we assume normality, logpξ has a simple formula.

This is just log marginal likelihood maximization!
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Results in paper
What about other integrators?
The SDE can be approximated with the Euler-Maruyama scheme:

X (t +∆t) = X + f (X )∆t +σ(X )ξ , ξ ∼ N (0,∆t),

...or with the Milstein scheme:

X (t +∆t) = X + f (X )∆t +σ(X )ξ +
1
2

σ(X )
d
dx

σ(X )
(
ξ

2−∆t
)
, ξ ∼ N (0,∆t)

...or any other (good) numerical integration scheme:

X (t +∆t) = φ (X ;∆t ,ξ ) , ξ ∼ N (0,∆t) (or other noise)
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Which probability densities for p (X (t +∆t |X (t)) arise?
Can we use them for training? Yes!

See our paper, also for Langevins + SPDE.

D., Makeev, Kevrekidis, Evangelou, Bertalan,

Reich, Kevrekidis, Chaos, 2022; pre-print: arXiv:2106.09004



Our approach to estimating SDE
Results (kMC lattice model)

Figure: llustration of the kMC lattice (top row), physically relevant values measured over time resp. simulated with the
identified SDE from the network (a), averaged paths over 200 simulations (b), and propagated densities from the initial
condition until t = 2 (c,d). Lattice snapshots show S, I and R-type species as grey, yellow and blue squares, respectively.
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Reich, Kevrekidis, Chaos, 2022; pre-print: arXiv:2106.09004



Koopman operator framework
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Koopman operator of dynamical systems
Main idea: “Dynamics of observables” instead of “dynamics of states”

St is the flow of a dynamical system, St(x(0)) = x(t). The observable
g ∈ F is transformed by K t : F → F , which yields (g ◦St) ∈ F .

[K tg](x) := g(St(x))

Benefits
1. Each flow St has an associated operator (semi-group).
2. K t captures a lot of information about St (also: spatial isomorphism =⇒ spectral isomorphism).
3. “Global linearization” of the dynamics.
4. Prediction is trivial in the eigenfunction space.
5. Estimation from scattered data, with approximation error estimates even for finite data.
6. Data-driven design of linear controllers for non-linear systems.

Felix Dietrich—2025, Woudschoten conference 24 / 33
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Koopman operator approximation
Extended Dynamic Mode Decomposition: Algorithm
Input: NX data pairs (Xn,Xn+1), Xn,Xn+1 ∈ M, s.t. Xn+1 = St(Xn).
1. Define a dictionary with ND observables, e.g. with a neural network from M to RND ,

D = {dk : M → R|k = 1, . . . ,ND} ⊂ F .

2. Construct the matrix G,

G = D(Xn) =
[
d1(Xn),d2(Xn), . . . ,dND(Xn)

]
∈ RNX×ND .

3. Construct the matrix A,

A = [K tD](Xn) =
[
d1(Xn+1),d2(Xn+1), . . . ,dND(Xn+1)

]
∈ RNX×ND .

4. Approximate the operator K t through a matrix K , s.t. “KG = A”,
(e.g. using least-squares minimization):

min
K

∥KGT G−AT G∥2, K ∈ RND×ND .

Williams, Kevrekidis, Rowley: “A Data-Driven Approximation of the Koopman Operator: Extending Dynamic Mode
Decomposition”, Journal of Nonlinear Science, 2015.
Li, D., Bollt, Kevrekidis: “Extended dynamic mode decomposition with dictionary learning: A data-driven adaptive spectral
decomposition of the Koopman operator.” Chaos, 2017. doi:10.1063/1.4993854
Felix Dietrich—2025, Woudschoten conference 25 / 33
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Koopman operator of dynamical systems
Data-driven design of optimal controllers
Given: data (x(t),u(t)) of a controlled dynamical system d

dt x = f (x)+Gu.
Goal: find optimal control inputs uopt(t) to minimize cost c(x(t),xref (t)).

Optimal control with the Koopman operator
1. The Koopman operator frameworks transforms the system to d

dt z = Az +Bu, x = Cz.

2. The control problem turns into minimization of uT Hu+Qu.

Examples
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Koopman Operator case study (1/2)
Pedestrian counting data from Melbourne

Left: Sensor positions in the city of Melbourne.
Center: Koopman operator eigenfunctions evaluated over the data.
Right: Surrogate model accuracy.

Felix Dietrich—2025, Woudschoten conference 27 / 33Lehmberg, D., Köster (2021)



Koopman Operator case study (2/2)
Studying algorithms as dynamical systems

Left: Himmelblau’s function (optimization problem).
Center: Data (Xn,Xn+1) obtained from gradient descent: Xn+1 = Xn −∇f (Xn).
Right: Decomposition into basins of attraction, using Koopman operator eigenfunctions.

Paper: https://doi.org/10.1137/19M1277059; https://arxiv.org/abs/1907.10807
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Open questions, outlook, conclusions
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Open questions and future work
Learning invariances and uncertainty
• Symplectic forms, geometric symmetries, learning (Lie) group equivariances
• Uncertainty quantification for predictions and inverse problems
• Dynamics of higher-order, topological obstructions

“Learning dynamical systems” vs. ”dynamical systems for learning”
• Use iterative algorithms (SGD...) to identify systems
• Identify systems underlying the iterative systems (“Learning to optimize”)

... and much more!
• Numerical analysis, scientific machine learning, good software1

• Turbulence and chaos, system with continuous spectrum
• Causal relationships
• Discrete systems, non-smooth vector fields
• Learning on graphs
• ...

Felix Dietrich—2025, Woudschoten conference 30 / 331datafold: https://datafold-dev.gitlab.io/datafold/



Outlook: Connection to next talk

Linear operator decomposition
Given L : A → B, assume we can perform a decomposition

L =
∞

∑
k=1

ψkλkφk =: ΨΛΦ,

where ψk ∈ B, λk ∈ C, φk ∈ A∗.

Connection to next talk (Friday, 9:00)
Given a sequence of neurons {gk = σ(wk ·+bk)}k , can we find a unitary transformation Q with

L =
∞

∑
k=1

ψkλkφk =: ΨQΛ1/2Λ1/2Q∗Φ,

where [ΨQΛ1/2]k = gk? Maybe we can even define Q as a random basis?
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Discussion

Felix, Zahra, Iryna, Erik, Qing, Vladyslav, Shyam, Chinmay,
Hessel. Not in the picture: Ana, Atamert, Berkay, Felix S.,

Maximilian, Nadiia, Rahul.

Contact
felix.dietrich@tum.de
www.cs.cit.tum.de/en/scml

Funding
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