
Random features: methods & applications
Woudschoten conference, talk #2

Felix Dietrich

Physics-Enhanced Machine Learning
School of Computation, Information and Technology
Technical University of Munich

2025-09-26

Collaboration with
Erik Bolager, Iryna Burak,
Chinmay Datar, Ana Cukarska,
Qing Sun, Anna Veselovska,
and Massimo Fornasier

Reminder: Connection to previous talk
Linear operator decomposition
Given L : A→ B, assume we can perform a decomposition

L =

∞∑
k=1

ψkλkϕk =: ΨΛΦ,

where ψk ∈ B, λk ∈ C, ϕk ∈ A∗.

Connection to this talk
Given a sequence of neurons {gk = σ(wk · +bk)}k, can we find a unitary
transformation Q with

L =

∞∑
k=1

ψkλkϕk =: ΨQΛ1/2Λ1/2Q∗Φ,

where [ΨQΛ1/2]k = gk? Maybe we can even define Q as a random basis?

Felix Dietrich | Random features: methods & applications | 2025-09-26 2

Reminder: Feed-forward neural networks

Picture Compact

f̂(x) =
∑m

k=1 ckσ(w
T
k x+ bk)

Weights wk, biases bk, coefficients ck.

Can we find σ(wT
k x+ bk) = gk? (Let’s leave the previous talk behind now...)

Felix Dietrich | Random features: methods & applications | 2025-09-26 3

Reminder: Stochastic gradient descent

ML example: Stochastic gradient descent [1]

Given a data set X =
{
xi ∈ Rd

}N
i=1

and a learning rate η > 0, opti-
mize parameters θ of a model f̂ to minimize the loss function L(X, θ) =

1/|X|
∑

xi∈X ∥f̂(θ)(xi)− ftrue(xi)∥2.

1. Randomly initialize θ0 ∼ N(0, 1).
2. Update θn+1 ← θn − η∇L(Bn, θn), with Bn ⊂ X chosen randomly.
3. Stop if n > #iterations or L(Bn, θn) < bound.

[1] Kingma and Ba, “Adam: A Method for Stochastic Optimization,” in ICLR 2015.

Felix Dietrich | Random features: methods & applications | 2025-09-26 4

Challenges with backpropagation & SGD

■ Many hyperparameters, outer optimization loop required.
■ Slow convergence, “grad-student descent”.
■ Black-box optimization, black-box models.

Felix Dietrich | Random features: methods & applications | 2025-09-26 5

Challenges with backpropagation & SGD

■ Many hyperparameters, outer optimization loop required.
■ Slow convergence, “grad-student descent”.
■ Black-box optimization, black-box models.

Felix Dietrich | Random features: methods & applications | 2025-09-26 5

Random feature methods (data-driven)

parameter space

lo
ss

 f
u
n
c
ti
o

n

global minimum

parameter space

lo
ss

 f
u
n
c
ti
o

n

global minimum

poor starting guess
poor initial distribution,

slow iterative optimization

does not need iterations
Good initial distribution

Left: stochastic gradient descent slowly and iteratively refines a poor initial guess.
Right: good initial distributions of weights do not need iterative training!

Main question: How do we construct good initial distributions of
parameters?

Felix Dietrich | Random features: methods & applications | 2025-09-26 6

Feed-forward neural networks

Our setting
Feed-forward networks û, (for now) with one hidden layer,

û(x) =

m∑
k=1

ckσ(w
T
k x+ bk), x ∈ Ω,

with m hidden neurons and activation function σ = tanh.

Main argument
If weights and biases (wk, bk) were given, we would only need to solve a
(regularized) linear problem:

min
c∈Rm

1

N

N∑
i=1

(
m∑

k=1

ckσ(w
T
k xi + bk)− f(xi)

)2

+ λ ∥c∥2 .

Felix Dietrich | Random features: methods & applications | 2025-09-26 7

Parameters of feed-forward neural networks

Approaches to construct internal weights and biases

[1] "Classic": SGD, Adam θn+1 = θn − η∇Loss(θn)

[2] Weight reconstruction Approximate Hessian of f

[3] Random features, reservoirs w ∼ N(0, 1), b ∼ U(−1, 1)

[4] Using the data w = x(2) − x(1)

[5] Sample weights "where it matters" w = (x(2) − x(1))/∥x(2) − x(1)∥2

[1] Kingma and Ba, "Adam: A Method for Stochastic Optimization," in ICLR 2015.
[2] Fornasier, Klock, Mondelli, and Rauchensteiner. "Finite Sample Identification of Wide Shallow Neural Networks with Biases." pre-print, 2022.
arxiv.org/abs/2211.04589.
[3] Rahimi and Recht, "Uniform approximation of functions with random bases," IEEE, 2008.
[4] Galaris, Fabiani, Gallos, Kevrekidis, and Siettos, "Numerical Bifurcation Analysis of PDEs From Lattice Boltzmann Model Simulations" J. Sci. Comput.,
2022.
[5] Bolager, Burak, Datar, Sun, and D., "Sampling weights of deep neural networks," NeurIPS 2023.

Felix Dietrich | Random features: methods & applications | 2025-09-26 8

Feed-forward neural networks, revisited
Illustrations and notation

Picture Compact Basis function view

∑m
k=1 ckσ(w

T
k x+ bk)

c1σ(⟨w1, x⟩+ b1) +
c2σ(⟨w2, x⟩+ b2) +
. . .
cmσ(⟨wm, x⟩+ bm)

Main insights
1. Weights wk are in the dual space of the data∗, i.e., they are vectors.
2. Biases bk shift the input of the activation function.
3. Coefficients ck combine the activation functions linearly.

∗Related work: Spek, Heeringa, Schwenninger, and Brune. 2025. “Duality for Neural Networks through Reproducing Kernel Banach Spaces.” ACHA, 2025.

Felix Dietrich | Random features: methods & applications | 2025-09-26 9

Feed-forward neural networks, revisited
Given the ReLU function (σ(x) = max(0, x)), Ω = R× RD × R and a
probability measure µ over Ω.

Mathematical framework: Barron spaces
The Barron space B is defined as

B =

{
f : f(x) =

ˆ
Ω

cσ(⟨w, x⟩ − b)dµ(b, w, c) and ∥f∥B <∞
}
,

with the Barron norm defined as

∥f∥B = inf
ν

max
b,w,c∈supp(ν)

{|c|(∥w∥1 + |b|)} .

Main question in machine learning: Given f , how do we approximate the
integral with a finite number of m parameters (bk, wk, ck)

m
k=1?

Felix Dietrich | Random features: methods & applications | 2025-09-26 10

“Sample where it matters”

Algorithm (Bolager et al., 2023)

1. Sample many random data pairs (x(i), x(k)) in the domain X .
2. Given data from target f , evaluate finite difference

di,k = ∥f(x(i))−f(x(k))∥
∥x(i)−x(k)∥ .

3. Draw m pairs with probability proportional to di,k.

4. Construct weights and biases: w = s1
x(i)−x(k)

∥(x(i)−x(k))∥2 , b = wTx(i) + s2.

Felix Dietrich | Random features: methods & applications | 2025-09-26 11
Bolager, Burak, Datar, Sun, and D., "Sampling weights of deep neural networks," NeurIPS
2023. Pre-print: arxiv.org/abs/2306.16830

data

“Sample where it matters”

Algorithm (Bolager et al., 2023)

1. Sample many random data pairs (x(i), x(k)) in the domain X .
2. Given data from target f , evaluate finite difference

di,k = ∥f(x(i))−f(x(k))∥
∥x(i)−x(k)∥ .

3. Draw m pairs with probability proportional to di,k.

4. Construct weights and biases: w = s1
x(i)−x(k)

∥(x(i)−x(k))∥2 , b = wTx(i) + s2.

Felix Dietrich | Random features: methods & applications | 2025-09-26 11
Bolager, Burak, Datar, Sun, and D., "Sampling weights of deep neural networks," NeurIPS
2023. Pre-print: arxiv.org/abs/2306.16830

data
point 1
point 2

“Sample where it matters”

Algorithm (Bolager et al., 2023)

1. Sample many random data pairs (x(i), x(k)) in the domain X .
2. Given data from target f , evaluate finite difference

di,k = ∥f(x(i))−f(x(k))∥
∥x(i)−x(k)∥ .

3. Draw m pairs with probability proportional to di,k.

4. Construct weights and biases: w = s1
x(i)−x(k)

∥(x(i)−x(k))∥2 , b = wTx(i) + s2.

Felix Dietrich | Random features: methods & applications | 2025-09-26 11
Bolager, Burak, Datar, Sun, and D., "Sampling weights of deep neural networks," NeurIPS
2023. Pre-print: arxiv.org/abs/2306.16830

data
point 1
point 2

“Sample where it matters”

Algorithm (Bolager et al., 2023)

1. Sample many random data pairs (x(i), x(k)) in the domain X .
2. Given data from target f , evaluate finite difference

di,k = ∥f(x(i))−f(x(k))∥
∥x(i)−x(k)∥ .

3. Draw m pairs with probability proportional to di,k.

4. Construct weights and biases: w = s1
x(i)−x(k)

∥(x(i)−x(k))∥2 , b = wTx(i) + s2.

Felix Dietrich | Random features: methods & applications | 2025-09-26 11
Bolager, Burak, Datar, Sun, and D., "Sampling weights of deep neural networks," NeurIPS
2023. Pre-print: arxiv.org/abs/2306.16830

data
point 1
point 2

“Sample where it matters”

Algorithm (Bolager et al., 2023)

1. Sample many random data pairs (x(i), x(k)) in the domain X .
2. Given data from target f , evaluate finite difference

di,k = ∥f(x(i))−f(x(k))∥
∥x(i)−x(k)∥ .

3. Draw m pairs with probability proportional to di,k.

4. Construct weights and biases: w = s1
x(i)−x(k)

∥(x(i)−x(k))∥2 , b = wTx(i) + s2.

Felix Dietrich | Random features: methods & applications | 2025-09-26 11
Bolager, Burak, Datar, Sun, and D., "Sampling weights of deep neural networks," NeurIPS
2023. Pre-print: arxiv.org/abs/2306.16830

“Sample where it matters”

How to discretize functions on this space?
ReLU: max(wkx+ bk, 0)

Felix Dietrich | Random features: methods & applications | 2025-09-26 12

“Sample where it matters”

How to discretize functions on this space? Random ReLU functions?
ReLU: max(wkx+ bk, 0)

Felix Dietrich | Random features: methods & applications | 2025-09-26 12

“Sample where it matters”

How to discretize functions on this space? Random ReLU functions?
ReLU: max(wkx+ bk, 0)

Felix Dietrich | Random features: methods & applications | 2025-09-26 12

“Sample where it matters”

How to discretize functions on this space? Sample functions where it matters!
ReLU: max(wkx+ bk, 0)

Felix Dietrich | Random features: methods & applications | 2025-09-26 12

“Sample where it matters”

How to discretize functions on this space? Sample functions where it matters!
ReLU: max(wkx+ bk, 0) Also see “He and Xu: Deep Neural Networks and Finite
Elements of Any Order on Arbitrary Dimensions, 2024. arXiv:2312.14276”.
Felix Dietrich | Random features: methods & applications | 2025-09-26 12

“Sample where it matters”

Universal approximation
Theorem 1. For any number of layersL ∈ N, the space of sampled networks
with L hidden layers and ReLU activation function is dense in C(X ,R).

Idea of proof: Show that we can approximate any neural network with one
hidden layer with a sampled network that has slightly more neurons. This
works differently for ReLU (homogeneous) and tanh (not homogeneous).

“Sampling data pairs from X × X is enough to be expressive.”

Felix Dietrich | Random features: methods & applications | 2025-09-26 13

Bolager et al., “Sampling weights of deep neural networks,” NeurIPS 2023.

“Sample where it matters”

Fast convergence (breaking CoD)

Theorem 2. Let f ∈ B (Barron) and X = [0, 1]D. For any N1 ∈ N, ϵ > 0,
and an arbitrary probability measure π, there exist sampled networks Φ with
one hidden layer, N1 neurons, and ReLU activation function, such that

∥f − Φ∥22 =

ˆ
X
|f(x)− Φ(x)|2dπ(x) < (3 + ϵ)∥f∥2B

N1
.

Idea of proof: Similar to Theorem 1, together with convergence results for
general neural networks.

“The error scales independently of the input dimension.”

Felix Dietrich | Random features: methods & applications | 2025-09-26 13

Bolager et al., “Sampling weights of deep neural networks,” NeurIPS 2023.

“Sample where it matters”

Equivariance

Idea of proof: Neurons can be written as ϕ(
〈
s1w/∥w∥2, x− x(1)

〉
− s2). As we divide

by the ∥w∥2, the scalar in H cancels. There is a difference between two points, which
means the translation cancels. Orthogonal matrices cancel due to isometry.

“Rigid motion and scaling of the input space does not matter.”

Felix Dietrich | Random features: methods & applications | 2025-09-26 13

Sampling weights: Code contributions

It is super fast - try it out!
https://www.gitlab.com/felix.dietrich/swimnetworks

Felix Dietrich | Random features: methods & applications | 2025-09-26 14

Bolager, Burak, Datar, Sun, and D., "Sampling weights of deep neural networks," NeurIPS
2023. Pre-print: arxiv.org/abs/2306.16830

https://www.gitlab.com/felix.dietrich/swimnetworks

Computational experiments (1/3)
Comparison to iterative training: OpenML classificaton benchmark

Figure 1 Fitting time, accuracy, and number of layers using weight sampling, compared
to training with the Adam optimizer. The best architecture is chosen separately for each
method and each problem, by evaluating 10-fold cross-validation error over 1− 5 layers
with 500 neurons each.

“Sampled networks are as accurate as iteratively trained ones.”

Felix Dietrich | Random features: methods & applications | 2025-09-26 15

Bolager, Burak, Datar, Sun, and D., "Sampling weights of deep neural networks," NeurIPS
2023. Pre-print: arxiv.org/abs/2306.16830

Computational experiments (2/3)
Sampling for transfer learning with CNNs (work by Chinmay Datar)

Left: Train and test accuracies with different widths for ResNet50 (averaged over 5
random seeds). Middle: Test accuracy with different models with and without
fine-tuning (width = 2048). Right: Adam training and sampling times of the classification
head (averaged over 5 experiments).

“Fine-tuning with iterative optimization is possible.”

Felix Dietrich | Random features: methods & applications | 2025-09-26 16

Bolager, Burak, Datar, Sun, and D., "Sampling weights of deep neural networks," NeurIPS
2023. Pre-print: arxiv.org/abs/2306.16830

Computational experiments (3/3)
Sampling neural operators (work by Iryna Burak and Qing Sun)

Algorithm to sample POD-DeepONet G(u0, x) = u(t, x)
(a similar trick also works for sampling Fourier Neural Operators):
1. Given: collection of initial and final solutions {ui(0, x), ui(t, x)}Ni=1 to a

PDE.
2. Construct fixed, orthonormalized POD modes T (x) from given solution

data.
3. Define POD-DeepONet as Ĝ(u, x) = T (x)TB(u), with “trunk” T and

“branch”-net B.
4. Project final data to POD modes:

T (x)u(t, x) ≈ T (x)Ĝ(u(t, ·), x) = B(u(t, ·)).
5. Sample branch-net B̂(u(t, ·)) ≈ T (x)u(t, ·). This is now a

supervised-learning problem!

“We can design probability distributions for network parameters
that are useful to solve specific problems.”

Felix Dietrich | Random features: methods & applications | 2025-09-26 17

Lu, Meng, Cai, Mao, Goswami, Zhang, and Karniadakis. “A Comprehensive and Fair Comparison of Two Neural Operators (with Practical
Extensions) Based on FAIR Data.” (2022). doi:10.1016/j.cma.2022.114778.

Bolager, Burak, Datar, Sun, and D., "Sampling weights of deep neural networks," NeurIPS 2023. Pre-print: arxiv.org/abs/2306.16830

Computational experiments (3/3)
Sampling neural operators (work by Iryna Burak and Qing Sun)

Left: Samples of initial conditions u0 and corresponding solutions u1 for Burgers’
equation. Right: Parameters of the best model for each architecture, the mean relative
L2 error on the test set, and the training time. We average the metrics across three
runs with different random seeds.

“Other architectures can be sampled, too.”

Felix Dietrich | Random features: methods & applications | 2025-09-26 18

Bolager, Burak, Datar, Sun, and D., "Sampling weights of deep neural networks," NeurIPS
2023. Pre-print: arxiv.org/abs/2306.16830

Learning Hamiltonian dynamics on graphs

Hamiltonian graph neural network constructed with random feature layers.
The network solves a linear PDE defined on a high-dimensional base space
(all nodes of the graph combined) for H , so that

q̇ =
∂H

∂p
, ṗ = −∂H

∂q
.

Rahma, Datar, Cukarska, and D. “Rapid Training of Hamiltonian Graph Networks
without Gradient Descent.” Preprint, http://arxiv.org/abs/2506.06558.

Felix Dietrich | Random features: methods & applications | 2025-09-26 19

http://arxiv.org/abs/2506.06558

Learning Hamiltonian dynamics on graphs

2

0

2

4

6

8

10

2

0

2

4

6

8

10

0.0 2.5 5.0 7.5 10.0
Time step 0

2

0

2

4

6

8

10

0.0 2.5 5.0 7.5 10.0
Time step 24999

0.0 2.5 5.0 7.5 10.0
Time step 49999

0.0 2.5 5.0 7.5 10.0
Time step 74998

0.0 2.5 5.0 7.5 10.0
Time step 99998

using true H (ELM) RF-HGN (Adam) HGN (SWIM) RF-HGN

Rahma, Datar, Cukarska, and D. “Rapid Training of Hamiltonian Graph Networks
without Gradient Descent.” Preprint, http://arxiv.org/abs/2506.06558.

Felix Dietrich | Random features: methods & applications | 2025-09-26 20

http://arxiv.org/abs/2506.06558

Machine learning without SGD
We now turn this idea into a scientific program.

1. Feed-forward networks (Bolager et al. [2023]).
2. Solving partial differential equations (pre-print Datar et al. [2024]).
3. Training recurrent neural networks (pre-print Bolager et al. [2024]).
4. Learning Hamiltonian dynamics on graphs (Rahma et al. [2024, 2025]).
5. Training spiking neural networks (pre-print submitted).
6. “Soon”: training convolutional networks and transformers.

Felix Dietrich | Random features: methods & applications | 2025-09-26 21

Forward problem: Solving PDE

Setting

Domain Ω ⊂ Rd, function space F = {h : Ω → R}, forcing f : Ω → R,
boundary data g : ∂Ω→ R, linear operators L,B. Find u ∈ F , s.t.

Lu(x) = f(x), ∀x ∈ Ω,
Bu(x) = g(x), ∀x ∈ ∂Ω.

Numerical solution (Galerkin method)
1. Choose basis functions {hi ∈ F}i.
2. Write ansatz as linear combination û =

∑
i cihi.

3. Apply L and B to ansatz (and thus individual bases hi).
4. Obtain (large) linear system: Lû =

∑
i ciLhi = f,Bû =

∑
i ciBhi = g.

5. Solve for ci.
Classical choices for hi: splines, Gaussians, (trigonometric) polynomials.

Felix Dietrich | Random features: methods & applications | 2025-09-26 22

Neural networks as ansatz functions

Mathematical perspective: Why are networks useful?

■ Universal approximation (for C0 functions) [1,4].
■ Breaking the curse of dimensionality (for Barron functions) [2,3,4,5].
■ Better than any linear method (at breaking the curse for certain Barron

functions) [5].
■ Overparametrization improves test error [6].
■ For PDE: Global basis functions, spectral convergence.
■ For PDE: Mesh-free approach, easy to use.

[1] Cybenko, “Approximation by superpositions of a sigmoidal function,” Math. Cont. Sig. Sys., 1989.
[2] Barron, “Universal approximation bounds for superpositions of a sigmoidal function,” IEEE Trans. Inform. Theory, 1993.
[3] Rahimi and Recht, “Uniform approximation of functions with random bases,” in Allerton Conf. on Communication, Control, and Computing, 2008.
[4] E, “Towards a Mathematical Understanding of Neural Network-Based Machine Learning: What We Know and What We Don’t,” CSIAM-AM, 2020.
[5] Wu and Long, “A Spectral-Based Analysis of the Separation between Two-Layer Neural Networks and Linear Methods,” J. Mach. Learn. Res., 2022.
[6] Belkin, Hsu, Ma, and Mandal, “Reconciling Modern Machine Learning Practice and the Bias-Variance Trade-Off.” PNAS, 2019.

Felix Dietrich | Random features: methods & applications | 2025-09-26 23

Solving PDE with neural networks
We can still use the Galerkin method!

1. Choose basis functions {ϕi ∈ F}i. ϕi(x) = σ(wT
i x+ bi).

2. Write ansatz as linear combination û =
∑

i ciϕi. û(x) =
∑

i ciσ(w
T
i x+ bi).

3. Apply L and B to ansatz (and thus individual bases ϕi).
4. Obtain (large) linear system: Lû =

∑
i ciLϕi = f,Bû =

∑
i ciBϕi = g.

5. Solve for ci.

Felix Dietrich | Random features: methods & applications | 2025-09-26 24

Solving PDE with neural networks
We can still use the Galerkin method!

1. Choose basis functions {ϕi ∈ F}i. ϕi(x) = σ(wT
i x+ bi).

2. Write ansatz as linear combination û =
∑

i ciϕi. û(x) =
∑

i ciσ(w
T
i x+ bi).

3. Apply L and B to ansatz (and thus individual bases ϕi).
4. Obtain (large) linear system: Lû =

∑
i ciLϕi = f,Bû =

∑
i ciBϕi = g.

5. Solve for ci.

[1] Suchuan Dong, ad Zongwei Li. “Local Extreme Learning Machines and Domain Decomposition for Solving Linear and Nonlinear Partial Differential
Equations.” Computer Methods in Applied Mechanics and Engineering 387 (2021): 114129.
[2] Suchuan Dong, and Jielin Yang. “On Computing the Hyperparameter of Extreme Learning Machines: Algorithm and Application to Computational PDEs,
and Comparison with Classical and High-Order Finite Elements.” Journal of Computational Physics 463 (2022): 111290.
[3] Yiran Wang, and Suchuan Dong. “An Extreme Learning Machine-Based Method for Computational PDEs in Higher Dimensions.” arXiv:2309.07049, 2023.
[4] Yong Shang, and Fei Wang. “Randomized Neural Networks with Petrov–Galerkin Methods for Solving Linear Elasticity and Navier–Stokes Equations.”
Journal of Engineering Mechanics 150, no. 4, 04024010, 2024.
[5] Jingbo Sun, Suchuan Dong, and Fei Wang. “Local Randomized Neural Networks with Discontinuous Galerkin Methods for Partial Differential Equations.”
Journal of Computational and Applied Mathematics 445, 115830, 2023.

Felix Dietrich | Random features: methods & applications | 2025-09-26 24

Solving PDE with neural networks
Example: Poisson equation

Solve ∆u = f in Ω = B(0, 1) ⊂ Rd, with boundary u = g on ∂Ω.

Ansatz: û =

m∑
i=1

ciσ(⟨wi, x⟩+ bi)

∇û =

m∑
i=1

ciσ
′
(⟨wi, x⟩+ bi)wi

∇2û =

m∑
i=1

ciσ
′′
(⟨wi, x⟩+ bi)(wi × wi)

f = ∆û = Tr(∇2u) =

m∑
i=1

∥wi∥22ciσ
′′
(⟨wi, x⟩+ bi).

Sample weights wi and biases bi, then solve linear system for coefficients ci!

Felix Dietrich | Random features: methods & applications | 2025-09-26 25

Datar et al. "Solving partial differential equations with sampled neural networks," 2024,
pre-print: arxiv.org/abs/2405.20836

Solving PDE: experiments (summary)

Poisson: ∆u = f Harmonics: ∆u = 0 Time-dependent
(Burgers)

#Neurons: 512 #Neurons: 512 #Neurons: 450
#Points: 2500 #Points: 2500 #Points: 6000

Runtime: .4s Runtime: .6s Runtime: 5s,
Rel. L2 error: 1e-7

Datar et al. "Solving partial differential equations with sampled neural networks," 2024,
pre-print: arxiv.org/abs/2405.20836

Felix Dietrich | Random features: methods & applications | 2025-09-26 26

Feature learning (work of Lukas Gonon et al.)

Zozoulenko, Cass, and Gonon. 2025. “Random Feature Representation Boosting.”
ICML 2025. https://icml.cc/virtual/2025/poster/44355.

Computing the gradient w.r.t. the representation, not weights!

Felix Dietrich | Random features: methods & applications | 2025-09-26 27

Reconstructing neural networks

What is required to identify network parameters?

u(x) =

m∑
k

ckσ(W
Tx+ b) =⇒ u′′(x) =

m∑
k

ckσ
′′(wT

k x+ bk)(wk ⊗ wk)

Knowing the Hessian of a network allows to extract the hidden weights!
Algorithm:
1. Sample Hessians Hu(xi) at random locations xi.
2. Compute projection operator P onto the subspace spanned by those

Hessians.
3. Solve maxw ∥P (w ⊗ w)∥ with random initial w.

Fornasier, Klock, Mondelli, and Rauchensteiner. 2022. “Finite Sample Identification of
Wide Shallow Neural Networks with Biases.” arXiv:2211.04589. Preprint, arXiv,
November 8. http://arxiv.org/abs/2211.04589.

Felix Dietrich | Random features: methods & applications | 2025-09-26 28

http://arxiv.org/abs/2211.04589

Open questions

Open questions
■ Can we incorporate the PDE itself into the sampling?
■ Can we also sample useful parameters of deep networks?
■ Can we (improve) sampling of neural operators?

Challenges and future work
■ Better theory for generalization and convergence beyond data-agnostic

features.
■ Higher-dimensional base spaces.
■ Random features for other architectures (CNN, Transformer).

Felix Dietrich | Random features: methods & applications | 2025-09-26 29

Summary and future work

Summary
Data-driven random features offer a good basis to learn functions.

■ Fast and efficient training (sampling + linear solve)
■ Interpretable network parameters (one pair of data points per neuron)
■ Allow us to use trustworthy optimization methods (linear solvers)

Many challenges remain!

Literature
■ Sampling: Bolager et al., NeurIPS 2023 (arxiv.org/abs/2306.16830)
■ Learning Hamiltonians pre-print: arxiv.org/abs/2506.06558
■ Solving PDE pre-print: arxiv.org/abs/2405.20836

Felix Dietrich | Random features: methods & applications | 2025-09-26 30

Discussion

Felix, Zahra, Iryna, Erik, Qing, Vladyslav,
Shyam, Chinmay, Hessel. Not in the

picture: Ana, Atamert, Berkay, Felix S.,
Nadiia, Rahul.

Summary
Data-driven random features
offer a new perspective on
neural networks.

Contact
felix.dietrich@tum.de
www.cs.cit.tum.de/en/scml

Funding

Felix Dietrich | Random features: methods & applications | 2025-09-26 31

felix.dietrich@tum.de
www.cs.cit.tum.de/en/scml

Literature I

A.R. Barron. Universal approximation bounds for superpositions of a sigmoidal function. IEEE Transactions on Information Theory, 39(3):930–945, May
1993. ISSN 0018-9448, 1557-9654. doi: 10.1109/18.256500.

Erik Lien Bolager, Iryna Burak, Chinmay Datar, Qing Sun, and Felix Dietrich. Sampling weights of deep neural networks. Advances In Neural Information
Processing Systems, NeurIPS 2023, arXiv: 2306.16830, June 2023.

Erik Lien Bolager, Ana Cukarska, Iryna Burak, Zahra Monfared, and Felix Dietrich. Gradient-free training of recurrent neural networks, October 2024.

G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of Control, Signals and Systems, 2(4):303–314, December 1989. ISSN
1435-568X. doi: 10.1007/BF02551274.

Chinmay Datar, Taniya Kapoor, Abhishek Chandra, Qing Sun, Iryna Burak, Erik Lien Bolager, Anna Veselovska, Massimo Fornasier, and Felix Dietrich.
Solving partial differential equations with sampled neural networks, May 2024.

Suchuan Dong and Zongwei Li. Local extreme learning machines and domain decomposition for solving linear and nonlinear partial differential equations.
Computer Methods in Applied Mechanics and Engineering, 387:114129, December 2021. ISSN 00457825. doi: 10.1016/j.cma.2021.114129.

Suchuan Dong and Jielin Yang. On computing the hyperparameter of extreme learning machines: Algorithm and application to computational PDEs, and
comparison with classical and high-order finite elements. Journal of Computational Physics, 463:111290, August 2022. ISSN 00219991. doi:
10.1016/j.jcp.2022.111290.

Weinan E. Towards a Mathematical Understanding of Neural Network-Based Machine Learning: What We Know and What We Don’t. CSIAM Transactions
on Applied Mathematics, 1(4):561–615, June 2020. ISSN 2708-0560, 2708-0579. doi: 10.4208/csiam-am.SO-2020-0002.

Juncai He and Jinchao Xu. Deep Neural Networks and Finite Elements of Any Order on Arbitrary Dimensions, January 2024.

D. P. Kingma and L. J. Ba. Adam: A Method for Stochastic Optimization. In International Conference on Learning Representations ICLR 2015, 2015.

Ali Rahimi and Benjamin Recht. Uniform approximation of functions with random bases. In 2008 46th Annual Allerton Conference on Communication,
Control, and Computing, pages 555–561, Monticello, IL, USA, September 2008. IEEE. ISBN 978-1-4244-2925-7. doi:
10.1109/ALLERTON.2008.4797607.

Atamert Rahma, Chinmay Datar, and Felix Dietrich. Training Hamiltonian neural networks without backpropagation, November 2024.

Atamert Rahma, Chinmay Datar, Ana Cukarska, and Felix Dietrich. Rapid training of Hamiltonian graph networks without gradient descent, June 2025.

Yong Shang and Fei Wang. Randomized Neural Networks with Petrov–Galerkin Methods for Solving Linear Elasticity and Navier–Stokes Equations. Journal
of Engineering Mechanics, 150(4):04024010, April 2024. ISSN 0733-9399, 1943-7889. doi: 10.1061/JENMDT.EMENG-7463.

Felix Dietrich | Random features: methods & applications | 2025-09-26 32

Literature II
Jingbo Sun, Suchuan Dong, and Fei Wang. Local randomized neural networks with discontinuous Galerkin methods for partial differential equations. Journal

of Computational and Applied Mathematics, 445:115830, August 2024. ISSN 03770427. doi: 10.1016/j.cam.2024.115830.

Yiran Wang and Suchuan Dong. An Extreme Learning Machine-Based Method for Computational PDEs in Higher Dimensions, September 2023.

Lei Wu and Jihao Long. A Spectral-Based Analysis of the Separation between Two-Layer Neural Networks and Linear Methods. Journal of Machine Learning
Research, 23(1), January 2022. ISSN 1532-4435.

Felix Dietrich | Random features: methods & applications | 2025-09-26 33

	What are feed forward networks?
	Sampling network parameters
	Solving PDE
	End of presentation
	References

