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Outline

A numerical analysis view to deep learning

® Structure preservation

Adversarial attacks - robust NNs

¢ Contractivity of ODEs and of numerical integrators

Applications variational regularization in imaging
B-stability and Conditional Stability on manifolds
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Deep neural networks - from the point of view of numerical analysis

Let V input space, VV output space
p:V->W.
DNNs - approximation theory:
P pp
by a composition of L simpler maps (layers)
Po=pLopL-100p1, Y =py, o, Vi-1 >V

Vo =V and V; =W, each ¢, depends on a finite number of parameters 0.
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Deep neural networks - from the point of view of numerical analysis

Let V input space, VV output space
p:V->W.
DNNs - approximation theory:
@ g
by a composition of L simpler maps (layers)
P =pLopr-190p1, Yr=ve, P, Vi1~V

Vo =V and V; =W, each ¢, depends on a finite number of parameters 0.
Residual networks - numerical ODEs: V,_; =V, = V a compact subdomain of RV

and
ix = 0 (Agx+bg),  0p:= (Ag, by)

can be seen as the forward Euler discretization of the flow map of the ODE
y=0(A(t)y(t) +b(t)),  y(0)=x,  te[0,h]
(He et al. 2015, Haber and Ruthotto 2017, and E 2017).

®o, :id+hX9k, Xek
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Deep neural networks - from the point of view of numerical analysis

Let V input space, VV output space
p:V->W.
DNNs - approximation theory:
@ g
by a composition of L simpler maps (layers)
P =pLopr-190p1, Yr=ve, P, Vi1~V

Vo =V and V; =W, each ¢, depends on a finite number of parameters 0.
Residual networks - numerical ODEs: V,_; =V, = V a compact subdomain of RV
and

®o, :id+hX9k, XQ ZX>—>(T(A/;X+b14), 9;: = (A(,by)

can be seen as the forward Euler discretization of the flow map of the ODE
y=0(A(t)y(t) +b(t)),  y(0)=x,  te[0,h]

(He et al. 2015, Haber and Ruthotto 2017, and E 2017).
Learning - variational methods: optimising a cost function (distance) with respect to
all the parameters

£

_ min E(po) = min E(pg, o0 pp,)
PO=Po, O 0PYy 0, 5:1

is the discretization of the optimal control problem:

inf  E(y(T)), subject to y=0(Ay+b), y(0)=x, te[0,T].
A(t),b(t)
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Transitions in Runge—Kutta methods — Data Spiral

Figure.' Snap shots of the transition from initial to final state through the network with the Spiral
data set. Top, ResNet/Euler, and bottom, Runge-Kutta(4).

® The qualitative properties of the flow of the dynamical system are more
important for the result than the extent to which the ODE flow is accurately
reproduced.

® Can use the ODE as a means to construct neural networks with a prescribed
structure.
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Transitions in Runge—Kutta methods — Data Spiral

Figure.' Snap shots of the transition from initial to final state through the network with the Spiral
data set. Top, ResNet/Euler, and bottom, Runge-Kutta(4).

® The qualitative properties of the flow of the dynamical system are more
important for the result than the extent to which the ODE flow is accurately
reproduced.

® Can use the ODE as a means to construct neural networks with a prescribed
structure.
Examples of structured NNs:
- 1-Lipshitz networks (adversarial attacks and image denoising).
- Symmetric neural networks (LLMs).
- Hamiltonian/Lagrangian neural networks (for learning dynamics from data).

-EC, Ehrhardt, Etmann, McLachIaEreggveeeT[eggh?n|ieb,DSeheeprrK[Nitg%ifuNripreserving deep learning.



Lipschitz Networks
e Adversarial attacks

® Image denoising
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(In)stability — adversarial attacks

Adversarial Noise

‘panda” “gibbon”
Adversarial Rotation
~ :3

C

“vulture” “orangutan’

https://ai.googleblog.com/2018/09/
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Stability of the neural network - contractivity of the underlying ODE

Residual networks:
PR Y=o, 0 PY,_y OO Phy s wo, V>V,
) a compact subdomain of R" and

©o, :id+hX9£, Xg X BgO'(AgX-i—bg), 9@ = (Bg,Ag,bg)

£

forward Euler numerical integration of the ODE

y=B(t)o(A(t)y(t) + b(t)),  y(0)=x,  te[0,h].
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Stability of the neural network - contractivity of the underlying ODE

Residual networks:
PR PY=Ph, 0 PYL_, OO Pay, ©ve, 1V =V,
) a compact subdomain of R" and
o, =id + hXp,, Xp, : x> Beo(Apx + bp), 0p:=(By, As, by)

forward Euler numerical integration of the ODE

y = B()o(A(t)y(t) + b(t)),  y(0)=x,  te[0,h].

® \We want to be able to guarantee that the layer ¢, is a contractive
map (when necessary), i.e.
lpe(y2) = pe(yn)] < ly2 =yl

so that we can compose contractive and non-contractive layers to
construct a neural network with Lipschitz constant equal to 1.

® We can use known theory of numerical stability of contractive
ODEs.
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Contractivity of the underlying ODE

A vector field X (t,y) is contractive in />-norm if there is > 0 such
that for all y1, y» and t€[0, T]:

(X(t,y2) = X(t,y1),y2 = y1) < —v|y2 —)/1H2~

This implies that for any two integral curves y(t) and z(t)

ly(t) = z(t)] < e™[y(0) - 2(0)].
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Contractivity of the underlying ODE

A vector field X (t,y) is contractive in />-norm if there is > 0 such
that for all y1, y» and t€[0, T]:

(X(t7y2) - X(tv)/1)~y2 —}/1) < _VH}Q _.y1H2'

This implies that for any two integral curves y(t) and z(t)

ly(t) = z(t)] < e™[y(0) - 2(0)].

The vector field
X(t,y(t)) = =A(t) "o (A(t)y(t) + b(1)),

with o increasing function, A< R™* beR", is contractive.

- EC, Ehrhardt, Etmann, McLachlan, Owren, Schénlieb, Sherry, Structure preserving deep
learning, EJAM, 2021.
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Contractivity of Runge-Kutta methods: B-stable numerical integration
methods for ODEs

® B-stable Runge-Kutta methods (implicit) preserve contractivity independently
on the step-size h. (Butcher 1975, Dahlquist 76, Burrage and Butcher 1979)

- Dekker and Verwer, Stability of Runge-Kutta methods for Stiff Nonlinear
Differential Equations, 1984.

The backward Euler method

y1=yo+hX(t1,y1)

applied to contractive vector fields is non-expansive for all step-sizes h > 0.
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Contractivity of Runge-Kutta methods: B-stable numerical integration
methods for ODEs

® B-stable Runge-Kutta methods (implicit) preserve contractivity independently
on the step-size h. (Butcher 1975, Dahlquist 76, Burrage and Butcher 1979)

- Dekker and Verwer, Stability of Runge-Kutta methods for Stiff Nonlinear
Differential Equations, 1984.

The backward Euler method

y1=yo+hX(t1,y1)

applied to contractive vector fields is non-expansive for all step-sizes h > 0.

Proof. In />-norm. Consider to initial values yp and xo and the Euler updates
¥o =y1 — hX(t1,y1)
X0 =X1 — hX(I’LXl)
then
Yo —xo=y1—x1—h(X(t1,y1) - X(t1,x1))
taking the inner product of LHS and RHS with themselves we get

lyo —xo0[13 = lly2 = x13 = 2h(X (t1,y1) = X (t1,x1), y1 = x1) + h* | X (t1, 1) - X (t1,x1)) 3

using the contractivity condition we see that for all h > 0 the RHS is the sum of three

positive terms and we have that |y1 — x1|3 < [ yo — xo|?, which means we have the

non-expnsivity for all h > 0.
P Y Elena Celledoni Deep NNs and NA



Contractivity of explicit Runge-Kutta methods: forward Euler

Theorem (Dahlquist and Jeltsch, 1979)
Suppose X satisfies the cocoercivity condition

(X(t,y2) = X(t,y1),y2 - y1) < -D|X(t,y2) = X(t, 1), 7 >0.

Then, if the stepsize h satisfies
h<2p,

the forward Euler method is non-expansive.
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Contractivity of explicit Runge-Kutta methods: forward Euler

Theorem (Dahlquist and Jeltsch, 1979)
Suppose X satisfies the cocoercivity condition

(X(t7y2) 7X(t7y1)7y2 7y1> = 717HX(t7y2) 7X(t7y1)H2v v20.

Then, if the stepsize h satisfies
h < 2D,

the forward Euler method is non-expansive.

Proof. Consider to initial values yo and xo and the Euler updates

y1 =yo + hX(to, yo)

X1 =Xo + hX(to,Xo)
then

y1—x1=Yo =X+ h(X(to,y0) = X(to,x0))
taking the inner product with LHS with itself and RHS with itself we get
lyr=xa[3 = |yo—xo 3 +2h(X (to, o) =X (to, X0), yo—xo)+h | X (to, o) =X (t0, x0)) |2
using the monotonicity condition and taking h < 20 we get
2(X(to, y0) = X(to,%0), Y0 = xo) + h| X (to, ¥0) = X(t0,%0))[2 < 0

and we get contractivity [y1 —x1 |3 < [ yo - x0||*.
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Contractivity of explicit Runge-Kutta methods: forward Euler

Theorem (Dahlquist and Jeltsch, 1979 - Theory of circle contractivity)
Suppose X satisfies the cocoercivity condition

(X(t7YZ) _X(t7y1)7y2 —}/1> < _ﬁHX(LyZ) _X(t7.y1)H27 v >0.

Then, if the stepsize h satisfies
h< 27,

the forward Euler method is non-expansive.
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Contractivity of explicit Runge-Kutta methods: forward Euler

Theorem (Dahlquist and Jeltsch, 1979 - Theory of circle contractivity)
Suppose X satisfies the cocoercivity condition

(X(t,y2) = X(t, 1), y2 = y1) < =P[ X(t,y2) = X (£, 1) [?, 720

Then, if the stepsize h satisfies
h< 27,

the forward Euler method is non-expansive.

Proposition
For o non decreasing and L-Lipschitz, the vector field

X(t,y) = =A(t) "o (A(t)y + b),

with A e R™* beR", satisfies the cocoercivity condition with 7 = HA%L.

Remark X is a gradient vector field:
y=-VyV,  V(ty(1) = (y(At)y(t) + b(1)),1), ' =0

- Sherry, EC, Ehrhardt, Murari, Owren and Schénlieb, Designing Stable Neural Networks using
Convex Analysis and ODEs, 2023, arXiv:2306.17332
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Experiments image classification with CIFAR10 and CIFAR100

e Databases of images: using convolution neural networks
* Network:
V=gproropaotppoop oty

e Convenient to use orthogonal weights. |P| =1, |Q| =1, easier
0i(x)=x—-h PTo(Px+p) contractive

Yi(x)=x+h QTo(Qx+q) expansive

o(x) = Inax{x,g}, PTP=1,Q"Q=1.
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Robust classification of CIFAR10 and CIFARI00

0e(x)=x—hy PTo(Px+p) contractive
Yo(x) =x+h2 QTo(Qx+q) expansive
o(x) = manx{x7 %} PP=1,QTQ=1.

Using orthogonal convolutional NNs. by Wang et al., 2020. Adversarial examples
using Foolbox.

£? robustness CIFAR-10, margin = 0.07 % robustness CIFAR-100. margin = 0.07
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EC, Murari, Owren, Schénlieb and Sherry, Dynamical systems based neural networks, 2023, SISC
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e Extensions to graph neural networks in:

- M Eliasof, D Murari, F Sherry, CB Schéonlieb, Contractive Systems Improve Graph Neural
Networks Against Adversarial Attacks arXiv preprint arXiv:2311.06942.

e Where you can find more experiments on adversarial
robustness.
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Applications in imaging
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Variational regularization approaches to inverse problems

® Variational regularization in image processing

clean images ii are recovered from measurements y by minimising a
trade-off between

® £, (u):=d(A(u),y) the data fit and
® R(u) penalty function encoding prior knowledge

0 =argmin E,(u) + R(u).

® Splitting methods for optimisation: split the objective function in
two or more terms, each easier to optimise.

* Proximal gradient is a variant of gradient descent where the
gradient flow is approximated by an implicit-explicit time-stepping.
The implicit part corresponds to the proximal operator:
Proposition:

ProX,pU = arg I’Tll/n lu—u]2+hR(u").
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Proximal gradient descent and Plug-and-play

To solve the optimization problem
i =argmin E,(u) + R(u)
u
we use
Proximal gradient descent

Input: measurements y, initial estimate ug
for /=1,...,N do

ul1) = prox, g (ul) - KV E, (ull))

end for

Plug-and-Play: replace prox,; with a (non-expansive) neural network
proxy, ,, learning the de-noiser form data.

Elena Celledoni Deep NNs and NA



Convergence

Definition An operator A :RY — R? is a-averaged if 3 a non expansive
operator T :RY - RY s.t.

A=aT+(1-a)ly, aec(0,1).
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Convergence

Definition An operator A:RY - R? is a-averaged if 3 a non expansive
operator T:R? - RY s.t.

A=aT+(1-a)ly, «ac(0,1).

Theorem (Hertrich, Neumayer, Steidl)
Let £ :R™ — R be convex and differentiable with L-Lipschitz continuous
gradient and let DIrox, :R™ — R™ be averaged. Then, for any 0 < h < 2

the sequence {ul‘l}, generated by

Proximal gradient descent-PnP:
for/=1,...,N do

ulte1l = proxh_[(um - hVEy(um))

end for
converges.

- J Hertrich, S Neumayer, G Steidl, Convolutional Proximal Neural Networks and Plug-and-Play
Algorithms , Lin. Alg. and Appl.
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PnP with ResNet and non-expansive networks

e Using f(t,y)=-A"a(Ay + b) we can construct residual neural networks
that are provably non-expansive (1-Lipschitz) and averaged.

® J Hertrich, S Neumayer, G Steidl. Averagedness together with E, (u)
convex, differentiable and VE, is L-Lipschitz, is sufficient to prove
convergence of PnP algorithms.
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PnP with ResNet and non-expansive networks

e Using f(t,y)=-A"a(Ay + b) we can construct residual neural networks
that are provably non-expansive (1-Lipschitz) and averaged.

® J Hertrich, S Neumayer, G Steidl. Averagedness together with E, (u)
convex, differentiable and VE, is L-Lipschitz, is sufficient to prove
convergence of PnP algorithms.

Theorem (Sherry)
Let o non decreasing and L-Lipschitz, A ¢ R™ b eR" and let v € (0,1). A
single layer mapping A : x - p(x),

©(x) =x - hATo(Ax + b)

is c-averaged if

2a
h< : (1)
L|A]?
Remark Composition of m operators A;, i =1,..., m which are a; averaged is

« averaged for a certain «.

- Sherry, EC, Ehrhardt, Murari, Owren and Schdnlieb, Designing Stable Neural Networks using
Convex Analysis and ODEs, 2024, Physica D
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Denoising with PnP (Courtesy of F. Sherry)

- Sherry, EC, Ehrhardt, Murari, Owren and Schénlieb, Designing Stable Neural Networks using
Convex Analysis and ODEs, 2023, arXiv:2306.17332
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Convergence with PnP (Courtesy of F. Sherry)

(?;onvergence of the PnP iterations
10

101 B
107

1073 A

[l — 212

10—5 B
10—7 B

1079

10° 10! 102
Iteration number k&

- Sherry, EC, Ehrhardt, Murari, Owren and Schdnlieb, Designing Stable Neural Networks using
Convex Analysis and ODEs, 2023, arXiv:2306.17332
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Convergence vs Divergence of Learned Denoisers

(Courtesy of F. Sherry)

- Sherry, EC, Ehrhardt, Murari, Owren and Schdnlieb, Designing Stable Neural Networks using
Convex Analysis and ODEs, 2023, arXiv:2306.17332
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Contractivity of numerical integrators on Riemannian
manifolds
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Diffusion tensor imaging

Manifold valued images: s = (s1.1,...,5.m) € M, M = (Sym*(3))™".

Figure: DTI scan, axial slice. Left: Noisy image. Right: Denoised with 3 =2,
A =0.05.

- E.C., S. Eidnes, B. Owren, T. Ringholm, Dissipative numerical schemes on Riemannian manifolds
with applications to gradient flows, SISC 2019.
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Neural Networks on Manifolds

® Model order reduction via Autoencoders implies the Latent space is a Manifold
® Covariance matrices are symmetric positive (semi) definite

¢ Diffusion Tensor Imaging, SPD voxels

® Robotics require rotations and roto-translations

® Message passing neural networks require hyperbolic geometry
[ ]

Graph data in biology, network science, computer graphycs/vision can be
handled much more efficiently when embedded in hyperbolic space [Ganea et al
2018] e.g. for learning low-dimensional embeddings.

wl—J*J””’Lr‘x ,pd—J*J”’”L‘p -9, ’lx”j””’L‘r‘j T *J””’L‘r‘j
| | | |
Lo o fox o
| | \ |
| | | |
L L b L
Layer 0 Layer 3 Layer 6 Layer 10

There are a number of open questions:

® How to construct neural networks on manifolds.
® How to obtain stability and robustness.
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Recall the contractivity condition in flat spaces

Contractivity condition: a vector field X(t,y) is contractive in />-norm if there
is v > 0 such that for all y1, y> and t € [0, T ]:

(X(t,y2) = X(t,y1), 2 = y1) < ~v]y2 = .
This implies that for any two integral curves y(t) and z(t)

ly(t) - ()] < e ]y(0) - 2(0)]-

Recall also

Cocoercivity condition:
(X(t,}’Z) - X(t7y1)1y2 _y1> < _DHX(t7y2) - X(t7.y1)H27 v> 07

used to obtain contractivity of the forward Euler method for small enough

step-sizes.
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Contractivity of numerical integrators on Riemannian manifolds

® (M,g) a Riemannian manifold, g,(u,v) = (u, v)p

() = [P EO3@)dt, d(p,q) = infoy g £ (Ypa),

geodesic: y(t) = exp,(tvp), exp, : Tp M — M Riemannian exponential

V is the Levi-Civita connection induced by g

X and Y vector fields on M: VxY denotes the covariant derivative on M
a curve (t) on M is a geodesic if it satisfies the equation V5 =0

Elena Celledoni Deep NNs and NA



Contractivity of numerical integrators on Riemannian manifolds

® (M,g) a Riemannian manifold, g,(u,v) = (u, v)p

() = [P EO3@)dt, d(p,q) = infoy g £ (Ypa),

geodesic: y(t) = exp,(tvp), exp, : Tp M — M Riemannian exponential

V is the Levi-Civita connection induced by g

X and Y vector fields on M: VxY denotes the covariant derivative on M
a curve (t) on M is a geodesic if it satisfies the equation V5 =0

Contractivity condition: for U/ ¢ M a vector field X satisfies the monotonicity
condition on U/ if there is ag > 0 st

(Vi X, v) € —aolw|?, VxelU, vee TeM.
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Contractivity of numerical integrators on Riemannian manifolds

® (M,g) a Riemannian manifold, g,(u,v) = (u, v)p

() = [PV, A0t d(p,q) =infa, ., £ (Ypq),

geodesic: y(t) = exp,(tvp), exp, : Tp M — M Riemannian exponential

V is the Levi-Civita connection induced by g

X and Y vector fields on M: VxY denotes the covariant derivative on M
a curve (t) on M is a geodesic if it satisfies the equation V5 =0

Contractivity condition: for U/ ¢ M a vector field X satisfies the monotonicity
condition on U/ if there is ag > 0 st

(Vi X, i) < —an|lwl?, Vxeld, vxe TxM.

Gronwall: Assume U/ geodesically convex, let y(t) and z(t) be two integral curves
of the vector field X with y(0) = yo and z(0) = zp both contained in ¢/ Vt € [0, T]
then

d(y(t),z(t)) < e **°d(y0,20), Vte[0,T].

Non-expansiveness when X is forward complete, U/ is forward X-invariant and v < 0.
y

® M. Kunzinger et al., 2006, Revista Matematica Complutense.
® J. W. Simpson-Porco and F. Bullo, Contraction theory on Riemannian manifolds, Sys. Cont.Lett.
2014
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Contractivity of numerical integrators on Riemannian manifolds

® (M,g) a Riemannian manifold, g,(u,v) = (u, v)p

() = [PV, A0t d(p,q) =infa, ., £ (Ypq),

geodesic: y(t) = exp,(tvp), exp, : Tp M — M Riemannian exponential

V is the Levi-Civita connection induced by g

X and Y vector fields on M: VxY denotes the covariant derivative on M
a curve (t) on M is a geodesic if it satisfies the equation V5 =0

Contractivity condition: for U/ ¢ M a vector field X satisfies the monotonicity
condition on U/ if there is ag > 0 st

(Vi X, i) < —an|lwl?, Vxeld, vxe TxM.

Gronwall: Assume U/ geodesically convex, let y(t) and z(t) be two integral curves
of the vector field X with y(0) = yo and z(0) = zp both contained in ¢/ Vt € [0, T]
then

d(y(t),z(t)) < e **°d(y0,20), Vte[0,T].

Non-expansiveness when X is forward complete, U/ is forward X-invariant and v < 0.
y

® M. Kunzinger et al., 2006, Revista Matematica Complutense.
® J. W. Simpson-Porco and F. Bullo, Contraction theory on Riemannian manifolds, Sys. Cont.Lett.
2014

Cocoercivity condition: is satisfied by X on U/, if there is a > 0 s.t.

(Vi X, va) € |V X%, Vxel vxe TxM.
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B-stability on Riemannian manifolds

Definition: Suppose
® X is contractive on U/ c M,

® ¢px: M — M is a numerical method approximating the solution of
y=X(y) and y(0) = p and ¢, x is well defined for all h >0,

® U is forward ¢p x-invariant for all h >0 and forward X-invariant

then the method is said to be B-stable iff

d(énx(y0),dnx(20)) < d(yo,20), Vh=0.
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B-stability on Riemannian manifolds

Definition: Suppose
® X is contractive on U/ c M,

® ¢px: M — M is a numerical method approximating the solution of
y=X(y) and y(0) = p and ¢, x is well defined for all h >0,

® U is forward ¢p x-invariant for all h >0 and forward X-invariant

then the method is said to be B-stable iff

d(énx(y0),dnx(20)) < d(yo,20), Vh=0.

B-stability of Geodesic Implicit Euler

yn=exp,, . (=hX(yns1)).
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B-stability on Riemannian manifolds

Definition: Suppose
® X is contractive on U/ c M,

® ¢px: M — M is a numerical method approximating the solution of
y=X(y) and y(0) = p and ¢, x is well defined for all h >0,

® U{ is forward ¢ x-invariant for all h > 0 and forward X-invariant

then the method is said to be B-stable iff
d(énx(y0),dnx(20)) < d(yo,20), Vh=0.
B-stability of Geodesic Implicit Euler
yn=exp,, . (=hX(yns1)).
Theorem

If M is a Riemannian manifold with non-positive sectional curvature then the
geodesic implicit Euler method is B-stable.

Example Space of n x n symmetric positive definite matrices.

- Arnold, EC, Cokaj, Owren, Tumiotto, Contractivity of numerical integrators on Riemannian
manifolds, JCD, 2024.

Elena Celledoni Deep NNs and NA



Geodesic Implicit Euler is not B-stable on the sphere. Counterexample.

The sphere has positive sectional curvature equal to 1:

® Non-expansive vector field (on the northern hemisphere)

y=X(y)=axy, a=[0,0,1].

® (Left) One step of Geodesic Implicit Euler applied with increasing step
size h, starting from two different initial values.

* (Right) Geodesic distance: d(y1, z1) plotted as a function of h, where
Yo =exp,, (=hX(y1)), 20 =exp, (~hX(z1).
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Projected cocoercivity condition

We assume constant sectional curvature and we seek a bound of the step-size h
that makes the geodesic explicit Euler non-expansive.

Projected cocoercivity conditions

® positive curvature p > 0: project tangent vectors onto the orthogonal
complement of X, :

(Vo X, (I = Px)V) > -t |V X? (2)

® negative curvature p < 0: project tangent vectors on the span of X,

(Vo X, Pxv) > —p- ||V, X|? (3)
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Theorem (manifolds of constant positive sectional curvature)

® Let (M,g) have positive sectional curvature.

® Let X be a vector field with VX invertible, and satisfying the contractivity condition
with constant v > 0

® Also let X satisfy the projected cocoercivity condition (2) with constant p*
® Let v = h||X||\/p, p >0 being the curvature of M.

Then the Geodesic Explicit Euler method applied to X with stepsize h is nonexpansive

whenever
h<2a-2p*f(k)

where

— k)~ VAR

f(k) =1 - cos(k)sinc(k) —sin(k)+/1 - sinc(k)? R T
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Theorem (manifolds of constant negative sectional curvature)

® Let (M,g) have negative sectional curvature.

® |let X be a vector field with VX invertible, and satisfying the non-expansivity
condition with constant o > 0

® Also let X satisfy the projected cocoercivity condition (3) with constant s
® Let k = h|X|\/=p, p <0 being the curvature of M.

Then the Geodesic Explicit Euler method applied to X with stepsize h is nonexpansive

whenever

O<h -
P(r)

R th()
< ———— | arcoth(k) —
1+02Cp "

where

40— - VAWIAR
e d

f(k) = (cosh(k)p(k) — 1) —sinh(k)\/p(Kk)2 -1 o ——=

sinh(k)

() =
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Conditional stability of the Geodesic Explicit Euler method

[(s,t) =exp,5)(thX(y(s))), te[0,1]

® y(s) curve of initial points.

® Dahsed lines: numerical
flow.

® [(s,1): y(s) as transported
by the numerical flow at
time t = 1.

® S(s,t) and T(s,t) tangent
vector fields along s and t.

Objective: to ensure that the length of '(s,1) is not bigger than the length
of I'(s,0) = y(s). J
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Thank you for listening!
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