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Continuum vs. Finitude

“Discrete” differential geometry
O finite-dimensional counterpart to continuous theory
where we leverage differential understanding
O geometry as a guiding principle to discretization
discretize the geometric principles

» predictive power guaranteed, , even with low-order basis fcts
NOT THE PDES DIRECTLY Y/

Rasmus Tamstorff

©

The heresy of piecewise linear functions for shells

Continuum vs. Finitude

“Discrete” differential geometry
O finite-dimensional counterpart to continuous theory
where we leverage differential understanding
O geometry as a guiding principle to discretization
discretize the geometric principles

» predictive power guaranteed, , even with low-order bases
NOT THE PDES DIRECTLY // “

» PDEs often hide structures completely

a.'.,i?
Of both academic and practical interests

2 education (simple discrete analogs) @ e

0 Hollywood (cool graphics, fast animation)
O computational science (new numerical methods)

< Next, four vignettes to illustrate a few aspects...
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Vector Field Processing

How to design tangent {vector|direction|frame} fields?
2 need to control smoothness, and singularities...

O geometry to the rescue: use of connection o! T
notion of parallel transport on a mesh? UL

0%

Vector Field Processing

How to design tangent {vector|direction|frame} fields?
0 need to control smoothness, and singularities...

0 geometry to the rescue: use of connection one-forms
notion of parallel transport on a mesh?

code for it? just store an angle per edge (change of basis)
discrete Levi-Civita (metric) connection and its discrete holonomy

simple rotation of
coordinate frame

8



Vector Field Processing

How to design tangent {vector|direction|frame} fields?
2 need to control smoothness, and singularities...

0 geometry to the rescue: use of connection one-forms
notion of parallel transport on a my

Nz
code for it? just store an angle per
discrete Levi-Civita (metnc) connection and its discrete holonomy

0 extension to an arbitrary principal connection?

add adjustment rotation during the translation...
integrated connection 1-form

> see discrete I-forms in Discrete Exterior Calculus

Discrete Trivial Connection

We can find an adjustment to Levi-Civita...
O one rotation angle per edge crossing

to cancel holonomy of Levi-Civita connect® ', |\1 /77~
Q forcing zero holonomy on (almost) all dl’scrm\\; SR
contractible (V) & noncontractible (2g) cycles

a except for a few chosen singularities

Poincaré-Hopf theorem AT
0 and get smallest adjustments! N By gy
L2-minimum of adjustment vector 77 2l TN

. . Tyt 1 -2
for “straightest” solution AN\ e

» link to torsion T TG

eV

. { S
Now, path-independent transport! 7+ 7/ 7 7
% 0 creating discrete vector field on surface Z
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Resulting trivial connection
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(no other singularities present)
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Vignette Z:
CArtan far Data Science




Context

Era of big data
2 lots of high dimensional datasets available
think of them as pointsets in high dimension (RP)
O need for data analysis tools... can geometry help?

0 data often sample a d-manifold with d<<D

example: just a bunch of 128x128 images? (here, D-1282)
» only camera angle varies (two dimensional, in disguise!)

afldlabababindied

Geometry for Data Science?

Dimensionality Reduction:
mapping data from RP to R, with d«D

2 ie., finding a Euclidean embedding in low dimension
in a 'most isometric” way (e.g., try to preserve pairwise distances)
O two main approaches (hoth based on aqenmﬂx 918)
p; all 1’ airwise geodesic distances [

NLDR

%

(N
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Geometry for Data Science?

0% » should be robust to holes too, right?

Dimensionality Reduction:
mapping data from RP to R?, with d«D
2 ie., finding a Euclidean embedding in low dimension
in a 'most isometric” way (e.g., try to preserve pairwise distances)
O two main approaches (both based on eigenanalysis)

using all pairwise geodesic distances
> robust to noise

qung local pOSH:lODng G U U Uy iy

> brittle... A

0 ISOMAP hailed as great extension of PCA o y
> Dijskstra for geo distances, then MDS of distance matrix g = = 4
> but planar pointsets should be trivial to handle, right? f 0

Ny

> pointsets on a developable surfaces too

17

Connection-based ISOMAP

Key idea: Parallel transport to find geodesic distances
O use intrinsic neighborhoods (k-NN) to estimate tangent spaces
2 define metric connection between tangent spaces T;
rotation of a tangent space frame to get to a parallel one nearby

> Ry = argmin”']I‘j - ']I‘iR”i, Procrustes problem solved via SVD
REO(d)
0 geodesic distances easy to evaluate (instead of Dijkstra’s)
through Cartan’s development (unfold path in tangent space)
> intuition: geodesics are straight under development




Connection-based ISOMAP

Key idea: Parallel transport to find geodesic distances
O use intrinsic neighborhoods (k-NN) to estimate tangent spaces
0 define metric connection between tangent spaces T;
rotation of a tangent space frame to get to a parallel one nearby

- Ryj = argmin||T; ~ TiR]l,
0 geodesic distances easy to evaluate (instead of Dijkstra’s)
through Cartan’s development (unfold path in tangent space)
> intuition: geodesics are straight under development

6 lines of code to change in ISOMAP....

Y

Result on 3D Embedded in 100D

20
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On «Real» Data (etter A rotated/scaled)
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Revisiting Fluid Incompressibilty

® & o 0o o o ° © o FIELD APPROXIMATION

4 kernel methods mostly (SPH)
evaluate density, forces

INCOMPRESSIBILITY
divergence-free velocity field

LIMITATIONS
clustering of particles
= requires tiny time-steps
SO LS NelTe o g © artificial damping

23

Examples of Previous Work

Typical results, even for small timesteps

Divergence-free velocity (PIC-FLIP) Volume preservation (PBF,PCSPH)

12



Geometric Approach

INCOMPRESSIBILITY
divergence-free velocity field

= preservation of local volumes

PARTICLES + POWER CELLS
= POWER PARTICLES

preservation of finite volumes
well-centered power diagram
no kernel evaluation needed

13



Rotating Blade

27

Variational Nature of Mechanics

The basic structure of mechanics is geometric

0 Hamilton’s stationary action principle and variants
motion extremizes the integral of the Lagrangian | L(q,¢)dr
Euler-Lagrange eqs are nothing but F=m a '

> but change an IVP into a BVP

Numerical integrators?
0 leverage geometric properties!

O just discretize { aldms d s, Sk

manifold

%
|

28
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Variational Nature of Mechanics

The basic structure of mechanics is geometric
0 Hamilton’s stationary action principle and variants
motion extremizes the integral of the Lagrangian / L(g,q)dt
Euler-Lagrange eqs are nothing but F=m a A
> but change an IVP into a BVP
Numerical integrators?
0 leverage geometric properties! -
O just discretize paths (time stepping)

1
and use quadrature to evaluate discrete action J 0 Liggidiad ‘

L jan tama )E[I“ A l*(‘?#fjf)ﬁ(qk_ 1s qk) — g1
0 make for better nukmerics
preserves symplecticity
conserves energy remarkably well
preserves symmetries through (discrete) Noether’s theorem

29

® \ ., Liegroup integrators

0 Links to known integrators

0 (non)holonomic constraints,
O time adaption
Q etc.. -~

Molecular
dynamics

30

30
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Fluids in Computer Graphics

Often using incompressible Navier-Stokes equations

ou 1
E+u-l7u=—;|7p+v|7-|7u+F with V-u=0

can be expressed in various ways — in particular, with vorticity
Solvers:

= Fulerian methods
grid- or mesh-based
= Lagrangian methods
particles, typically T e $16 131 o ot S0 18]

= hybrid methods %’ . * .

e.g., MPM, PIC.,...
4 8

geometric integrators too!
Reflection-advection solver

Arnold’s geodesics of
diffeomorphisms [Fuetal. SIG'17] [Zehnder et al. SIG 18]

the volume-preserving PolyPIC

(7
31

Practical Issues

Particles cool, but messy

2 follow the motion, so seemingly efficient
0 but local density keeps on changing, so noisy numerics

O air is everywhere, so millions of particles needed!
0 adaptive sampling tricky and not memory friendly

Meshes/grids great, but limited

0 fixed resolution, whether there’s action or not
0 adaptive grid size costly in practice

O often require smaller time steps
0 for similar visual quality

Issues with even hybrid methods:
= always need to somehow maintain divergence-freeness
= lack of accuracy in nonlinear advection (dissipation, dispersion...)

(7
32



Introducing a mesoscopic description of fluid

. el @ & ¢ «”
s ./'
£ e/
i Ny Fed ;
Macroscopic view Mesoscopic view Microscopic view
Navier-Stokes equations  Boltzmann equation Molecular dynamics

23
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Boltzmann Discretization

Introducing a mesoscopic description of fluid

0 based on a statistical-mechanics (a.k.a. kinetic) model
use a particle distribution function f(x,v,t)
> probability for a particle to be at x at time t with a velocity v

0 Boltzmann transport equation:

of
E-}'V'szﬂ(f)-}'F'va
amounts to (néar) incompressible Navier-Stokes
once disc rtice | m xes issues, and

importantly, can be done 1n a massivel :_Para]lel way!
particles particles pafticles

Macroscopic qudtititis simple td FECsver!
p(x,t) = ffdv pu(x,t) = fvfdv

note: “u=0" # no motion!

(7
34
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Great for Graphics...

*2 slower

Stone skippin,
resolution; r:oxm-zﬂ Sheet of water

Flow
Phase resolution:1440x288x432 Flow resolution: 600x300x300
Simulation time: 1,12 min/irame. e, " Py
o, Simulation time: 58 s/frame

Fluttering

= But still no “variational”
approach for it...

Re = 100,000

36
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Vignatte 4
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%
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What’s Up with Coarse Meshes?

Take a simple hanging cube...
» even with the exact same simulation technique...
> say, non-linear deformable body simulated with trilinear FEM
» simply choosing a twice-coarser grid changes everything

GeometS hysics!

neities

38

38
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Aggravating Circumstances

Averaging elasticity/stiffness is just not that easy...
> hard + soft in 1D?
» does not behave like a half-hard single bar

rigid rigid

39

39

Aggravating Circumstances

Complexity emerges from simplicity
~ in elasticity, isotropic materials are defined by 2 coefficients...
» Poisson’s ratio and Young’'s modulus
> anisotropic linear elasticity requires 21 parameters
the whole elasticity tensor, with symmetries removed

» but two isotropic materials create ... an anisotropic material

— Soit Hard

composite
% material

40
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Numerical Homogenization

Mostly two approaches to improve results

Idea: compute homogenized

material per coarse element
making sure elastic
potentials match

Limitations: only two levels;
% imperfect

41

41

Numerical Homogenization

Mostly two approaches to improve results

offer a richer solution space

x

Limitation: slow preprocess,
imperfect

Idea: change shape functions to

precomputed locally or globally

42
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Better Still: Operator Adaptation

= adaptivity through operator- and material-adapted wavelets
block-diagonalizes the stiffness matrix
basis fcts localized in both space and eigenspace
tight bounds on accuracy!

P = P* @ W
|:> coarse basis function [

finer basis function
Heterogeneous

elastic material
even finer basis function

= Limitation: still some preprocessing to do....

(7
43
43

Best Homogenization Thus Far

16x16 2x2 wavelets 4x4 wavelets 8x8 wavelets 16x16

Even for Whitney differential forms &
0 ex: div-free bases adapted to
I-form Laplacian
0 and restricted to embedded domains

i.e., edges on a regular grid
but bases adapted to a given domain

(7
44
44
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From Homogenization to Solvers?

This line of work surprisingly led to fast linear solvers...

Q proved that homogenization can be
rewritten as a simple Cholesky factorization

0 homogenization leads to linear complexity solvers (!)
«  one needs new hierarchical ordering and sparsity pattern
= then perform incomplete (reverse) Cholesky factorization
«  resulting matrix used a preconditioner in conjugate gradient
> beats typical Cholesky, multigrid preconditioners, SVD, etc...
> often by orders of magnitude

ig @ 7~ YiB-1

a5 4% L8 y .
Cod - 3 ) )
! j @ Y"k@
% = T o 3%—3{9-._ @ Yig_p

m Fine-to-coarse reordering
45

45

Lightning-Fast BIE Solver

Whether on Helmholtz equation g e nmie OT elasticity,
it offers linear complexity instead of quadratic for SVD

Allows >1M dofs on laptops,
3 to 5 orders of magnitude faster

|

Needs only 9 iterations!

W0

46
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Wrapping Up

NN~ ___ 16 __ _ ________ . e 1 1 1 .
low-resolution (down-sampled) input 10x slower synthesized high-resolution smoke 10x slower O V\/ 1 I I | S
: (resolution: 200x80x80) (resolution: 800x320x320)
e -

>ntial treatments

W

bra, etc...

i you can

0 even
8]

, for instance

% 0 andt Trained with a very different flow!
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QUESTIONS?
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