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Non-Imaging vs. Imaging Optics

Non-Imaging System
A

B

Source Target

Goal: Transfer energy from source to target
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Nonimaging vs. Imaging Optics

Imaging System

A

B

Source Target

A ′

B ′

Goal: Form a perfect image of the source in the target
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Aberrations
Aberrations are small deviations from a perfect image

Figure: A perfect image Figure: An aberrated image
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Aberrations

Aberrations are small deviations from a perfect image

Imaging System

A

Object Target

A ′

(a) Ideal image formation

Imaging System

Object Target

A A ′ Blur

(b) Image formation in reality

Goal: Minimize the spot size for all object points



7 | Sanjana Verma | Design of Freeform Imaging Systems: Mathematical Model and Numerics

Mathematical Description

z

q

q n
dq
ds

p

A ray is fully characterized by phase-space variables

1. Position: q ∈ R2

2. Momentum: p ∈ R2

▶ Phase Space:

Source coordinates (qs, ps)

Target coordinates (qt, pt)

▶ Optical Map:[
qt
pt

]
= M

[
qs
ps

]
▶ Ideal Imaging: M : (qs, ps) → (qt, pt) is linear[

qt
pt

]
=

[
A B
C D

] [
qs
ps

]
A, B, C, and D are 2× 2 constant matrices
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Inverse Methods in Nonimaging Optics

Optical system

Energy distribution
at the source

f(x)

Desired target
distribution

g(y)

▶ Goal: Compute freeform optical elements
▶ Optical Map: y = m(x)
▶ Energy Conservation:

∫
A f(x) d(x) =

∫
m(A) g(y) dy =

∫
A g(m(x)) | det(Dm(x))| dx

▶ Monge-Ampère Equation: det(Dm(x)) = ± f(x)
g(m(x))



9 | Sanjana Verma | Design of Freeform Imaging Systems: Mathematical Model and Numerics

Aim
Design freeform reflectors for 3D imaging systems
using inverse methods from nonimaging optics

How?
Global energy conservation such that an imaging condition is satisfied
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Mathematical Model
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A Double-Reflector System

▶ First Reflector: R1 : z = −ℓ+ u(x)
▶ Second Reflector: R2 : r = −w(̂t) · t̂
▶ Optical Path Length: V = u(x) + |P1P2|+ w(̂t)
▶ Reduced Optical Path Length: β = V− ℓ

▶ Cost Function: u1(x) + u2(y) = c(x, y)

u1(x) = log
(
−u− |x|2

2β + V+ℓ
2

)
u2(y) = log

(
1
w − 2|y|2

β(1+|y|2)

)
c(x, y) = log

(
1

1+|y|2

(
1+ 2x·y

β
+ |x|2|y|2

β2

))
z = −ℓ x

z = 0 y

z

R1

S

R2
ŝ

t̂P1

P2

T
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▶ Energy Conservation:
For any subset A ⊆ Qs × Ps and image set M(A) ⊆ Qt × Pt∫∫

A
Ls(qs, ps) dqs dps =

∫∫
M(A)

Lt(qt, pt) dqt dpt

▶ Ls(qs, ps) = f(qs)δ(ps) and Lt(qt, pt) = g(pt)δ(qt) z = −ℓ x

z = 0 y

z

R1

S

R2
ŝ

t̂P1

P2

T

▶ Consider the mapping m̃(qs) = pt. Then, for any subset Ã ⊆ Qs and image set m̃(Ã) ⊆ Pt∫
Ã

f(qs) dqs =
∫
m̃(Ã)

g(pt) dpt

▶ Substitute the mapping m̃

det(Dm̃(qs)) = ± f(qs)
g(m̃(qs))

, Transport Boundary Condition: m̃(∂Qs) = ∂Pt
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▶ Optical Map for Ideal Imaging:
M : (qs, ps) → (qt, pt) is a linear map[

qt
pt

]
=

[
A B
C D

] [
qs
ps

]

▶ M is symplectic, i.e.,
det(M) = |∂(qt, pt)/∂(qs, ps)| = 1

▶ Using ps = 0 and qt = 0

m̃(qs) = pt, pt = Cqs

det(C) = det(B)−1 = det(Dm̃(qs))

▶ Condition for Rotational Symmetry:

C = ±kI2×2

det(C) = k2

▶ Using energy conservation and rotational
symmetry

det(Dm̃(qs)) =
f(qs)

g(m̃(qs))
= k2

▶ Optical map:

m̃(qs) = ±kqs
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m̃ : Qs → Pt det(Dm̃(qs)) =
f(qs)

g(m̃(qs))

m : S → T det(Dm(x)) =
f(x)

g(m(x))
(1+ |m(x)|2)3

4(1− (|m(x)|2))

z = −ℓ x

z = 0 y

z

R1

S

R2
ŝ

t̂P1

P2

T

▶ Optimal Transport Formulation: The transport relation u1(x) + u2(y) = c(x, y) has infinitely many
solutions, but we restrict ourselves to a c-convex pair

u1(x) = max
y∈T

[c(x, y) − u2(y)] ∀x ∈ S

u2(y) = max
x∈S

[c(x, y) − u1(x)] ∀y ∈ T
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▶ Transformation to Polar Coordinates: m∗ : ω → T , m∗(ζ) = y, where x = x(ζ), ζ = (r, ϑ)
▶ The transport relation ũ1(ζ) + u2(y) = c̃(ζ, y) has infinitely many solutions, but we restrict ourselves to
a c-convex pair

ũ1(ζ) = max
y∈T

[̃c(ζ, y) − u2(y)] ∀ζ ∈ ω

u2(y) = max
ζ∈ω

[̃c(ζ, y) − ũ1(ζ)] ∀y ∈ T

▶ First Reflector:
Differentiate ũ1(ζ) + u2(y) = c̃(ζ, y) and
substitute y = m∗(ζ)
∂ũ1
∂r

=
±2kr

±kr2 + β(1+
√
1− (kr)2)

Solve ODE for u1 and find u(ζ)
▶ Second Reflector:
We have u2(m∗(ζ)) = c̃(ζ,m∗(ζ)) − ũ1(ζ)
Compute u2 and subsequently w

z = −ℓ x

z = 0 y

z

R1

S

R2
ŝ

t̂P1

P2

T
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Verification with Raytracing
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Quantifying Aberrations
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Size of the spot = RMS spot size = (Var[Yt])1/2
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Calculating Inverse Freeform Imaging Reflectors

For an imaging system: f
g = k2

What is the value of k2?

1. A Schwarzschild telescope minimizes aberrations

2. Raytrace ω, and find the corresponding T
3. With global energy conservation, find f/g = k2

4. Compute the optical map m∗ : ω → T
5. Compute the inverse freeform reflectors

S

T

R1

R2

T

A Schwarzschild telescope
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Raytracing

z = −ℓ x

z = 0 y

z

R1

S

R2
ŝ î

t̂P1

P2

T

Requirement: Use a coarse grid to approximate
reflectors and their partial derivatives as smooth
functions

Start

Read data points for R1,R2,
Generate rays from S

Approximate R1, R2

Calculate P1, Approximate n̂ at P1

Calculate î = ŝ − 2(̂s · n̂)n̂

Calculate P2, Approximate n̂ at P2

Calculate t̂ = î − 2(̂i · n̂)n̂

Calculate Yt

End
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B-Spline Quasi-Interpolation for Raytracing

▶ Quasi-Interpolants: For a real-valued function f ∈ Bd, where the Bd is the bivariate space of
polynomials of total degree at most d,

Qd[f](x, y) =
n∑

s=1

n∑
r=1

λrs(f)Br,d,ξ(x)Bs,d,µ(y),

where
1. Br,d,ξ(x) is the rth B-spline of degree d defined on an open knot sequence ξ = {ξr}

n+d+1
r=1 in the x-direction

2. Bs,d,µ(y) is the sth B-spline of degree d defined on an open knot sequence µ = {µs}
n+d+1
s=1 in the y-direction

3. n is the total number of B-splines
4. λrs(f) are coefficients depending on known values of f

▶ Partial Derivatives:
Dx[f](x, y) =

∑n
s=1

∑n
r=2 crs(f)Br,d−1,ξ(x)Bs,d,µ(y)

Dy[f](x, y) =
∑n

s=2

∑n
r=1 crs(f)Br,d,ξ(x)Bs,d−1,µ(y) (a) B-Spline interpolation (b) Quasi-interpolation
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Advantages

▶ Local Method: λrs(f) are linear combinations of the values of f at points in the neighborhood of the
support of the B-splines

▶ Does not depend on huge data sets
▶ Direct Method: Built directly without solving any systems of linear equations
▶ Low computational cost
▶ Flexibility and simplicity of constructing tailor-made approximation schemes
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▶ Approximation Order: Let h = max(hx, hy), where hx = max(ξr+1 − ξr), hy = max(µs+1 − µs)

1. Function: ||f − f0|| = O(hd+1)
2. First-order derivative: ||Df − Df0|| = O(hd)
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Approximate f(x, y) = cos(xy) + sinh(x) + exp(xy), (x, y) ∈ [0, 0.5]× [0, 0.5] using d = 3, Br,3,ξ(x), Bs,3,µ(y)
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Numerical Results

Imaging System

Source Target

On-Axis Rays
Optical Axis

Off-Axis Rays
α

Goal: Compare RMS spot sizes of on-axis and off-axis rays for classical and inverse designs
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Numerical Results
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Comparison of RMS spot sizes

Table: RMS spot sizes for different angles

Angle 0◦ ±2◦

Inverse Design 7.417e− 11 9.075e− 08
Classical Design 1.386e− 07 3.461e− 07

Spot sizes for inverse freeform design are smaller than the classical design for both on-axis and off-axis rays
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Concluding Remarks
▶ Inverse methods for the design of nonimaging systems can be adapted for imaging systems by choosing
suitable energy distributions

▶ Inverse freeform design is superior to the classical design
▶ Inverse design can be a good starting point for optimization
▶ Extend the method to folded optical systems

(a) On-axis system (b) Folded system

https://martijna.win.tue.nl/Optics/

https://martijna.win.tue.nl/Optics/



