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Outline

● A numerical analysis view to deep learning
● Structure preservation
● Adversarial attacks - robust NNs
● Contractivity of ODEs and of numerical integrators
● Applications variational regularization in imaging
● B-stability and Conditional Stability on manifolds
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Deep neural networks - from the point of view of numerical analysis
Let V input space, W output space

φ ∶ V → W.

DNNs - approximation theory:
φ ≈ φθ

by a composition of L simpler maps (layers)

φθ = φL ○ φL−1 ○ ⋯ ○ φ1, φℓ = φθℓ φθℓ ∶ Vℓ−1 → Vℓ
V0 = V and VL = W, each φℓ depends on a finite number of parameters θℓ.

Residual networks - numerical ODEs: Vℓ−1 = Vℓ = V a compact subdomain of RN

and
φθℓ = id + hXθℓ , Xθℓ ∶ x ↦ σ(Aℓx + bℓ), θℓ ∶= (Aℓ,bℓ)

can be seen as the forward Euler discretization of the flow map of the ODE

ẏ = σ(A(t)y(t) + b(t)), y(0) = x , t ∈ [0,h]
(He et al. 2015, Haber and Ruthotto 2017, and E 2017).
Learning - variational methods: optimising a cost function (distance) with respect to
all the parameters

min
φθ=φθL

○⋯○φθ1
E(φθ) = min

{θℓ}
L
ℓ=1

E(φθL ○ ⋯ ○ φθ1)

is the discretization of the optimal control problem:

inf
A(t),b(t)

E(y(T)), subject to ẏ = σ(Ay + b), y(0) = x , t ∈ [0,T ].
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Transitions in Runge–Kutta methods – Data Spiral

Figure: Snap shots of the transition from initial to final state through the network with the Spiral
data set. Top, ResNet/Euler, and bottom, Runge-Kutta(4).

● The qualitative properties of the flow of the dynamical system are more
important for the result than the extent to which the ODE flow is accurately
reproduced.

● Can use the ODE as a means to construct neural networks with a prescribed
structure.

Examples of structured NNs:
- 1-Lipshitz networks (adversarial attacks and image denoising).
- Symmetric neural networks (LLMs).
- Hamiltonian/Lagrangian neural networks (for learning dynamics from data).

-EC, Ehrhardt, Etmann, McLachlan, Owren, Schönlieb, Sherry, Structure preserving deep learning.

EJAM, 2021.
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Lipschitz Networks
● Adversarial attacks
● Image denoising
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(In)stability – adversarial attacks

https://ai.googleblog.com/2018/09/
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Stability of the neural network - contractivity of the underlying ODE
Residual networks:

φ ≈ φθ = φθL ○ φθL−1 ○ ⋯ ○ φθ1 , φθℓ ∶ V → V,
V a compact subdomain of RN and

φθℓ = id + hXθℓ , Xθℓ ∶ x ↦ Bℓσ(Aℓx + bℓ), θℓ ∶= (Bℓ,Aℓ,bℓ)
forward Euler numerical integration of the ODE

ẏ = B(t)σ(A(t)y(t) + b(t)), y(0) = x , t ∈ [0,h].

● We want to be able to guarantee that the layer φℓ is a contractive
map (when necessary), i.e.

∥φℓ(y2) − φℓ(y1)∥ < ∥y2 − y1∥,
so that we can compose contractive and non-contractive layers to
construct a neural network with Lipschitz constant equal to 1.

● We can use known theory of numerical stability of contractive
ODEs.
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Contractivity of the underlying ODE

A vector field X (t, y) is contractive in ℓ2-norm if there is ν > 0 such
that for all y1, y2 and t ∈ [0,T ]:

⟨X (t, y2) −X (t, y1), y2 − y1⟩ ≤ −ν∥y2 − y1∥2.
This implies that for any two integral curves y(t) and z(t)

∥y(t) − z(t)∥ ≤ e−tν∥y(0) − z(0)∥.

The vector field

X (t, y(t)) = −A(t)Tσ(A(t)y(t) + b(t)),

with σ increasing function, A ∈ Rn×k , b ∈ Rn, is contractive.
- EC, Ehrhardt, Etmann, McLachlan, Owren, Schönlieb, Sherry, Structure preserving deep

learning, EJAM, 2021.
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Contractivity of Runge-Kutta methods: B-stable numerical integration
methods for ODEs

● B-stable Runge-Kutta methods (implicit) preserve contractivity independently
on the step-size h. (Butcher 1975, Dahlquist 76, Burrage and Butcher 1979)

- Dekker and Verwer, Stability of Runge-Kutta methods for Stiff Nonlinear
Differential Equations, 1984.

The backward Euler method

y1 = y0 + hX(t1, y1)

applied to contractive vector fields is non-expansive for all step-sizes h > 0.

Proof: In ℓ2-norm. Consider to initial values y0 and x0 and the Euler updates

y0 =y1 − hX(t1, y1)
x0 =x1 − hX(t1, x1)

then
y0 − x0 = y1 − x1 − h(X(t1, y1) −X(t1, x1))

taking the inner product of LHS and RHS with themselves we get

∥y0 − x0∥22 = ∥y1 − x1∥22 −2h⟨X(t1, y1)−X(t1, x1), y1 − x1⟩+h2∥X(t1, y1)−X(t1, x1))∥22

using the contractivity condition we see that for all h ≥ 0 the RHS is the sum of three

positive terms and we have that ∥y1 − x1∥22 ≤ ∥y0 − x0∥2, which means we have the

non-expnsivity for all h > 0.
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Contractivity of explicit Runge-Kutta methods: forward Euler

Theorem (Dahlquist and Jeltsch, 1979)
Suppose X satisfies the cocoercivity condition

⟨X(t, y2) −X(t, y1), y2 − y1⟩ ≤ −ν̄∥X(t, y2) −X(t, y1)∥
2, ν̄ ≥ 0.

Then, if the stepsize h satisfies
h ≤ 2ν̄,

the forward Euler method is non-expansive.

Proof: Consider to initial values y0 and x0 and the Euler updates

y1 =y0 + hX(t0, y0)

x1 =x0 + hX(t0, x0)

then
y1 − x1 = y0 − x0 + h(X(t0, y0) −X(t0, x0))

taking the inner product with LHS with itself and RHS with itself we get

∥y1−x1∥
2
2 = ∥y0−x0∥

2
2+2h⟨X(t0, y0)−X(t0, x0), y0−x0⟩+h

2
∥X(t0, y0)−X(t0, x0))∥

2
2

using the monotonicity condition and taking h ≤ 2ν̄ we get

2⟨X(t0, y0) −X(t0, x0), y0 − x0⟩ + h∥X(t0, y0) −X(t0, x0))∥
2
2 ≤ 0

and we get contractivity ∥y1 − x1∥
2
2 ≤ ∥y0 − x0∥

2.
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Contractivity of explicit Runge-Kutta methods: forward Euler

Theorem (Dahlquist and Jeltsch, 1979 - Theory of circle contractivity)
Suppose X satisfies the cocoercivity condition

⟨X(t, y2) −X(t, y1), y2 − y1⟩ ≤ −ν̄∥X(t, y2) −X(t, y1)∥
2, ν̄ ≥ 0.

Then, if the stepsize h satisfies
h ≤ 2ν̄,

the forward Euler method is non-expansive.

Proposition
For σ non decreasing and L-Lipschitz, the vector field

X(t, y) = −A(t)Tσ(A(t)y + b),

with A ∈ Rn×k , b ∈ Rn, satisfies the cocoercivity condition with ν̄ = 1
∥A∥2L .

Remark X is a gradient vector field:
ẏ = −∇yV , V (t, y(t)) = ⟨γ(A(t)y(t) + b(t)),1⟩, γ′ = σ.

- Sherry, EC, Ehrhardt, Murari, Owren and Schönlieb, Designing Stable Neural Networks using
Convex Analysis and ODEs, 2023, arXiv:2306.17332
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Experiments image classification with CIFAR10 and CIFAR100

● Databases of images: using convolution neural networks
● Network:

Ψ = φ1 ○ ψ1 ○ φ2 ○ ψ2 ○ ⋯ ○ φL ○ ψL

● Convenient to use orthogonal weights. ∥P∥ = 1, ∥Q∥ = 1, easier

φℓ(x) = x − h1 P
Tσ(Px + p) contractive

ψℓ(x) = x + h2 Q
Tσ(Qx + q) expansive

σ(x) =max{x , x
2
} , PTP = I , QTQ = I .
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Robust classification of CIFAR10 and CIFAR100

φℓ(x) = x − h1 P
Tσ(Px + p) contractive

ψℓ(x) = x + h2 Q
Tσ(Qx + q) expansive

σ(x) =max{x , x
2
} , PTP = I , QTQ = I .

Using orthogonal convolutional NNs. by Wang et al., 2020. Adversarial examples
using Foolbox.
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EC, Murari, Owren, Schönlieb and Sherry, Dynamical systems based neural networks, 2023, SISC
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● Extensions to graph neural networks in:
- M Eliasof, D Murari, F Sherry, CB Schönlieb, Contractive Systems Improve Graph Neural

Networks Against Adversarial Attacks arXiv preprint arXiv:2311.06942.

● Where you can find more experiments on adversarial
robustness.
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Applications in imaging
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Variational regularization approaches to inverse problems

● Variational regularization in image processing
clean images û are recovered from measurements y by minimising a
trade-off between

1 Ey(u) ∶= d(A(u), y) the data fit and
2 R(u) penalty function encoding prior knowledge

û = argmin
u

Ey(u) + R(u).

● Splitting methods for optimisation: split the objective function in
two or more terms, each easier to optimise.

● Proximal gradient is a variant of gradient descent where the
gradient flow is approximated by an implicit-explicit time-stepping.
The implicit part corresponds to the proximal operator:

Proposition:

proxhRu = argmin
u′
∥u − u′∥2 + hR(u′).
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Proximal gradient descent and Plug-and-play

To solve the optimization problem

û = argmin
u

Ey(u) + R(u)
we use

Proximal gradient descent

Input: measurements y , initial estimate u0

for ℓ = 1, . . . ,N do

u[ℓ+1] = proxhR(u[ℓ] − h∇Ey(u[ℓ]))
end for

Plug-and-Play: replace proxhR with a (non-expansive) neural network
p̂roxh,ℓ, learning the de-noiser form data.
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Convergence

Definition An operator A ∶ Rd → Rd is α-averaged if ∃ a non expansive
operator T ∶ Rd → Rd s.t.

A = αT + (1 − α)Id , α ∈ (0,1).

Theorem (Hertrich, Neumayer, Steidl)
Let E ∶ Rm → R be convex and differentiable with L-Lipschitz continuous
gradient and let p̂roxh,ℓ ∶ Rm → Rm be averaged. Then, for any 0 < h < 2

L
,

the sequence {u[ℓ]}ℓ generated by

Proximal gradient descent-PnP:
for ℓ = 1, . . . ,N do

u[ℓ+1] = p̂roxh,ℓ(u[ℓ] − h∇Ey(u[ℓ]))
end for

converges.

- J Hertrich, S Neumayer, G Steidl, Convolutional Proximal Neural Networks and Plug-and-Play
Algorithms , Lin. Alg. and Appl.
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PnP with ResNet and non-expansive networks

● Using f (t, y) = −ATσ(Ay + b) we can construct residual neural networks
that are provably non-expansive (1-Lipschitz) and averaged.

● J Hertrich, S Neumayer, G Steidl. Averagedness together with Ey(u)
convex, differentiable and ∇Ey is L-Lipschitz, is sufficient to prove
convergence of PnP algorithms.

Theorem (Sherry)
Let σ non decreasing and L-Lipschitz, A ∈ Rn×k , b ∈ Rn and let α ∈ (0,1). A
single layer mapping A ∶ x → φ(x),

φ(x) = x − hA⊺σ(Ax + b)

is α-averaged if

h ≤
2α

L∥A∥2
. (1)

Remark Composition of m operators Ai , i = 1, . . . ,m which are αi averaged is
α averaged for a certain α.

- Sherry, EC, Ehrhardt, Murari, Owren and Schönlieb, Designing Stable Neural Networks using
Convex Analysis and ODEs, 2024, Physica D
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Denoising with PnP (Courtesy of F. Sherry)

- Sherry, EC, Ehrhardt, Murari, Owren and Schönlieb, Designing Stable Neural Networks using
Convex Analysis and ODEs, 2023, arXiv:2306.17332
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Convergence with PnP (Courtesy of F. Sherry)

- Sherry, EC, Ehrhardt, Murari, Owren and Schönlieb, Designing Stable Neural Networks using
Convex Analysis and ODEs, 2023, arXiv:2306.17332
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Convergence vs Divergence of Learned Denoisers

(Courtesy of F. Sherry)

- Sherry, EC, Ehrhardt, Murari, Owren and Schönlieb, Designing Stable Neural Networks using
Convex Analysis and ODEs, 2023, arXiv:2306.17332
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Contractivity of numerical integrators on Riemannian
manifolds
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Diffusion tensor imaging

Manifold valued images: s = (s1,1, . . . , sl,m) ∈ M, M= (Sym+(3))m×l .

Figure: DTI scan, axial slice. Left: Noisy image. Right: Denoised with β = 2,
λ = 0.05.

- E.C., S. Eidnes, B. Owren, T. Ringholm, Dissipative numerical schemes on Riemannian manifolds
with applications to gradient flows, SISC 2019.
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Neural Networks on Manifolds

● Model order reduction via Autoencoders implies the Latent space is a Manifold
● Covariance matrices are symmetric positive (semi) definite
● Diffusion Tensor Imaging, SPD voxels
● Robotics require rotations and roto-translations
● Message passing neural networks require hyperbolic geometry
● Graph data in biology, network science, computer graphycs/vision can be

handled much more efficiently when embedded in hyperbolic space [Ganea et al
2018] e.g. for learning low-dimensional embeddings.

Layer 0 Layer 3 Layer 6 Layer 10

There are a number of open questions:
● How to construct neural networks on manifolds.
● How to obtain stability and robustness.
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Recall the contractivity condition in flat spaces

Contractivity condition: a vector field X(t, y) is contractive in ℓ2-norm if there
is ν > 0 such that for all y1, y2 and t ∈ [0,T ]:

⟨X(t, y2) −X(t, y1), y2 − y1⟩ ≤ −ν∥y2 − y1∥
2.

This implies that for any two integral curves y(t) and z(t)

∥y(t) − z(t)∥ ≤ e−tν∥y(0) − z(0)∥.

Recall also

Cocoercivity condition:

⟨X(t, y2) −X(t, y1), y2 − y1⟩ ≤ −ν̄∥X(t, y2) −X(t, y1)∥
2, ν̄ > 0,

used to obtain contractivity of the forward Euler method for small enough
step-sizes.
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Contractivity of numerical integrators on Riemannian manifolds
● (M,g) a Riemannian manifold, gp(u, v) = ⟨u, v⟩p
● ℓ(γ) = ∫ b

a

√
⟨γ̇(t), γ̇(t)⟩dt, d(p,q) = infγp→q ℓ (γp→q),

● geodesic: γ(t) = expp(t vp), expp ∶ TpM→M Riemannian exponential
● ∇ is the Levi-Civita connection induced by g
● X and Y vector fields on M: ∇XY denotes the covariant derivative on M
● a curve γ(t) on M is a geodesic if it satisfies the equation ∇γ̇ γ̇ = 0

Contractivity condition: for U ⊂ M a vector field X satisfies the monotonicity
condition on U if there is α0 > 0 st

⟨∇vxX , vx ⟩ ≤ −α0∥vx∥2, ∀x ∈ U , vx ∈ TxM.

Gronwall: Assume U geodesically convex, let y(t) and z(t) be two integral curves
of the vector field X with y(0) = y0 and z(0) = z0 both contained in U ∀t ∈ [0,T ]
then

d(y(t), z(t)) ≤ e−tα0d(y0, z0), ∀t ∈ [0,T ].

Non-expansiveness when X is forward complete, U is forward X -invariant and ν ≤ 0.
● M. Kunzinger et al., 2006, Revista Matemática Complutense.
● J. W. Simpson-Porco and F. Bullo, Contraction theory on Riemannian manifolds, Sys. Cont.Lett.

2014

Cocoercivity condition: is satisfied by X on U , if there is α > 0 s.t.

⟨∇vxX , vx ⟩ ≤ −α∥∇vxX∥2, ∀x ∈ U vx ∈ TxM.
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B-stability on Riemannian manifolds

Definition: Suppose
● X is contractive on U ⊂M,
● ϕh,X ∶ M →M is a numerical method approximating the solution of

ẏ = X(y) and y(0) = p and ϕh,X is well defined for all h ≥ 0,
● U is forward ϕh,X -invariant for all h ≥ 0 and forward X -invariant

then the method is said to be B-stable iff

d(ϕh,X (y0), ϕh,X (z0)) ≤ d(y0, z0), ∀h ≥ 0.

B-stability of Geodesic Implicit Euler

yn = expyn+1(−hX(yn+1)).

Theorem
If M is a Riemannian manifold with non-positive sectional curvature then the
geodesic implicit Euler method is B-stable.

Example Space of n × n symmetric positive definite matrices.
- Arnold, EC, Cokaj, Owren, Tumiotto, Contractivity of numerical integrators on Riemannian

manifolds, JCD, 2024.
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Geodesic Implicit Euler is not B-stable on the sphere. Counterexample.
The sphere has positive sectional curvature equal to 1:

x
101 y

1

0

1

z

1

0

1

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
h
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d
● Non-expansive vector field (on the northern hemisphere)

ẏ = X(y) = a × y , a = [0,0,1].

● (Left) One step of Geodesic Implicit Euler applied with increasing step
size h, starting from two different initial values.

● (Right) Geodesic distance: d(y1, z1) plotted as a function of h, where
y0 = expy1(−hX(y1)), z0 = expz1(−hX(z1).
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Projected cocoercivity condition

We assume constant sectional curvature and we seek a bound of the step-size h
that makes the geodesic explicit Euler non-expansive.

Projected cocoercivity conditions

● positive curvature ρ > 0: project tangent vectors onto the orthogonal
complement of Xyn :

⟨∇vX , (I − PX )v⟩ ≥ −µ
+
∥∇vX∥

2 (2)

● negative curvature ρ < 0: project tangent vectors on the span of Xyn

⟨∇vX ,PX v⟩ ≥ −µ−∥∇vX∥
2 (3)
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Theorem (manifolds of constant positive sectional curvature)
● Let (M,g) have positive sectional curvature.
● Let X be a vector field with ∇X invertible, and satisfying the contractivity condition

with constant α > 0
● Also let X satisfy the projected cocoercivity condition (2) with constant µ+

● Let κ = h∥X∥√ρ, ρ > 0 being the curvature of M.

Then the Geodesic Explicit Euler method applied to X with stepsize h is nonexpansive
whenever

h ≤ 2α − 2µ+f (κ)

where

f (κ) = 1 − cos(κ)sinc(κ) − sin(κ)
√

1 − sinc(κ)2 0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.2

0.4

0.6

0.8

1.0
f2( ) f1( )f3( )
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Theorem (manifolds of constant negative sectional curvature)
● Let (M,g) have negative sectional curvature.
● Let X be a vector field with ∇X invertible, and satisfying the non-expansivity

condition with constant α > 0
● Also let X satisfy the projected cocoercivity condition (3) with constant µ−
● Let κ = h∥X∥√−ρ, ρ < 0 being the curvature of M.

Then the Geodesic Explicit Euler method applied to X with stepsize h is nonexpansive
whenever

0 < h ≤ 2
1 + σ2Cρ

(ακ coth(κ) − µ−
f (κ)
ϕ(κ)

)

where

f (κ) = (cosh(κ)ϕ(κ) − 1) − sinh(κ)
√
ϕ(κ)2 − 1

ϕ(κ) = sinh(κ)
κ

0 2 4 6 8 10
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Conditional stability of the Geodesic Explicit Euler method

Γ(s, t) = expy(s)(t hX(y(s))), t ∈ [0,1]

U

y(s) X|y(s)

•
Ss(0)

Γ(s,1)

Γ(s,t) Ts(t)

Ss(t)

Ss(1)

● y(s) curve of initial points.
● Dahsed lines: numerical

flow.
● Γ(s,1): y(s) as transported

by the numerical flow at
time t = 1.

● S(s, t) and T(s, t) tangent
vector fields along s and t.

Objective: to ensure that the length of Γ(s,1) is not bigger than the length
of Γ(s,0) = y(s).
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