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Of Geometry in Computing

Mathieu Desbrun

GeomeriX

the “unreasonable effectiveness”
Exploiting

Geometry is key in many scientific fields
 at the crossroad of several sciences

 observable invariants/symmetries of the world around us
 “mothertongue” of most physical theories

 from E&M to General Relativity, differential structures and 
symmetry groups are central

 studied for centuries
 Cartan, Poincaré, Lie, Hodge, de Rham, Noether…

 mostly differential geometry, though
 based on differential and integral calculus

Large body of work available on geometry
… alas, discrete counterpart lacking in substance

The Role of Geometry
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“Discrete” differential geometry
 finite-dimensional counterpart to continuous theory

 where we leverage differential understanding
 geometry as a guiding principle to discretization

 discretize the geometric principles
 predictive power guaranteed, , even with low-order basis fcts



 PDEs often hide structures completely

Continuum vs. Finitude  
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Mean curvature flow = L2 gradient flow of area

𝐱̇ = −𝐻 𝐧
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The heresy of piecewise linear functions for shells

“Discrete” differential geometry
 finite-dimensional counterpart to continuous theory

 where we leverage differential understanding
 geometry as a guiding principle to discretization

 discretize the geometric principles
 predictive power guaranteed, , even with low-order bases



 PDEs often hide structures completely

Of both academic and practical interests
 education (simple discrete analogs)
 Hollywood (cool graphics, fast animation)
 computational science (new numerical methods)

Next, four vignettes to illustrate a few aspects…

Continuum vs. Finitude  
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Vignette 1:
Grooming
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How Do You Grow Hair?
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How to design tangent {vector|direction|frame} fields?
 need to control smoothness, and singularities…
 geometry to the rescue: use of connection one-forms

 notion of parallel transport on a mesh?

 code for it? just store an angle per edge (change of basis)

Vector Field Processing
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How to design tangent {vector|direction|frame} fields?
 need to control smoothness, and singularities…
 geometry to the rescue: use of connection one-forms

 notion of parallel transport on a mesh?

 code for it? just store an angle per edge (change of basis)
 discrete Levi-Civita (metric) connection and its discrete holonomy

Vector Field Processing
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simple rotation of 
coordinate frame
simple rotation of 
coordinate frame

K
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5

How to design tangent {vector|direction|frame} fields?
 need to control smoothness, and singularities…
 geometry to the rescue: use of connection one-forms

 notion of parallel transport on a mesh?

 code for it? just store an angle per edge (change of basis)
 discrete Levi-Civita (metric) connection and its discrete holonomy

 extension to an arbitrary principal connection?
 add adjustment rotation during the translation…
 integrated connection 1-form

 see discrete 1-forms in Discrete Exterior Calculus

Vector Field Processing

& rotate
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We can find an adjustment to Levi-Civita…
 one rotation angle per edge crossing

to cancel holonomy of Levi-Civita connection!
 forcing zero holonomy on (almost) all discrete cycles

 contractible (V) & noncontractible (2g) cycles
 except for a few chosen singularities

 Poincaré-Hopf theorem
 and get smallest adjustments!

 L2-minimum of adjustment vector 
for “straightest” solution
 link to torsion [Braune et al. 2025]

Now, path-independent transport!
 creating discrete vector field on surface

Discrete Trivial Connection
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Growing Hair on a Bunny…

Linear system

Resulting trivial connection
(no other singularities present)
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Robustness to Meshing Too!
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Recent Use

Vignette 2:
Cartan for Data Science
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Context

Era of big data
 lots of high dimensional datasets available

 think of them as pointsets in high dimension (ℝD)

 need for data analysis tools… can geometry help!?
 data often sample a d-manifold with d≪D

 example: just a bunch of 128x128 images? (here, D=1282)
 only camera angle varies (two dimensional, in disguise!)

Dimensionality Reduction: 
mapping data from  ℝD to ℝd, with d«D
 i.e., finding a Euclidean embedding in low dimension

 in a "most isometric” way (e.g., try to preserve pairwise distances) 
 two main approaches (both based on eigenanalysis)

 using all pairwise geodesic distances
 robust to noise

 using local positioning
 brittle…

 ISOMAP hailed as great extension of PCA

Geometry for Data Science?

ISOMAPISOMAP

LELE LLELLE HLLEHLLE MLLEMLLE LTSALTSA

NLDR
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Dimensionality Reduction: 
mapping data from  ℝD to ℝd, with d«D
 i.e., finding a Euclidean embedding in low dimension

 in a "most isometric” way (e.g., try to preserve pairwise distances) 
 two main approaches (both based on eigenanalysis)

 using all pairwise geodesic distances
 robust to noise

 using local positioning
 brittle…

 ISOMAP hailed as great extension of PCA
 Dijskstra for geo distances, then MDS  of distance matrix
 but planar pointsets should be trivial to handle, right?
 pointsets on a developable surfaces too
 should be robust to holes too, right?

Geometry for Data Science?

ISOMAPISOMAP

LELE LLELLE HLLEHLLE MLLEMLLE LTSALTSA

Key idea: Parallel transport to find geodesic distances
 use intrinsic neighborhoods (k-NN) to estimate tangent spaces
 define metric connection between tangent spaces 𝕋௜

 rotation of a tangent space frame to get to a parallel one nearby

 𝐑௜௝ = argmin
𝐑∈𝒪(ௗ)

𝕋௝ − 𝕋௜𝐑
୊

ଶ
, Procrustes problem solved via SVD

 geodesic distances easy to evaluate (instead of Dijkstra’s)
 through Cartan’s development (unfold path in tangent space)

 intuition: geodesics are straight under development

Connection-based ISOMAP

A

B
distance
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Key idea: Parallel transport to find geodesic distances
 use intrinsic neighborhoods (k-NN) to estimate tangent spaces
 define metric connection between tangent spaces 𝕋௜

 rotation of a tangent space frame to get to a parallel one nearby

 𝐑௜௝ = argmin
𝐑∈𝒪(ௗ)

𝕋௝ − 𝕋௜𝐑
୊

ଶ

 geodesic distances easy to evaluate (instead of Dijkstra’s)
 through Cartan’s development (unfold path in tangent space)

 intuition: geodesics are straight under development

6 lines of code to change in ISOMAP…. 
 https://tinyurl.com/PTUcode

Connection-based ISOMAP

Result on 3D Embedded in 100D
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On «Real» Data (letter A rotated/scaled)

Vignette 3:
Discrete Mechanics 
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Revisiting Fluid Incompressibilty

clustering of particles

requires tiny time-steps

artificial damping

LIMITATIONS

INCOMPRESSIBILITY

divergence-free velocity field

FIELD APPROXIMATION

kernel methods mostly (SPH)

evaluate density, forces

Typical results, even for small timesteps

Examples of Previous Work

Volume preservation (PBF,PCSPH)Divergence-free velocity (PIC-FLIP)
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Geometric Approach

PARTICLES + POWER CELLS

= POWER PARTICLES

preservation of finite volumes

well-centered power diagram

no kernel evaluation needed

divergence-free velocity field

= preservation of local volumes

INCOMPRESSIBILITY

Can handle any initial set of particles

Geometric Fluid
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Rotating Blade

The basic structure of mechanics is geometric
 Hamilton’s stationary action principle and variants

 motion extremizes the integral of the Lagrangian
 Euler-Lagrange eqs are nothing but F = m a

 but change an IVP into a BVP

Numerical integrators? 
 leverage geometric properties!
 just discretize paths (time stepping)

Variational Nature of Mechanics

configuration 
manifold
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The basic structure of mechanics is geometric
 Hamilton’s stationary action principle and variants

 motion extremizes the integral of the Lagrangian
 Euler-Lagrange eqs are nothing but F = m a

 but change an IVP into a BVP

Numerical integrators? 
 leverage geometric properties!
 just discretize paths (time stepping)

 and use quadrature to evaluate discrete action 

 make for better numerics
 preserves symplecticity
 conserves energy  remarkably well [Hairer]
 preserves symmetries  through (discrete) Noether’s theorem

Variational Nature of Mechanics

solve DEL for time integration:

29

 Links to known integrators
 Lie group integrators
 (non)holonomic constraints,
 time adaption
 etc…

Very Successful Developments

Molecular 
dynamics

30
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Often using incompressible Navier-Stokes equations

with

 can be expressed in various ways — in particular, with vorticity

Solvers:
 Eulerian methods

 grid- or mesh-based
 Lagrangian methods

 particles, typically
 hybrid methods

 e.g., MPM, PIC,…
 geometric integrators too!

 Arnold’s geodesics of 
the volume-preserving
diffeomorphisms

31

Fluids in Computer Graphics

𝛻 ȉ 𝒖 = 0
𝜕𝒖

𝜕𝑡
+ 𝒖 ȉ 𝛻𝒖 = −

1

𝜌
𝛻𝑝 + 𝜈 𝛻 ȉ 𝛻𝒖 + 𝑭

Reflection-advection solver
[Zehnder et al. SIG ’18]

Tetrahedral Meshes
[Ando et al. SIG ’13]

Vorticity-based
[Zhang et al. SIG ’15]

PolyPIC
[Fu et al. SIG ’17]

Particles cool, but messy
 follow the motion, so seemingly efficient

 but local density keeps on changing, so noisy numerics
 air is everywhere, so millions of particles needed!

 adaptive sampling tricky and not memory friendly

Meshes/grids great, but limited 
 fixed resolution, whether there’s action or not

 adaptive grid size costly in practice
 often require smaller time steps 

 for similar visual quality

Issues with even hybrid methods:
 always need to somehow maintain divergence-freeness
 lack of accuracy in nonlinear advection (dissipation, dispersion…)

32

Practical Issues
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Introducing a mesoscopic description of fluid

33

Boltzmann Discretization

Macroscopic view
Navier-Stokes equations

Mesoscopic view
Boltzmann equation

Microscopic view
Molecular dynamics

Introducing a mesoscopic description of fluid
 based on a statistical-mechanics (a.k.a. kinetic) model

 use a particle distribution function
 probability for a particle to be at 𝒙 at time 𝑡 with a velocity 𝒗

 Boltzmann transport equation:

 amounts to (near) incompressible Navier-Stokes
 once discretized  (lattice Boltzmann method), fixes issues, and 

importantly, can be done in a massively=parallel way!

Macroscopic quantities simple to recover!

Boltzmann Discretization

𝜌 𝒙, 𝑡 = න 𝑓𝑑𝒗 𝜌𝒖(𝒙, 𝑡) = න 𝒗𝑓𝑑𝒗

𝜕𝑓

𝜕𝑡
+ 𝒗 ȉ 𝛻𝑓 = Ω 𝑓 + 𝑭 ȉ 𝛻𝒗𝑓

𝑓(𝒙, 𝒗, 𝑡)

note: “𝒖=0”   ≠  no motion!note: “𝒖=0”   ≠  no motion!

streamingstreaming collisioncollision forcingforcing
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particles 
going straight 

particles 
collide 

particles 
pushed around 
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Great for Graphics…

Sheet of water
Flow resolution: 600×300×300

Simulation time: 58 s/frame
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And for Usual Obstacle Course

But still no “variational” 
approach for it…

But still no “variational” 
approach for it…
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Vignette 4: 
Coarse-graining & Fast Solvers

37

Take a simple hanging cube… 
 even with the exact same simulation technique…

 say, non-linear deformable body simulated with trilinear FEM
 simply choosing a twice-coarser grid changes everything

Geometric discretization must be done along w/ physics!
 problem even worse for heterogeneous materials

 correct only for meshes fine enough to resolve heterogeneities

Enter numerical coarse-graining
 also called numerical homogenization
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What’s Up with Coarse Meshes?
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Averaging elasticity/stiffness is just not that easy…
 hard + soft in 1D? 
 does not behave like a half-hard single bar

39

Aggravating Circumstances

rigid rigid

soft

Complexity emerges from simplicity
 in elasticity,  isotropic materials are defined by 2 coefficients…

 Poisson’s ratio and Young’s modulus

 anisotropic linear elasticity requires 21 parameters
 the whole elasticity tensor, with symmetries removed

 but two isotropic materials create … an anisotropic material

Aggravating Circumstances

composite
material

Soft Hard
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Mostly two approaches  to improve results

41

Numerical Homogenization

Richer coarse models
 Idea: compute homogenized 

material per coarse element
 making sure elastic 

potentials match
[Kharevych 2009, Panetta 2015,…]

 Limitations: only two levels; 
imperfect

Mostly two approaches  to improve results
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Numerical Homogenization

Richer coarse models
 Idea: compute homogenized 

material per coarse element
 making sure elastic 

potentials match
[Kharevych 2009, Panetta 2015,…]

 Limitations: only two levels; 
imperfect

Adapted basis functions
 Idea: change shape functions to 

offer a richer solution space
 precomputed locally or globally 

[Nesme 2009, Chen 2018,…]

 Limitation: slow preprocess, 
imperfect[Chen 2018]
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Finding refinable operator-adapted basis functions
 adaptivity through operator- and material-adapted wavelets

 block-diagonalizes the stiffness matrix
 basis fcts localized in both space and eigenspace 
 tight bounds on accuracy!

[Owhadi 2017; Budninskiy et al. 2019, Chen et al. 2019]

 Limitation:  still some preprocessing to do….
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Better Still: Operator Adaptation

Heterogeneous
elastic material

𝑂(𝑛௤ logଶௗାଵ 𝑛௤) 

coarse basis function

finer basis function

even finer basis function

Example for linear elasticity on bimaterial under gravity

Even for Whitney differential forms
 ex: div-free bases adapted to 

1-form Laplacian
 and restricted to embedded domains

 i.e., edges on a regular grid
 but bases adapted to a given domain 
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Best Homogenization Thus Far

16x16 2x2 wavelets 4x4 wavelets 8x8 wavelets 16x16
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This line of work surprisingly led to fast linear solvers…
 [Schäfer 2021] proved that homogenization can be 

rewritten as a simple Cholesky factorization
 homogenization leads to linear complexity solvers (!)

 one needs new hierarchical ordering and sparsity pattern
 then perform incomplete (reverse) Cholesky factorization
 resulting matrix used a preconditioner in conjugate gradient

 beats typical Cholesky, multigrid preconditioners, SVD, etc…
 often by orders of magnitude

45

From Homogenization to Solvers?

Fine-to-coarse reordering

Whether on Helmholtz equation (low wave number) or elasticity,  
it offers linear complexity instead of quadratic for SVD
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Lightning-Fast BIE Solver

Allows >1M dofs on laptops,
3 to 5 orders of magnitude faster

Needs only 9 iterations!

45

46



24

DDG useful for computing in high & low dims 
 computing through the lens of geometry

 geometry-powered numerics

 blurring the line between discrete & differential treatments
 non-linearity dealt with more systematically 

 exploiting connections, in particular

But… it requires quite a bit of knowledge!
 math, physics, exterior calculus, linear algebra, etc…

 to the young people out there: learn as much as you can

 even machine learning recently
 space-time upsampling for flows, for instance

 and there is much more to do!

Wrapping Up

Trained with a very different flow!

Work mostly done by other people
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Questions?
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