Deep learning and numerical analysis.

Elena Celledoni

Department of Mathematical Sciences, NTNU, Trondheim, Norway

Woudschoten Conferentiecentrum, Zeist, 24-26 September, 2025

Woudschoten Conference, 2025

MSCA-SE: REMODEL Project ID: 101131557

Elena Celledoni

Deep NNs and NA

Outline

- A numerical analysis view to deep learning
- Structure preservation
- Adversarial attacks robust NNs
- Contractivity of ODEs and of numerical integrators
- Applications variational regularization in imaging
- B-stability and Conditional Stability on manifolds

Deep neural networks - from the point of view of numerical analysis

Let \mathcal{V} input space, \mathcal{W} output space

$$\varphi: \mathcal{V} \to \mathcal{W}$$
.

DNNs - approximation theory:

$$\varphi \approx \varphi_{\theta}$$

by a composition of *L* simpler maps (layers)

$$\varphi_{\theta} = \varphi_{L} \circ \varphi_{L-1} \circ \cdots \circ \varphi_{1}, \quad \varphi_{\ell} = \varphi_{\theta_{\ell}} \quad \varphi_{\theta_{\ell}} : \mathcal{V}_{\ell-1} \to \mathcal{V}_{\ell}$$

 $V_0 = V$ and $V_L = W$, each φ_ℓ depends on a finite number of parameters θ_ℓ .

Let \mathcal{V} input space, \mathcal{W} output space

$$\varphi: \mathcal{V} \to \mathcal{W}$$
.

DNNs - approximation theory:

and

$$\varphi \approx \varphi_{\theta}$$

by a composition of *L* simpler maps (layers)

$$\varphi_{\theta} = \varphi_{L} \circ \varphi_{L-1} \circ \cdots \circ \varphi_{1}, \quad \varphi_{\ell} = \varphi_{\theta_{\ell}} \quad \varphi_{\theta_{\ell}} : \mathcal{V}_{\ell-1} \to \mathcal{V}_{\ell}$$

 $\mathcal{V}_0 = \mathcal{V}$ and $\mathcal{V}_L = \mathcal{W}$, each φ_ℓ depends on a finite number of parameters θ_ℓ . **Residual networks** - **numerical ODEs**: $\mathcal{V}_{\ell-1} = \mathcal{V}_\ell = \mathcal{V}$ a compact subdomain of \mathbb{R}^N

$$\varphi_{\theta_{\ell}} = \mathrm{id} + hX_{\theta_{\ell}}, \quad X_{\theta_{\ell}} : x \mapsto \sigma(A_{\ell}x + b_{\ell}), \quad \theta_{\ell} := (A_{\ell}, b_{\ell})$$

can be seen as the forward Euler discretization of the flow map of the ODE

$$\dot{y} = \sigma(A(t)y(t) + b(t)), \qquad y(0) = x, \qquad t \in [0, h]$$

(He et al. 2015, Haber and Ruthotto 2017, and E 2017).

Let \mathcal{V} input space, \mathcal{W} output space

$$\varphi: \mathcal{V} \to \mathcal{W}$$
.

DNNs - approximation theory:

$$\varphi \approx \varphi_{\theta}$$

by a composition of *L* simpler maps (layers)

$$\varphi_{\theta} = \varphi_{L} \circ \varphi_{L-1} \circ \cdots \circ \varphi_{1}, \quad \varphi_{\ell} = \varphi_{\theta_{\ell}} \quad \varphi_{\theta_{\ell}} : \mathcal{V}_{\ell-1} \to \mathcal{V}_{\ell}$$

 $V_0 = V$ and $V_L = W$, each φ_ℓ depends on a finite number of parameters θ_ℓ .

Residual networks - **numerical ODEs**: $V_{\ell-1} = V_{\ell} = V$ a compact subdomain of \mathbb{R}^N and

$$\varphi_{\theta_{\ell}} = \mathrm{id} + hX_{\theta_{\ell}}, \quad X_{\theta_{\ell}} : x \mapsto \sigma(A_{\ell}x + b_{\ell}), \quad \theta_{\ell} \coloneqq (A_{\ell}, b_{\ell})$$

can be seen as the forward Euler discretization of the flow map of the ODE

$$\dot{y} = \sigma(A(t)y(t) + b(t)), \qquad y(0) = x, \qquad t \in [0, h]$$

(He et al. 2015, Haber and Ruthotto 2017, and E 2017).

Learning - variational methods: optimising a cost function (distance) with respect to all the parameters

$$\min_{\varphi_{\theta} = \varphi_{\theta_{L}} \circ \cdots \circ \varphi_{\theta_{1}}} E(\varphi_{\theta}) = \min_{\{\theta_{\ell}\}_{\ell=1}^{L}} E(\varphi_{\theta_{L}} \circ \cdots \circ \varphi_{\theta_{1}})$$

is the discretization of the optimal control problem:

Transitions in Runge-Kutta methods - Data Spiral

Figure: Snap shots of the transition from initial to final state through the network with the Spiral data set. Top, ResNet/Euler, and bottom, Runge-Kutta(4).

- The qualitative properties of the flow of the dynamical system are more important for the result than the extent to which the ODE flow is accurately reproduced.
- Can use the ODE as a means to construct neural networks with a prescribed structure.

Transitions in Runge-Kutta methods - Data Spiral

Figure: Snap shots of the transition from initial to final state through the network with the Spiral data set. Top, ResNet/Euler, and bottom, Runge-Kutta(4).

- The qualitative properties of the flow of the dynamical system are more important for the result than the extent to which the ODE flow is accurately reproduced.
- Can use the ODE as a means to construct neural networks with a prescribed structure.

Examples of structured NNs:

- 1-Lipshitz networks (adversarial attacks and image denoising).
- Symmetric neural networks (LLMs).
- Hamiltonian/Lagrangian neural networks (for learning dynamics from data).
- -EC, Ehrhardt, Etmann, McLachlan, Owren, Schönlieb, Sherry, Structure preserving deep learning. Elena Celledoni Deep NNs and NA

Lipschitz Networks

- Adversarial attacks
- Image denoising

(In)stability – adversarial attacks

panua

"gibbon"

"vulture"

Adversarial Rotation

"orangutan"

https://ai.googleblog.com/2018/09/

Stability of the neural network - contractivity of the underlying ODE

Residual networks:

$$\varphi \approx \varphi_{\theta} = \varphi_{\theta_{L}} \circ \varphi_{\theta_{L-1}} \circ \cdots \circ \varphi_{\theta_{1}}, \qquad \varphi_{\theta_{\ell}} : \mathcal{V} \to \mathcal{V},$$

 ${\mathcal V}$ a compact subdomain of ${\mathbb R}^{{\mathcal N}}$ and

$$\varphi_{\theta_{\ell}} = \mathrm{id} + hX_{\theta_{\ell}}, \quad X_{\theta_{\ell}} : x \mapsto B_{\ell}\sigma(A_{\ell}x + b_{\ell}), \quad \theta_{\ell} := (B_{\ell}, A_{\ell}, b_{\ell})$$

forward Euler numerical integration of the ODE

$$\dot{y} = B(t)\sigma(A(t)y(t) + b(t)), \qquad y(0) = x, \qquad t \in [0, h].$$

Stability of the neural network - contractivity of the underlying ODE

Residual networks:

$$\varphi \approx \varphi_{\theta} = \varphi_{\theta_L} \circ \varphi_{\theta_{L-1}} \circ \cdots \circ \varphi_{\theta_1}, \qquad \varphi_{\theta_\ell} : \mathcal{V} \to \mathcal{V},$$

 ${\mathcal V}$ a compact subdomain of ${\mathbb R}^N$ and

$$\varphi_{\theta_{\ell}} = \mathrm{id} + hX_{\theta_{\ell}}, \quad X_{\theta_{\ell}} : x \mapsto B_{\ell}\sigma(A_{\ell}x + b_{\ell}), \quad \theta_{\ell} := (B_{\ell}, A_{\ell}, b_{\ell})$$

forward Euler numerical integration of the ODE

$$\dot{y} = B(t)\sigma(A(t)y(t) + b(t)), \qquad y(0) = x, \qquad t \in [0, h].$$

• We want to be able to guarantee that the layer φ_{ℓ} is a contractive map (when necessary), i.e.

$$\|\varphi_{\ell}(y_2) - \varphi_{\ell}(y_1)\| < \|y_2 - y_1\|,$$

so that we can compose contractive and non-contractive layers to construct a neural network with Lipschitz constant equal to 1.

 We can use known theory of numerical stability of contractive ODEs.

Contractivity of the underlying ODE

A vector field X(t, y) is **contractive** in ℓ^2 -norm if there is $\nu > 0$ such that for all y_1 , y_2 and $t \in [0, T]$:

$$\langle X(t, y_2) - X(t, y_1), y_2 - y_1 \rangle \le -\nu \|y_2 - y_1\|^2.$$

This implies that for any two integral curves y(t) and z(t)

$$||y(t)-z(t)|| \le e^{-t\nu}||y(0)-z(0)||.$$

Contractivity of the underlying ODE

A vector field X(t,y) is **contractive** in ℓ^2 -norm if there is $\nu > 0$ such that for all y_1 , y_2 and $t \in [0, T]$:

$$\langle X(t, y_2) - X(t, y_1), y_2 - y_1 \rangle \le -\nu \|y_2 - y_1\|^2.$$

This implies that for any two integral curves y(t) and z(t)

$$||y(t)-z(t)|| \le e^{-t\nu}||y(0)-z(0)||.$$

The vector field

$$X(t, y(t)) = -A(t)^{T} \sigma(A(t)y(t) + b(t)),$$

with σ increasing function, $A \in \mathbb{R}^{n \times k}$, $b \in \mathbb{R}^n$, is contractive.

 EC, Ehrhardt, Etmann, McLachlan, Owren, Schönlieb, Sherry, Structure preserving deep learning, EJAM, 2021.

Contractivity of Runge-Kutta methods: B-stable numerical integration methods for ODEs

- B-stable Runge-Kutta methods (implicit) preserve contractivity independently on the step-size h. (Butcher 1975, Dahlquist 76, Burrage and Butcher 1979)
- Dekker and Verwer, Stability of Runge-Kutta methods for Stiff Nonlinear Differential Equations, 1984.

The backward Euler method

$$y_1 = y_0 + hX(t_1, y_1)$$

applied to contractive vector fields is non-expansive for all step-sizes h > 0.

Contractivity of Runge-Kutta methods: B-stable numerical integration methods for ODEs

- B-stable Runge-Kutta methods (implicit) preserve contractivity independently on the step-size h. (Butcher 1975, Dahlquist 76, Burrage and Butcher 1979)
- Dekker and Verwer, Stability of Runge-Kutta methods for Stiff Nonlinear Differential Equations, 1984.

The backward Euler method

$$y_1 = y_0 + h X(t_1, y_1)$$

applied to contractive vector fields is non-expansive for all step-sizes h > 0.

Proof. In ℓ_2 -norm. Consider to initial values y_0 and x_0 and the Euler updates

$$y_0 = y_1 - hX(t_1, y_1)$$

 $x_0 = x_1 - hX(t_1, x_1)$

then

$$y_0 - x_0 = y_1 - x_1 - h(X(t_1, y_1) - X(t_1, x_1))$$

taking the inner product of LHS and RHS with themselves we get

$$\|y_0 - x_0\|_2^2 = \|y_1 - x_1\|_2^2 - 2h(X(t_1, y_1) - X(t_1, x_1), y_1 - x_1) + h^2\|X(t_1, y_1) - X(t_1, x_1))\|_2^2$$

using the contractivity condition we see that for all $h \ge 0$ the RHS is the sum of three positive terms and we have that $\|y_1 - x_1\|_2^2 \le \|y_0 - x_0\|^2$, which means we have the non-exposivity for all h > 0. Elena Celledoni

Deep NNs and NA

Theorem (Dahlquist and Jeltsch, 1979)

Suppose X satisfies the cocoercivity condition

$$\langle X(t,y_2) - X(t,y_1), y_2 - y_1 \rangle \le -\overline{\nu} \|X(t,y_2) - X(t,y_1)\|^2, \quad \overline{\nu} \ge 0.$$

Then, if the stepsize h satisfies

$$h \leq 2\bar{\nu}$$
,

the forward Euler method is non-expansive.

Theorem (Dahlquist and Jeltsch, 1979)

Suppose X satisfies the cocoercivity condition

$$\langle X(t,y_2) - X(t,y_1), y_2 - y_1 \rangle \le -\bar{\nu} \|X(t,y_2) - X(t,y_1)\|^2, \quad \bar{\nu} \ge 0.$$

Then, if the stepsize h satisfies

$$h\leq 2\bar{\nu},$$

the forward Euler method is non-expansive.

Proof: Consider to initial values y_0 and x_0 and the Euler updates

$$y_1 = y_0 + hX(t_0, y_0)$$

$$x_1 = x_0 + hX(t_0, x_0)$$

then

$$y_1 - x_1 = y_0 - x_0 + h(X(t_0, y_0) - X(t_0, x_0))$$

taking the inner product with LHS with itself and RHS with itself we get

$$\|y_1-x_1\|_2^2 = \|y_0-x_0\|_2^2 + 2h\langle X(t_0,y_0)-X(t_0,x_0),y_0-x_0\rangle + h^2\|X(t_0,y_0)-X(t_0,x_0))\|_2^2$$

using the monotonicity condition and taking $h \le 2\bar{\nu}$ we get

$$2(X(t_0,y_0)-X(t_0,x_0),y_0-x_0)+h\|X(t_0,y_0)-X(t_0,x_0))\|_2^2\leq 0$$

and we get contractivity $||y_1 - x_1||_2^2 \le ||y_0 - x_0||^2$.

Theorem (Dahlquist and Jeltsch, 1979 - Theory of circle contractivity) Suppose X satisfies the **cocoercivity condition**

$$\langle X(t,y_2) - X(t,y_1), y_2 - y_1 \rangle \le -\bar{\nu} \|X(t,y_2) - X(t,y_1)\|^2, \quad \bar{\nu} \ge 0.$$

Then, if the stepsize h satisfies

$$h \leq 2\bar{\nu}$$
,

the forward Euler method is non-expansive.

Theorem (Dahlquist and Jeltsch, 1979 - Theory of circle contractivity) Suppose X satisfies the **cocoercivity condition**

$$\langle X(t,y_2) - X(t,y_1), y_2 - y_1 \rangle \le -\bar{\nu} \|X(t,y_2) - X(t,y_1)\|^2, \quad \bar{\nu} \ge 0.$$

Then, if the stepsize h satisfies

$$h \leq 2\bar{\nu}$$
,

the forward Euler method is non-expansive.

Proposition

For σ non decreasing and L-Lipschitz, the vector field

$$X(t,y) = -A(t)^{T} \sigma(A(t)y + b),$$

with $A \in \mathbb{R}^{n \times k}$, $b \in \mathbb{R}^n$, satisfies the cocoercivity condition with $\bar{\nu} = \frac{1}{\|A\|^2 I}$.

Remark X is a gradient vector field:

$$\dot{y} = -\nabla_{y}V$$
, $V(t, y(t)) = \langle \gamma(A(t)y(t) + b(t)), 1 \rangle$, $\gamma' = \sigma$.

 Sherry, EC, Ehrhardt, Murari, Owren and Schönlieb, Designing Stable Neural Networks using Convex Analysis and ODEs, 2023, arXiv:2306.17332

- Databases of images: using convolution neural networks
- Network:

$$\Psi = \varphi_1 \circ \psi_1 \circ \varphi_2 \circ \psi_2 \circ \cdots \circ \varphi_L \circ \psi_L$$

• Convenient to use orthogonal weights. ||P|| = 1, ||Q|| = 1, easier

$$\varphi_{\ell}(x) = x - h_1 P^T \sigma(Px + p)$$
 contractive
$$\psi_{\ell}(x) = x + h_2 Q^T \sigma(Qx + q) \text{ expansive}$$

$$\sigma(x) = \max \left\{ x, \frac{x}{2} \right\}, \ P^T P = I, \ Q^T Q = I.$$

Robust classification of CIFAR10 and CIFAR100

$$\varphi_{\ell}(x) = x - h_1 P^T \sigma(Px + p) \quad \text{contractive}$$

$$\psi_{\ell}(x) = x + h_2 Q^T \sigma(Qx + q) \quad \text{expansive}$$

$$\sigma(x) = \max \left\{ x, \frac{x}{2} \right\}, \ P^T P = I, \ Q^T Q = I.$$

Using orthogonal convolutional NNs. by Wang et al., 2020. Adversarial examples using Foolbox.

EC, Murari, Owren, Schönlieb and Sherry, Dynamical systems based neural networks, 2023, SISC

- Extensions to graph neural networks in:
 - M Eliasof, D Murari, F Sherry, CB Schönlieb, Contractive Systems Improve Graph Neural Networks Against Adversarial Attacks arXiv preprint arXiv:2311.06942.
- Where you can find more experiments on adversarial robustness.

Applications in imaging

Variational regularization approaches to inverse problems

- Variational regularization in image processing clean images \hat{u} are recovered from measurements y by minimising a trade-off between
 - 1 $E_y(u) := d(A(u), y)$ the **data fit** and

$$\hat{u} = \arg\min_{u} E_{y}(u) + R(u).$$

- **Splitting methods for optimisation**: split the objective function in two or more terms, each easier to optimise.
- Proximal gradient is a variant of gradient descent where the gradient flow is approximated by an implicit-explicit time-stepping.
 The implicit part corresponds to the proximal operator:

Proposition:

$$\operatorname{prox}_{hR} u = \arg\min_{u'} \|u - u'\|_2 + h R(u').$$

To solve the optimization problem

$$\hat{u} = \arg\min_{u} E_{y}(u) + R(u)$$

we use

Proximal gradient descent

Input: measurements y, initial estimate u_0

for
$$\ell = 1, ..., N$$
 do
$$u^{[\ell+1]} = \operatorname{prox}_{hR}(u^{[\ell]} - h \nabla E_y(u^{[\ell]}))$$

end for

Plug-and-Play: replace $prox_{hR}$ with a (non-expansive) neural network $prox_{h,\ell}$, learning the de-noiser form data.

Convergence

Definition An operator $\mathcal{A}: \mathbb{R}^d \to \mathbb{R}^d$ is α -averaged if \exists a non expansive operator $\mathcal{T}: \mathbb{R}^d \to \mathbb{R}^d$ s.t.

$$\mathcal{A} = \alpha T + (1 - \alpha) I_d, \quad \alpha \in (0, 1).$$

Convergence

Definition An operator $\mathcal{A}: \mathbb{R}^d \to \mathbb{R}^d$ is α -averaged if \exists a non expansive operator $\mathcal{T}: \mathbb{R}^d \to \mathbb{R}^d$ s.t.

$$\mathcal{A} = \alpha T + (1 - \alpha)I_d, \quad \alpha \in (0, 1).$$

Theorem (Hertrich, Neumayer, Steidl)

Let $E: \mathbb{R}^m \to \mathbb{R}$ be convex and differentiable with L-Lipschitz continuous gradient and let $\overline{\text{prox}}_{h,\ell}: \mathbb{R}^m \to \mathbb{R}^m$ be averaged. Then, for any $0 < h < \frac{2}{L}$, the sequence $\{u^{[\ell]}\}_{\ell}$ generated by

Proximal gradient descent-PnP:

for
$$\ell = 1, \ldots, N$$
 do

$$u^{[\ell+1]} = \widehat{\operatorname{prox}}_{h,\ell}(u^{[\ell]} - h \nabla E_y(u^{[\ell]}))$$

end for

converges.

 J Hertrich, S Neumayer, G Steidl, Convolutional Proximal Neural Networks and Plug-and-Play Algorithms, Lin. Alg. and Appl.

PnP with ResNet and non-expansive networks

- Using $f(t,y) = -A^T \sigma(Ay + b)$ we can construct residual neural networks that are provably non-expansive (1-Lipschitz) and averaged.
- J Hertrich, S Neumayer, G Steidl. Averagedness together with E_y(u) convex, differentiable and ∇E_y is L-Lipschitz, is sufficient to prove convergence of PnP algorithms.

PnP with ResNet and non-expansive networks

- Using $f(t,y) = -A^T \sigma(Ay + b)$ we can construct residual neural networks that are provably non-expansive (1-Lipschitz) and averaged.
- J Hertrich, S Neumayer, G Steidl. Averagedness together with E_y(u) convex, differentiable and ∇E_y is L-Lipschitz, is sufficient to prove convergence of PnP algorithms.

Theorem (Sherry)

Let σ non decreasing and L-Lipschitz, $A \in \mathbb{R}^{n \times k}$, $b \in \mathbb{R}^n$ and let $\alpha \in (0,1)$. A single layer mapping $A : x \to \varphi(x)$,

$$\varphi(x) = x - hA^{\mathsf{T}}\sigma(Ax + b)$$

is α -averaged if

$$h \le \frac{2\alpha}{L||A||^2}.\tag{1}$$

Remark Composition of m operators A_i , i = 1, ..., m which are α_i averaged is α averaged for a certain α .

 Sherry, EC, Ehrhardt, Murari, Owren and Schönlieb, Designing Stable Neural Networks using Convex Analysis and ODEs, 2024, Physica D

Denoising with PnP (Courtesy of F. Sherry)

 Sherry, EC, Ehrhardt, Murari, Owren and Schönlieb, Designing Stable Neural Networks using Convex Analysis and ODEs, 2023, arXiv:2306.17332

Convergence with PnP (Courtesy of F. Sherry)

 Sherry, EC, Ehrhardt, Murari, Owren and Schönlieb, Designing Stable Neural Networks using Convex Analysis and ODEs, 2023, arXiv:2306.17332

Convergence vs Divergence of Learned Denoisers

(Courtesy of F. Sherry)

 Sherry, EC, Ehrhardt, Murari, Owren and Schönlieb, Designing Stable Neural Networks using Convex Analysis and ODEs, 2023, arXiv:2306.17332

Contractivity of numerical integrators on Riemannian manifolds

Diffusion tensor imaging

Manifold valued images: $s = (s_{1,1}, \dots, s_{l,m}) \in \mathcal{M}$, $\mathcal{M} = (\operatorname{Sym}^+(3))^{m \times l}$.

Figure: DTI scan, axial slice. Left: Noisy image. Right: Denoised with $\beta = 2$, $\lambda = 0.05$.

 E.C., S. Eidnes, B. Owren, T. Ringholm, Dissipative numerical schemes on Riemannian manifolds with applications to gradient flows, SISC 2019.

Neural Networks on Manifolds

- Model order reduction via Autoencoders implies the Latent space is a Manifold
- Covariance matrices are symmetric positive (semi) definite
- Diffusion Tensor Imaging, SPD voxels
- Robotics require rotations and roto-translations
- Message passing neural networks require hyperbolic geometry
- Graph data in biology, network science, computer graphycs/vision can be handled much more efficiently when embedded in hyperbolic space [Ganea et al 2018] e.g. for learning low-dimensional embeddings.

There are a number of open questions:

- How to construct neural networks on manifolds.
- How to obtain stability and robustness.

Elena Celledoni

Deep NNs and NA

Contractivity condition: a vector field X(t,y) is contractive in ℓ^2 -norm if there is $\nu > 0$ such that for all y_1 , y_2 and $t \in [0, T]$:

$$\langle X(t, y_2) - X(t, y_1), y_2 - y_1 \rangle \le -\nu \|y_2 - y_1\|^2$$
.

This implies that for any two integral curves y(t) and z(t)

$$||y(t)-z(t)|| \le e^{-t\nu}||y(0)-z(0)||.$$

Recall also

Cocoercivity condition:

$$\langle X(t,y_2) - X(t,y_1), y_2 - y_1 \rangle \le -\bar{\nu} \|X(t,y_2) - X(t,y_1)\|^2, \quad \bar{\nu} > 0,$$

used to obtain contractivity of the forward Euler method for small enough step-sizes.

- (\mathcal{M}, g) a Riemannian manifold, $g_p(u, v) = \langle u, v \rangle_p$
- $\ell(\gamma) = \int_a^b \sqrt{\langle \dot{\gamma}(t), \dot{\gamma}(t) \rangle} dt$, $d(p,q) = \inf_{\gamma_{p \to q}} \ell(\gamma_{p \to q})$,
- geodesic: $\gamma(t) = \exp_p(t \, v_p)$, $\exp_p : T_p \mathcal{M} \to \mathcal{M}$ Riemannian exponential
- ▼ is the Levi-Civita connection induced by g
- X and Y vector fields on \mathcal{M} : $\nabla_X Y$ denotes the covariant derivative on \mathcal{M}
- a curve $\gamma(t)$ on $\mathcal M$ is a geodesic if it satisfies the equation $\nabla_{\dot\gamma}\dot\gamma=0$

- (\mathcal{M}, g) a Riemannian manifold, $g_p(u, v) = \langle u, v \rangle_p$
- $\ell(\gamma) = \int_a^b \sqrt{\langle \dot{\gamma}(t), \dot{\gamma}(t) \rangle} dt$, $d(p,q) = \inf_{\gamma_{p \to q}} \ell(\gamma_{p \to q})$,
- geodesic: $\gamma(t) = \exp_p(t v_p)$, $\exp_p : T_p \mathcal{M} \to \mathcal{M}$ Riemannian exponential
- ∇ is the Levi-Civita connection induced by g
- X and Y vector fields on \mathcal{M} : $\nabla_X Y$ denotes the covariant derivative on \mathcal{M}
- a curve $\gamma(t)$ on \mathcal{M} is a geodesic if it satisfies the equation $\nabla_{\dot{\gamma}}\dot{\gamma}=0$

Contractivity condition: for $\mathcal{U} \subset \mathcal{M}$ a vector field X satisfies the monotonicity condition on \mathcal{U} if there is $\alpha_0 > 0$ st

$$\langle \nabla_{v_x} X, v_x \rangle \le -\alpha_0 \|v_x\|^2, \quad \forall x \in \mathcal{U}, \quad v_x \in T_x \mathcal{M}.$$

- (\mathcal{M}, g) a Riemannian manifold, $g_p(u, v) = \langle u, v \rangle_p$
- $\ell(\gamma) = \int_a^b \sqrt{\langle \dot{\gamma}(t), \dot{\gamma}(t) \rangle} dt$, $d(p,q) = \inf_{\gamma_{p \to q}} \ell(\gamma_{p \to q})$,
- geodesic: $\gamma(t) = \exp_p(t v_p)$, $\exp_p : T_p \mathcal{M} \to \mathcal{M}$ Riemannian exponential
- ∇ is the Levi-Civita connection induced by g
- X and Y vector fields on \mathcal{M} : $\nabla_X Y$ denotes the covariant derivative on \mathcal{M}
- a curve $\gamma(t)$ on \mathcal{M} is a geodesic if it satisfies the equation $\nabla_{\dot{\gamma}}\dot{\gamma}=0$

Contractivity condition: for $\mathcal{U} \subset \mathcal{M}$ a vector field X satisfies the monotonicity condition on \mathcal{U} if there is $\alpha_0 > 0$ st

$$\langle \nabla_{v_x} X, v_x \rangle \le -\alpha_0 ||v_x||^2, \quad \forall x \in \mathcal{U}, \quad v_x \in T_x \mathcal{M}.$$

Gronwall: Assume \mathcal{U} geodesically convex, let y(t) and z(t) be two integral curves of the vector field X with $y(0) = y_0$ and $z(0) = z_0$ both contained in $\mathcal{U} \ \forall t \in [0, T]$ then

$$d(y(t),z(t)) \leq e^{-t\alpha_0}d(y_0,z_0), \quad \forall t \in [0,T].$$

Non-expansiveness when X is forward complete, \mathcal{U} is forward X-invariant and $\nu \leq 0$.

- M. Kunzinger et al., 2006, Revista Matemática Complutense.
- J. W. Simpson-Porco and F. Bullo, Contraction theory on Riemannian manifolds, Sys. Cont.Lett. 2014

Elena Celledoni

- (\mathcal{M}, g) a Riemannian manifold, $g_p(u, v) = \langle u, v \rangle_p$
- $\ell(\gamma) = \int_a^b \sqrt{\langle \dot{\gamma}(t), \dot{\gamma}(t) \rangle} dt$, $d(p,q) = \inf_{\gamma_{p \to q}} \ell(\gamma_{p \to q})$,
- geodesic: $\gamma(t) = \exp_p(t v_p)$, $\exp_p : T_p \mathcal{M} \to \mathcal{M}$ Riemannian exponential
- ▼ is the Levi-Civita connection induced by g
- X and Y vector fields on M: ∇XY denotes the covariant derivative on M
- a curve $\gamma(t)$ on \mathcal{M} is a geodesic if it satisfies the equation $\nabla_{\dot{\gamma}}\dot{\gamma}=0$

Contractivity condition: for $\mathcal{U} \subset \mathcal{M}$ a vector field X satisfies the monotonicity condition on \mathcal{U} if there is $\alpha_0 > 0$ st

$$\langle \nabla_{v_x} X, v_x \rangle \le -\alpha_0 ||v_x||^2, \quad \forall x \in \mathcal{U}, \quad v_x \in \mathcal{T}_x \mathcal{M}.$$

Gronwall: Assume \mathcal{U} geodesically convex, let y(t) and z(t) be two integral curves of the vector field X with $y(0) = y_0$ and $z(0) = z_0$ both contained in $\mathcal{U} \ \forall t \in [0, T]$ then

$$d(y(t),z(t)) \leq e^{-t\alpha_0}d(y_0,z_0), \quad \forall t \in [0,T].$$

Non-expansiveness when X is forward complete, \mathcal{U} is forward X-invariant and $\nu \leq 0$.

- M. Kunzinger et al., 2006, Revista Matemática Complutense.
- J. W. Simpson-Porco and F. Bullo, Contraction theory on Riemannian manifolds, Sys. Cont.Lett. 2014

Cocoercivity condition: is satisfied by X on \mathcal{U} , if there is $\alpha > 0$ s.t.

$$\langle \nabla_{v_x} X, v_x \rangle \leq -\alpha \| \nabla_{v_x} X \|^2, \quad \forall x \in \mathcal{U} \quad v_x \in \mathcal{T}_x \mathcal{M}.$$

Definition: Suppose

- X is contractive on $\mathcal{U} \subset \mathcal{M}$,
- $\phi_{h,X}: \mathcal{M} \to \mathcal{M}$ is a numerical method approximating the solution of $\dot{y} = X(y)$ and y(0) = p and $\phi_{h,X}$ is well defined for all $h \ge 0$,
- \mathcal{U} is forward $\phi_{h,X}$ -invariant for all $h \ge 0$ and forward X-invariant

then the method is said to be B-stable iff

$$d(\phi_{h,X}(y_0),\phi_{h,X}(z_0)) \leq d(y_0,z_0), \quad \forall h \geq 0.$$

Definition: Suppose

- X is contractive on $\mathcal{U} \subset \mathcal{M}$,
- $\phi_{h,X}: \mathcal{M} \to \mathcal{M}$ is a numerical method approximating the solution of $\dot{y} = X(y)$ and y(0) = p and $\phi_{h,X}$ is well defined for all $h \ge 0$,
- \mathcal{U} is forward $\phi_{h,X}$ -invariant for all $h \ge 0$ and forward X-invariant

then the method is said to be B-stable iff

$$d(\phi_{h,X}(y_0),\phi_{h,X}(z_0)) \leq d(y_0,z_0), \quad \forall h \geq 0.$$

B-stability of Geodesic Implicit Euler

$$y_n = \exp_{y_{n+1}}(-hX(y_{n+1})).$$

Definition: Suppose

- X is contractive on $\mathcal{U} \subset \mathcal{M}$,
- $\phi_{h,X}: \mathcal{M} \to \mathcal{M}$ is a numerical method approximating the solution of $\dot{y} = X(y)$ and y(0) = p and $\phi_{h,X}$ is well defined for all $h \ge 0$,
- \mathcal{U} is forward $\phi_{h,X}$ -invariant for all $h \ge 0$ and forward X-invariant

then the method is said to be B-stable iff

$$d(\phi_{h,X}(y_0),\phi_{h,X}(z_0)) \leq d(y_0,z_0), \quad \forall h \geq 0.$$

B-stability of Geodesic Implicit Euler

$$y_n = \exp_{y_{n+1}}(-hX(y_{n+1})).$$

Theorem

If \mathcal{M} is a Riemannian manifold with non-positive sectional curvature then the geodesic implicit Euler method is B-stable.

Example Space of $n \times n$ symmetric positive definite matrices.

 Arnold, EC, Cokaj, Owren, Tumiotto, Contractivity of numerical integrators on Riemannian manifolds, JCD, 2024.

Geodesic Implicit Euler is not B-stable on the sphere. Counterexample.

The sphere has positive sectional curvature equal to 1:

Non-expansive vector field (on the northern hemisphere)

$$\dot{y} = X(y) = a \times y,$$
 $a = [0, 0, 1].$

- (Left) One step of Geodesic Implicit Euler applied with increasing step size h, starting from two different initial values.
- (Right) Geodesic distance: $d(y_1, z_1)$ plotted as a function of h, where $y_0 = \exp_{y_1}(-hX(y_1))$, $z_0 = \exp_{z_1}(-hX(z_1))$.

Elena Celledoni Deep NNs and NA

Projected cocoercivity condition

We assume constant sectional curvature and we seek a bound of the step-size *h* that makes the geodesic explicit Euler non-expansive.

Projected cocoercivity conditions

 positive curvature ρ > 0: project tangent vectors onto the orthogonal complement of X_{yn}:

$$\langle \nabla_{\nu} X, (I - P_X) \nu \rangle \ge -\mu^+ \| \nabla_{\nu} X \|^2 \tag{2}$$

• negative curvature $\rho < 0$: project tangent vectors on the span of X_{y_n}

$$\langle \nabla_{\nu} X, P_X \nu \rangle \ge -\mu_{-} \| \nabla_{\nu} X \|^2 \tag{3}$$

Theorem (manifolds of constant positive sectional curvature)

- Let (\mathcal{M}, g) have positive sectional curvature.
- Let X be a vector field with ∇X invertible, and satisfying the contractivity condition with constant α > 0
- Also let X satisfy the projected cocoercivity condition (2) with constant μ^+
- Let $\kappa = h \|X\| \sqrt{\rho}$, $\rho > 0$ being the curvature of \mathcal{M} .

Then the Geodesic Explicit Euler method applied to X with stepsize h is nonexpansive whenever

$$h \leq 2\alpha - 2\mu^+ f(\kappa)$$

where

$$f(\kappa) = 1 - \cos(\kappa)\operatorname{sinc}(\kappa) - \sin(\kappa)\sqrt{1 - \operatorname{sinc}(\kappa)^2}$$

Theorem (manifolds of constant negative sectional curvature)

- Let (\mathcal{M}, g) have negative sectional curvature.
- Let X be a vector field with ∇X invertible, and satisfying the non-expansivity condition with constant $\alpha > 0$
- Also let X satisfy the projected cocoercivity condition (3) with constant μ_-
- Let $\kappa = h \|X\| \sqrt{-\rho}$, $\rho < 0$ being the curvature of \mathcal{M} .

Then the Geodesic Explicit Euler method applied to X with stepsize h is nonexpansive whenever

$$0 < h \le \frac{2}{1 + \sigma^2 C \rho} \left(\alpha \kappa \coth(\kappa) - \mu_{-} \frac{f(\kappa)}{\phi(\kappa)} \right)$$

where

$$f(\kappa) = (\cosh(\kappa)\phi(\kappa) - 1) - \sinh(\kappa)\sqrt{\phi(\kappa)^2 - 1}$$
$$\phi(\kappa) = \frac{\sinh(\kappa)}{\kappa}$$

Conditional stability of the Geodesic Explicit Euler method

$$\Gamma(s,t) = \exp_{y(s)}(t h X(y(s))), \quad t \in [0,1]$$

- y(s) curve of initial points.
- Dahsed lines: numerical flow.
- $\Gamma(s,1)$: y(s) as transported by the numerical flow at time t=1.
- S(s,t) and T(s,t) tangent vector fields along s and t.

Objective: to ensure that the length of $\Gamma(s,1)$ is not bigger than the length of $\Gamma(s,0)=y(s)$.

- M. Ghirardelli, B. Owren and E Celledoni, Conditional Stability of the Euler Method on Riemannian Manifolds, arXiv:2503.09434
- Martin Arnold, Elena Celledoni, Ergys Äokaj, Brynjulf Owren, Denise Tumiotto, B-stability of numerical integrators on Riemannian manifolds, arXiv:2308.08261 and JCD.
- F.Sherry, E. Celledoni, M. Ehrhardt, D.Murari, B. Owren and C.B. Schönlieb, Designing Stable Neural Networks using Convex Analysis and ODEs, 2023, arXiv:2306.17332
- EC, Murari, Owren, Schönlieb and Sherry, Dynamical systems based neural networks, SISC 2023.
- M. Benning, E.Celledoni, M.Ehrhardt, B.Owren, C.Schönlieb, Deep learning as optimal control problems: models and numerical methods, JCD, 2019.
- E.Celledoni, M.Ehrhardt, C.Etmann, R.I. McLachlan, B. Owren, C.B. Schönlieb,
 F.Sherry, Structure preserving deep learning, EJAM, 2021.

Thank you for listening!