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Non-Imaging vs. Imaging Optics

Non-Imaging System

Source Target

B

Goal: Transfer energy from source to target
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Nonimaging vs. Imaging Optics

Source Target

B/

Goal: Form a perfect image of the source in the target
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Aberrations

Aberrations are small deviations from a perfect image

Fisure: A perfect image Figure: An aberrated image
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Aberrations

Aberrations are small deviations from a perfect image

Imaging System Imaging System

A A’ A AIBIur

Object Target Object Target

(a) Ideal image formation (b) Image formation in reality

Goal: Minimize the spot size for all object points
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Mathematical Description

A ray is fully characterized by phase-space variables
1. Position: q € R?
2. Momentum: p € R?
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» Phase Space:

Source coordinates | (q,,p,)

Target coordinates | (q,,p,)

» Optical Map:

MO

» Ideal Imaging: M : (q,p,) — (q,, p;) is linear

sleles]ln]

A, B, C,and D are 2 x 2 constant matrices
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Inverse Methods in Nonimaging Optics

Optical system

Energy distribution _ _ _y ---y Desired target
at the source ---» ---) distribution
g oo )

v

Goal: Compute freeform optical elements
Optical Map: y = m(x)
Energy Conservation: [, f(x) d( f dy = [,g(m(x)) | det(Dm(x))| dx

v

v

v

Monge-Ampére Equation: det(Dm(x)) =
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Aim
Design freeform reflectors for 3D imaging systems
using inverse methods from nonimaging optics

How?
Global energy conservation such that an imaging condition is satisfied
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Mathematical Model
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A Double-Reflector System

» First Reflector: Rq :z = —{ + u(x) -
» Second Reflector: Ry :r = —w(t) -t 7—=0 T
» Optical Path Length: V = u(x) + |P1P2| + w(t)
» Reduced Optical Path Length: =V —¢{

» Cost Function: uy(x) + ua(y) = c(x,y)

u1(x):|og( u—ﬂ V”) R /

ua(y) = log (1—m) b | R2
c(x,y) = log (1“)"2 (1 n 2xy + |x[? \yl )) z=—4 g 2 s

-
>

">
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» Energy Conservation: z=0 g
For any subset A C Qs x P and image set M(A) C Q; X P,

P
(g, S)dsdszﬂ L (e p.) dg. d
.”'_A qs, Ps) dq, dp M (G, P ) 4G, AP, R4 /

> Li(qq,ps) = flq,)d(p,) and Li(q, p.) = g(p.)0(q,) z=—¢ S E x

>

>

» Consider the mapping m(q,) = p,. Then, for any subset A C Q, and image set m(A) C P,

L fla)de. = | ¢lpoop

m(A)

» Substitute the mapping m

det(Dm(q,)) = £+——"~=, Transport Boundary Condition: m(0Q;s) = 0P;
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» Optical Map for Ideal Imaging:
M (qgp,) = (g, p,) is a linear map

slele ]l

» M is symplectic, i.e,
dEt(M) = \a(qt»Pt)/a(qs)Ps)\ =1
» Usingp, =0andq, =0

ﬁ'(qs) =p, P.=0Cq,
det(C) = det(B) " = det(Dm(q,))
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» Condition for Rotational Symmetry:
C = tkbhx>

det(C) = k?

» Using energy conservation and rotational
symmetry

det(Dm(q,)) = _fla) K2

g(ml(q,))
» Optical map:

m(q,) = +kq,
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T
z=0 Y
o - _ flgy)
m:Qs — P, det(Dm(q,)) = 7};(51((15)) N P, :
| X (4 ImboP) R,
z=— P2 ’
S X

» Optimal Transport Formulation: The transport relation uq(x) 4+ uz(y) = c(x,y) has infinitely many
solutions, but we restrict ourselves to a c-convex pair

ur(x) = maxle(x,y) — ua(y)] vxeS
yeT
ualy) = rpeag[dx, y) — uq(x)] VWyeT
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» Transformation to Polar Coordinates: m*: w — 7, m*({) =y, where x = x(C), ¢ = (r,d)

» The transport relation i1 (g) 4+ ua(y) = (¢, y) has infinitely many solutions, but we restrict ourselves to

a c-convex pair

in(¢) = r;éa%([E(C, y) — ua(y)] Ve w
u(y) = Eréaé[E(C, y) — 1 (Q)] WweT

» First Reflector:
Differentiate 1 (&) + uz(y) = ¢(¢,y) and
substitute y = m*({) z=0

801 +2kr

o k2 + B(1 4+ /1 — (k)

Solve ODE for uq and find u(Q)

» Second Reflector: R4
We have up(m*(C)) = ¢(g,m*(C)) — v (Q)
Compute u, and subsequently w

n>

>

P,
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Verification with Raytracing
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Quantifying Aberrations
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vl

Scatter plots

Source (x)

Raytracing

Target (Y)

Size of the spot = RMS spot size = (Var[Y,])"/?
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Calculating Inverse Freeform Imaging Reflectors

For an imaging system: g = k2
What is the value of k*?

A Schwarzschild telescope minimizes aberrations

Raytrace w, and find the corresponding T R

With global energy conservation, find f/g = k2

Compute the optical map m* : w — T
Ra

ik wN o=

Compute the inverse freeform reflectors

S

A Schwarzschild telescope
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Raytracing

z=0 : T
N y
P4 £
R /
’s\ A
i
Ry
P
z=—{ 2 h

S

Requirement: Use a coarse grid to approximate
reflectors and their partial derivatives as smooth

functions
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Start

l

Read data points for R1,Ra,
Generate rays from S

Approximate R+, Rz

l

Calculate P4, Approximate fat Py

!

A

Calculate = § —2(5 - A)A

w>

Calculate Py, Approximate fi at Py

l

Calculate £ =1 —2(f- A)

|

Calculate Y;

ETS

End
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B-Spline Quasi-Interpolation for Raytracing

> Quasi-Interpolants: For a real-valued function f € By, where the By is the bivariate space of
polynomials of total degree at most d,

X)y ZZ)\rs ﬂBrdE, sd,p(y))

s=1 r=1

where

1. Byg,z(x) is the rth B-spline of degree d defined on an open knot sequence & = {&}"79*" in the x-direction

2. Bs,g,u(y) is the s B-spline of degree d defined on an open knot sequence p = {;}7=¢*"
3. nis the total number of B-splines

4. As(f) are coefficients depending on known values of f

> Partial Derivatives: /\/ . )
D ZQ 12:’— Crs ﬂBrd 15.( ) s,d,p.(y)

D [ﬂ (X,y ZS s Zr_ Crs ﬁBr d, 2,( )B; d*1,u(y) (a) B-Spline interpolation

in the y-direction

(b) Quasi-interpolation
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Advantages

» Local Method: A(f) are linear combinations of the values of f at points in the neighborhood of the
support of the B-splines

» Does not depend on huge data sets
» Direct Method: Built directly without solving any systems of linear equations
» Low computational cost

» Flexibility and simplicity of constructing tailor-made approximation schemes
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» Approximation Order: Let h = max(hy, h,), where h, = max(&,11 — &), h, = max(s1 — L)

1. Function: |[f — foll = O(h**")

2. First-order derivative: ||Df — Dfo|| = O(h)

Convergence: f

Convergence: D, f

1077
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o (h)
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Convergence: D, f

——Error
— (h?)

1/h —

10%

Approximate f(x,y) = cos(xy) + sinh(x) 4+ exp(xy), (x,y) € [0,0.5] x [0, 0.5] using d = 3, B, 3,£ (x), Bs,3,u (y)
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Numerical Results

Imaging System

On-Axis Rays - S A
Off-Axis Rays /)/\/ ptical Axis

Source Target

Goal: Compare RMS spot sizes of on-axis and off-axis rays for classical and inverse designs
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Numerical Results

10°°
1 1077
% 107 Table: RMS spot sizes for different angles
5%; o Angle 0° +2°
Z 10 _ Inverse Design | 7.417e — 11 | 9.075e — 08
o i Classical Design | 1.386e — 07 | 3.461e — 07
-2 0 1 2

-1
Angle (a)—

Comparison of RMS spot sizes

Spot sizes for inverse freeform design are smaller than the classical design for both on-axis and off-axis rays
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Concluding Remarks

> Inverse methods for the design of nonimaging systems can be adapted for imaging systems by choosing
suitable energy distributions

v

Inverse freeform design is superior to the classical design

v

Inverse design can be a good starting point for optimization

v

Extend the method to folded optical systems

(a) On-axis system (b) Folded system

https://martijna.win.tue.nl/Optics/
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