Numerical algorithms for the reconstruction of space-dependent sources in thermoelasticity

Karel Van Bockstal^a Joint work with F. Maes

^aGhent Analysis & PDE Center, Department of Mathematics: Analysis, Logic and Discrete Mathematics Ghent University, Belgium e-mail: karel.vanbockstal@ugent.be

Dutch-Flemish Scientific Computing Societies (SCS) Springmeeting Hasselt University, June 13, 2025

Outline

Inverse spatial source problems: background

Reconstruction methods

- Landweber method
- Tikhonov minimisation
- Sobolev gradient method

2

Inverse spatial source problems in thermoelasticity

Inverse spatial source problems: Heat equation

- Heat problem on a Lipschitz domain $\Omega \subset \mathbb{R}^d$, with final time T > 0
- Separated-variable heat source: $h \in L^2(0, T)$ and $f \in L^2(\Omega)$

Problem formulation:

$$\partial_t u - \kappa \Delta u = h(t)f(x) \quad \text{in } Q_T \\ u(x, t) = 0 \qquad x \in \Sigma_T \\ u(x, 0) = u_0(x) \qquad x \in \Omega$$

DP: Given the source *hf*, determine $u_T(x) := u(x, T)$

- If $\kappa > 0$, $h \in L^2(0, T)$, $f \in L^2(\Omega)$ and $u_0 \in H^1_0(\Omega)$, then:
 - A unique weak solution exists:

 $u \in \mathsf{C}\left([0, T], \mathsf{L}^{2}(\Omega)\right) \cap \mathsf{L}^{2}\left((0, T), \mathsf{H}_{0}^{1}(\Omega)\right), \quad \partial_{t}u \in \mathsf{L}^{2}\left((0, T), \mathsf{L}^{2}(\Omega)\right)$

- The final state $u(\cdot, T) \in L^2(\Omega)$ is well-defined
- The measurement operator $M_T : L^2(\Omega) \to L^2(\Omega)$ is well-defined:

$$f \stackrel{M_T}{\longmapsto} u$$

Inverse spatial source problems: Heat equation

• Measurement operator M_T :

 $L^{2}(\Omega) \ni f \xrightarrow{M_{T}} u_{T} \in L^{2}(\Omega)$

IP: Given u_T , determine *f* such that $M_T(f) = u_T$

• If $u_0 \in H_0^1(\Omega)$, one can show that for the solution *u* to the DP:

$$\int_{0}^{T} \|\partial_{t} u(\cdot, t)\|_{L^{2}(\Omega)}^{2} dt + \max_{t \in [0, T]} \|\nabla u(\cdot, t)\|_{L^{2}(\Omega)}^{2} \leq C \|f\|_{L^{2}(\Omega)}^{2}$$

for some constant $C = C(T, \kappa, ||h||_{L^2(0,T)}, ||u_0||_{H^1_0(\Omega)}) > 0$

- M_T is linear if $u_0 = 0$ (achieved by linear superposition)
- Consequences of (\bigstar_{EE}) :
 - M_T is bounded
 - $M_T(f) \in H^1_0(\Omega) \hookrightarrow \hookrightarrow L^2(\Omega)$
 - So M_T is compact
 - Well-posed DP, X III-posed IP

References: [Cannon, 1968], [Rundell, 1980], [Prilepko and Solov'ev, 1987], [Solov'ev, 1989], [Isakov, 1990], [Johansson and Lesnic, 2007], [Erdem et al., 2013], [Slodička and Johansson, 2016], [Slodička, 2020]

Inverse spatial source problems: Heat equation – Uniqueness

IP: Given $u_T = u(\cdot, T)$, determine *f* such that $M_T(f) = u_T$

• Uniqueness: consider the homogeneous problem:

$$\begin{cases} \partial_t u - \kappa \Delta u &= hf & \text{ in } Q_T \\ u(x,t) &= 0 & \text{ on } \Sigma_T \\ u(x,0) &= 0 = u_T(x) & \text{ in } \Omega \end{cases}$$

- (\cdot, \cdot) denotes inner product in $L^2(\Omega)$ or $L^2(\Omega)$
- Corresponding variational form (for a.a. $t \in (0, T)$):

$$(\partial_t u(t), \varphi) + \kappa \left(\nabla u(t), \nabla \varphi \right) = h(t) \left(f, \varphi \right), \quad \forall \varphi \in \mathsf{H}^1_0(\Omega)$$

 (\bigstar_{VFDP})

Observe that

$$\int_0^T (f, \partial_t u(\cdot, t)) \, \mathrm{d}t = (f, u_T - u_0) = 0$$

Inverse spatial source problems: Uniqueness – continued

- Suppose $h \in C^1([0, T])$ with h > 0 and $h' \ge 0$
- Choose $\varphi = \partial_t u(\cdot, t) \in H_0^1(\Omega)$ in (\bigstar_{VFDP}) and rewrite:

$$\underbrace{\int_0^T \frac{1}{h(t)} \left\|\partial_t u(\cdot, t)\right\|^2 \mathrm{d}t}_{\geq 0} + \frac{\kappa}{2} \int_0^T \frac{1}{h(t)} \partial_t \left\|\nabla u(\cdot, t)\right\|^2 \mathrm{d}t = 0$$

• Apply partial integration on the second term:

$$\int_0^T \frac{1}{h(t)} \partial_t \|\nabla u(\cdot, t)\|^2 \, \mathrm{d}t = \left[\frac{1}{h(t)} \|\nabla u(\cdot, t)\|^2\right]_{t=0}^{t=T} + \int_0^T \frac{h'(t)}{h(t)^2} \|\nabla u(\cdot, t)\|^2 \, \mathrm{d}t \ge 0$$

- Hence, $u \equiv 0$ a.e. in Q_T , and therefore $f \equiv 0$ a.e. in $\Omega \rightsquigarrow$ solution to IP is unique
- See [Isakov, 1990, Slodička and Johansson, 2016]

Remark: Also uniqueness for $\{h < 0, h' \le 0\}$ or $\{h \ne 0, \left(\frac{h'}{h}\right)' \le 0\}$ for $h \in C^2([0, T])$

IP requires higher regularity compared to DP!

Inverse Spatial Source Problems: Remarks

Parabolic equation:

- ✓ If h > 0, $h' \ge 0$ or h < 0, $h' \le 0$:
 - Uniqueness holds from final data u_T
 - Also from time-averaged data:

$$\Psi_T(\cdot) := \int_0^T u(\cdot, t) \,\mathrm{d}t$$

Wave equation:

- Equation: $\partial_{tt}u c^2\Delta u = h(t)f(x)$
- ✓ [Isakov, 1990, Ch. 7]: Uniqueness from u_T if:

 $h(t) \ge 0 \text{ and } h'(t) \ge 0 \quad \forall t \in [0, T]$

- × No uniqueness if $h \equiv 1$
 - But uniqueness holds in presence of damping
- ✓ Uniqueness from Ψ_T if $h \neq 0$

• Next: Reconstruction methods v

H.W. Engl, M. Hanke, A. Neubauer Regularization of Inverse Problems Mathematics and its Applications. 1996

Reconstruction of *f* – Landweber method

- Landweber scheme to reconstruct *f* from u_T :
 - choose $0 < \alpha < ||M_T||_{\mathcal{L}(L^2(\Omega), L^2(\Omega))}^{-2}$
 - guess $f_0 \in L^2(\Omega)$
 - iterate

$$f_k = f_{k-1} - \alpha M_T \left(M_T(f_{k-1}) - u_T \right), \quad k = 1, 2, \dots$$

- Since $f_k f = (\mathbb{I} \alpha M_T^2)(f_{k-1} f)$, convergence of $f_k \to f$ in $L^2(\Omega)$ follows
- Estimate (\bigstar_{EE}) implies $u_k \rightarrow u$ in $C([0, T], L^2(\Omega))$
- For noisy data: apply Morozov's discrepancy principle as stopping criterion

only forward solver
'easy' to implement
$$\begin{cases} \mathbf{X} \\ slow \\ f_k|_{\partial\Omega} \equiv f_0|_{\partial\Omega} \text{ for all } k \\ Choice of \alpha? \end{cases}$$

• Tikhonov functional $\mathcal{J} \colon L^2(\Omega) \to \mathbb{R}$ quantifies the misfit:

$$\mathcal{J}(f) = \frac{1}{2} \left\| M_T(f) - u_T \right\|_{L^2(\Omega)}^2$$

• Goal: find f such that the model output $M_T(f)$ fits the data u_T :

 $\operatorname{argmin}_{f \in L^2(\Omega)} \mathcal{J}(f)$

- How to find this minimiser?
 - Compute Gâteaux derivative $\mathcal{J}'(f; \tilde{f})$
 - Use an adjoint PDE to express the gradient $\nabla \mathcal{J}[f]$

Directional derivative of the forward map $f \mapsto u$

- Let $u(\cdot, \cdot; f)$ be the solution to DP with source term f
- Consider the directional derivative δu in direction $\tilde{f} \in \mathcal{H} \subseteq L^2(\Omega)$:

$$\delta u(\cdot,\cdot;f,\tilde{f}) = \lim_{\varepsilon \to 0} \frac{u(\cdot,\cdot;f+\varepsilon\tilde{f}) - u(\cdot,\cdot;f)}{\varepsilon}$$

• Then δu satisfies the sensitivity problem:

$$\begin{cases} \partial_t (\delta u) - \kappa \Delta(\delta u) &= h(t) \tilde{f} & \text{in } Q_T \\ \delta u &= 0 & \text{on } \Sigma_T \\ \delta u(x, 0) &= 0 & \text{in } \Omega \end{cases}$$

• Variational formulation (for a.a. $t \in (0, T)$):

$$(\partial_t(\delta u)(t),\varphi) + \kappa \left(\nabla(\delta u)(t),\nabla\varphi\right) = h(t) \left(\tilde{f},\varphi\right), \quad \forall \varphi \in H^1_0(\Omega) \qquad (\bigstar_{\mathsf{VFSP}})$$

• Key observation:

$$(\delta u)(T)=M_T(\tilde{f})$$

Gateaux derivative of ${\mathcal J}$ and gradient in $L^2(\Omega)$

• Compute the Gâteaux derivative of \mathcal{J} at f in the direction \tilde{f} :

$$\mathcal{J}'(f;\tilde{f}) = \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} \left[\mathcal{J}(f + \varepsilon \tilde{f}) - \mathcal{J}(f) \right] = \cdots = \left((\delta u)(T), u(T; f) - u_T \right) = \left(M_T(\tilde{f}), M_T(f) - u_T \right)$$

- The map $\mathcal{J}'(f;\cdot)$: $L^2(\Omega) \to \mathbb{R}$ is a continuous linear functional
- By the Riesz representation theorem, there exists a unique element $\nabla \mathcal{J}[f] \in L^2(\Omega)$ such that

$$\mathcal{J}'(f;\tilde{f}) = \left(\nabla \mathcal{J}[f],\tilde{f}\right), \quad \forall \tilde{f} \in \mathsf{L}^2(\Omega)$$

• Which element? \Rightarrow Use an "adjoint problem" to characterise $\nabla \mathcal{J}[f]!$

Adjoint problem and gradient of ${\mathcal J}$

- Take $\varphi = u^* \in H^1_0(\Omega)$ (i.e. $u^*|_{\partial\Omega} = 0$) in sensitivity problem (\bigstar_{VFSP})
- Apply partial integration (in time) and Green's theorem (in space)
- As $(\delta u)(0) = 0$ and $(\delta u)|_{\partial\Omega} = 0$:

$$\int_0^T \int_\Omega \delta u \cdot \left[-\partial_t u^* - \kappa \Delta u^* \right] \mathrm{d}x \, \mathrm{d}t + \int_\Omega u^* (\cdot, T) \cdot M_T(\tilde{f}) \, \mathrm{d}x = \int_\Omega \tilde{f} \cdot \left[\int_0^T h u^* \, \mathrm{d}t \right] \mathrm{d}x$$

Hence

$$\left(\nabla \mathcal{J}[f],\tilde{f}\right) = \left(M_{T}(\tilde{f}), M_{T}(f) - u_{T}\right) = \left(\int_{0}^{T} h(t)u^{*}(t) dt, \tilde{f}\right), \quad \nabla \mathcal{J}[f] = \int_{0}^{T} h(t) u^{*}(t) dt \in L^{2}(\Omega)$$

where u^* solve the adjoint problem

$$\begin{array}{ll} -\partial_t u^* - \kappa \Delta u^* = 0 & \text{in } Q_T \\ u^*(x,t) = 0 & x \in \Sigma_T \\ u^*(x,T) = M_T(f) - u_T & x \in \Omega \end{array}$$

Remark: Expression for gradient of \mathcal{J} is not unique: taking $\varphi = \partial_t u^a$ leads to $\nabla \mathcal{J}[f] = \int_0^T h(t)\partial_t u^a(t) dt$ with $\begin{pmatrix} -\partial_t u^a - \kappa \Delta u^a & = u_T - M_T(f) & \text{in } O_T \\ \frac{\partial_t u^a}{\partial t} (x, t) & = 0 & T - M_T(f) \end{pmatrix}$

$$\begin{array}{ccc} u^*(x,t) &= 0 & x \in \Sigma_T \\ u^*(x,T) &= 0 & x \in \Omega \end{array}$$

 \bullet [Johansson and Lesnic, 2007]: ${\mathcal J}$ is strictly convex \leadsto unique minimiser

- Use the (standard) steepest descent algorithm to minimise \mathcal{J} :
 - ► Initialise with a guess $f_0 \in L^2(\Omega)$ and compute $\nabla \mathcal{J}[f_0]$
 - Update iteratively via

$$\begin{aligned} & f_n = f_{n-1} - \tau_n \nabla \mathcal{J}[f_{n-1}] \\ & \tau_n = \operatorname{argmin}_{\tau > 0} \mathcal{J}\left(f_{n-1} - \tau \nabla \mathcal{J}[f_{n-1}]\right) \end{aligned}$$

• Optimal stepsize $\tau_n > 0$ from a 1D minimisation problem:

$$\tau_n = \frac{(M_T(f_{n-1}) - u_T, M_T(\nabla \mathcal{J}[f_{n-1}]))}{\|M_T(\nabla \mathcal{J}[f_{n-1}])\|^2}$$

• Combined with stopping criterion: $J(f_{n+1}) > J(f_n)$

(very) quick
forward & adjoint solver
$$f_k|_{\partial\Omega} \equiv f_0|_{\partial\Omega}$$
 for all k

• Alternative: conjugate gradient method

K. Van Bockstal

Reconstruction of *f* – **Sobolev Gradient Method**

- Motivation: How can we improve updates near the boundary?
- Idea: Add a post-processing step to compute a smoother gradient
- Given a guess $f_0 \in L^2(\Omega)$, iterate as follows:
 - Compute the standard $L^2(\Omega)$ -gradient $\nabla \mathcal{J}[f_{n-1}]$ from the adjoint problem
 - Compute the Sobolev gradient $\nabla_{S} \mathcal{J}[f_{n-1}]$ as the weak solution \mathcal{K} to:

 $\begin{cases} -\nabla \cdot (r_1 \nabla \mathcal{K}) + r_0 \mathcal{K} = \nabla \mathcal{J}[f_{n-1}] & \text{in } \Omega \\ \nabla \mathcal{K} \cdot \boldsymbol{n} = 0 & \text{on } \partial \Omega \end{cases}$

with weights $r_0, r_1 : \Omega \to \mathbb{R}$ satisfying: $0 < \underline{r_i} \le r_i(x) \le \overline{r_i}, i = 0, 1$

► Update *f_n*:

 $\begin{cases} f_n = f_{n-1} - \tau_n \nabla_S \mathcal{J}[f_{n-1}] \\ \tau_n = \operatorname{argmin}_{\tau > 0} \mathcal{J}(f_{n-1} - \tau \nabla_S \mathcal{J}[f_{n-1}]) \end{cases}$

 \rightsquigarrow This enables updates at the boundary of $\Omega!$

(very) quick Choice of r_0, r_1 ? updates at the boundary Requires solving additional PDE

Identifiability of space-dependent sources in thermoelasticity

System of type-III

$$\begin{split} \rho \partial_{tt} \mathbf{u} - \mu \Delta \mathbf{u} - (\lambda + \mu) \nabla (\nabla \cdot \mathbf{u}) + \gamma \nabla \theta &= g_{\mathbf{u}}(t) \mathbf{f}_{\mathbf{u}}(\mathbf{x}) & \text{ in } Q_T \\ \rho C_s \partial_t \theta - \kappa \Delta \theta - \int_0^t k(t - s) \Delta \theta(s) \, ds + T_0 \gamma \nabla \cdot \partial_t \mathbf{u} &= g_{\theta}(t) f_{\theta}(\mathbf{x}) & \text{ in } Q_T \\ \mathbf{u}(\mathbf{x}, t) &= \mathbf{0}, \ \theta(\mathbf{x}, t) &= \mathbf{0} & \text{ in } \Sigma_T \\ \mathbf{u}(\mathbf{x}, \mathbf{0}) &= \overline{\mathbf{u}}_0(\mathbf{x}), \ \partial_t \mathbf{u}(\mathbf{x}, \mathbf{0}) &= \overline{\mathbf{u}}_1(\mathbf{x}), \ \theta(\mathbf{x}, \mathbf{0}) = \overline{\theta}_0(\mathbf{x}) & \text{ in } \Omega \end{split}$$

ISP	unknown	measurement	data	conditions
ISP1.1	f _u	ξ_T	g u, r	$g_{\boldsymbol{u}} \in C_1$, (C:PDE@ $t = 0$)
ISP1.2	f _u	χ_T	g _u , r	$g_{\boldsymbol{u}} \in C_0$, (C)
ISP2	$f_{ heta}$	$\psi_{\mathcal{T}}$	$g_{ heta},s$	$g_{ heta} \in C_{1,*}$, (C)

No damping term needed

• Uniqueness for all ISPs

F. Maes, K. Van Bockstal Uniqueness for inverse source problems of determining a space-dependent source in thermoelastic systems. J. Inverse III-Posed Probl. 30(6), 845–856 (2022)

K. Van Bockstal

Inverse spatial source problems in thermoelasticity

Reconstruction for inverse source problems in thermoelasticity

- Landweber method for ISP1.2 with $N_T: L^2(\Omega) \to L^2(\Omega): f \mapsto \int_0^T u(\cdot, t; f) dt$
 - $\boldsymbol{f}_k = \boldsymbol{f}_{k-1} \alpha N_T (N_T (\boldsymbol{f}_{k-1}) \boldsymbol{X}_T),$ with $0 < \alpha < ||N_T||_{\mathcal{L}(L^2(\Omega), L^2(\Omega))}^{-2}$
 - ✓ $f_k \rightarrow f$ in L²(Ω) for any $f_0 \in L^2(\Omega)$
 - only forward solver needed
 - $\pmb{\mathsf{X}}$ slow, zero update at the boundary, α
 - FENICS PROJECT

The finite element library DOLFINx v0.8.0 [Logg and Wells, 2010, Logg et al., 2012b] from the FEniCS project [Logg et al., 2012a] is used

- Processor: 12th Gen Intel(R) Core(TM) i7-1270P @ 2.20 GHz with 32 GB RAM on Windows 11 Pro with Ubuntu (WSL) v22.04.4 LTS
- Max. number of iterations: 200

K: number of iterations; e_r : relative error (solid lines)

F. Maes, K. Van Bockstal Numerical algorithms for the reconstruction of space-dependent sources in thermoelasticity. Math.

K. Van Bockstal

Reconstruction for inverse source problems in thermoelasticity

• Tikhonov minimisation for ISP1.2

$$\mathcal{I}_{\beta}(\boldsymbol{f}) = \frac{1}{2} \|\boldsymbol{N}_{T}(\boldsymbol{f}) - \boldsymbol{X}_{T}\|_{\boldsymbol{L}^{2}(\Omega)}^{2} + \frac{\beta}{2} \|\boldsymbol{f}\|_{\boldsymbol{L}^{2}(\Omega)}^{2}, \ \beta \geq 0$$
$$\nabla \mathcal{I}_{\beta}[\boldsymbol{f}] = \int_{0}^{T} h(t) \, \boldsymbol{u}^{*}(\cdot, t; \boldsymbol{f}) \, \mathrm{d}t + \beta \boldsymbol{f}$$

where u* is solution to adjoint problem
Steepest descent

$$\begin{cases} \mathbf{f}_n &= \mathbf{f}_{n-1} - \tau_n \nabla I_{\beta}[\mathbf{f}_{n-1}] \\ \tau_n &= \operatorname{argmin}_{\tau > 0} I_{\beta}(\mathbf{f}_{n-1} - \tau \nabla I_{\beta}[\mathbf{f}_{n-1}]) \end{cases}$$

(Max. number of iterations: 200)

- ✓ fast (CGM: faster)
- forward and adjoint solver
- × zero update at the boundary, β

$$\begin{split} \rho \partial_{tt} \boldsymbol{u}^* &- \mu \Delta \boldsymbol{u}^* - (\lambda + \mu) \nabla (\nabla \cdot \boldsymbol{u}^*) + \gamma T_0 \nabla \partial_t \theta^* &= N_T(\boldsymbol{f}) - \boldsymbol{X}_T \quad \text{in } Q_T \\ &- \rho C_s \partial_t \theta^* - \kappa \Delta \theta^* - \int_t^T \kappa(t - s) \Delta \theta^*(s) \, \text{ds} \\ &\quad -\gamma \nabla \cdot \boldsymbol{u}^* &= 0 \qquad \text{in } Q_T \\ &\quad \boldsymbol{u}^* = \boldsymbol{0}, \ \theta^* &= 0 \qquad \text{in } \Sigma_T \\ &\quad \boldsymbol{u}^*(\cdot, T) = \boldsymbol{0}, \ \partial_t \boldsymbol{u}^*(\cdot, T) &= \boldsymbol{0} \qquad \text{in } \Omega \\ &\quad \theta^*(\cdot, T) &= 0 \qquad \text{in } \Omega \end{split}$$

 $f(x)=x\sin(2\pi x),\,\beta=0$

 $f(x) = x \sin(2\pi x) + 0.2, \beta = 0$

F. Maes, K. Van Bockstal, Numerical algorithms for the reconstruction of space-dependent sources in thermoelasticity. Math.

K. Van Bockstal

15/17

Reconstruction for inverse source problems in thermoelasticity

Sobolev gradient method

► Update with $\nabla_S I_\beta \in \mathbf{H}^1(\Omega)$ as (weak) solution to $\begin{cases}
-\nabla \cdot (r_1 \nabla \mathcal{K}) + r_0 \mathcal{K} = \nabla I_\beta & \text{in } \Omega \\
\nabla \mathcal{K} \boldsymbol{n} = \boldsymbol{0} & \text{on } \partial \Omega
\end{cases}$

$$\begin{aligned} \mathbf{f}_n &= \mathbf{f}_{n-1} - \tau_n \nabla_S \mathcal{I}_\beta[\mathbf{f}_{n-1}] \\ \tau_n &= \operatorname{argmin}_{\tau > 0} \mathcal{I}_\beta(\mathbf{f}_{n-1} - \tau \nabla_S \mathcal{I}_\beta[\mathbf{f}_{n-1}]) \end{aligned}$$

- fast (CGM: faster)
- forward, adjoint and elliptic solver
- updates at the boundary
- **×** Choice of r_1, r_0, β

F. Maes, K. Van Bockstal Numerical algorithms for the reconstruction of space-dependent sources in thermoelasticity. *Math. Comput. Simul.* 236, 426–454 (2025)

K. Van Bockstal

Future research directions

- Open problem: Reconstruction of a spatially varying heat source from final-time temperature data
- Further development and analysis of the Sobolev gradient method
- Inverse problems with incomplete boundary data for dynamic thermoelastic systems

Thank you for your attention!

Questions and comments are very welcome.

References I

Cannon, J. (1968).

Determination of an unknown heat source from overspecified boundary data. SIAM Journal on Numerical Analysis, 5(2):275–286.

Erdem, A., Lesnic, D., and Hasanov, A. (2013).

Identification of a spacewise dependent heat source. Applied Mathematical Modelling, 37(24):10231–10244.

Isakov, V. (1990).

Inverse source problems. Providence, RI: American Mathematical Society.

Johansson, B. T. and Lesnic, D. (2007).

A variational method for identifying a spacewise-dependent heat source. *IMA Journal of Applied Mathematics*, 72(6):748–760.

Logg, A., Mardal, K.-A., Wells, G. N., et al. (2012a).

Automated Solution of Differential Equations by the Finite Element Method. Springer, Berlin, Heidelberg.

Logg, A. and Wells, G. N. (2010). DOLFIN: Automated Finite Element Computing. *ACM Trans. Math. Software*, 37(2):28.

References II

Logg, A., Wells, G. N., and Hake, J. (2012b).

DOLFIN: a C++/Python Finite Element Library, chapter 10. Springer, Berlin, Heidelberg.

Prilepko, A. I. and Solov'ev, V. V. (1987).

Solvability theorems and Rothe's method for inverse problems for a parabolic equation. I. *Differ. Equations*, 23(10):1230–1237.

Rundell, W. (1980).

Determination of an unknown non-homogeneous term in a linear partial differential equation from overspecified boundary data. *Applicable Analysis*, 10(3):231–242.

Slodička, M. (2020).

Uniqueness for an inverse source problem of determining a space dependent source in a non-autonomous parabolic equation. *Applied Mathematics Letters*, 107:106395.

Slodička, M. and Johansson, B. T. (2016).

Uniqueness and counterexamples in some inverse source problems. *Applied Mathematics Letters*, 58:56–61.

Solov'ev, V. V. (1989).

Solvability of the inverse problem of finding a source, using overdetermination on the upper base for a parabolic equation. *Differ. Equations*, 25(9):1114–1119.