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Need for Uncertainty Quantification (UQ)
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O ’anng. = Sloshing of Liquefied Natural Gas

O Budget: 3.5 M€

O 10 industrial partners, among which:

Shell, Argos, Total, Damen and Gaztransport et Technigaz
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NWO Perspective program ?sling.

At Gazfransport et
Technigaz:

Till recently:
R&D driven by
experimental data

Since recently:
R&D driven by
experimental data
and computational
models
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NWO Perspective program ?sling.




Old UQ (Monte Carlo)
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Physical model
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Computationally very, very expensive |




Existing UQ (Polynomial chaos)
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Still computationally expensive, but less




Existing UQ (Polynomial Chaos)

/\ /\ Model output
u(z)

physics Input Physical model /

" z 4_ PDE(u,z
data (v.2)
Experimental

data

Computationally very expensive |




New UQ - with Machine Learning —in %Iing.

/\ /\ Model output
u(z)

physics Input Physical model /
d;g z 4_ PDE(v,z)
\ Experimental
data

Neural-Network constructed
approximate model




Multigrid neural networks

o Goal: computationally very efficient
approximate model

o Approach: grid coarsening (multigrid)

o ldea: neural networks learn relative
solution errors between grid levels

o Assumption: less samples needed on
finer grids (because of less variance)

Sloshing is very sensitive 10
uncertainty in parameters

Y. van Halder, B. Sanderse, B. Koren, Multi-level neural networks for PDEs with uncertain parameters,
ArXiv 2004.131128, 2020



Multigrid expansion

PDE(u,z) u'(z) u?(z) ut(z)
coarse grid Z fine grid
many samples z few samples z

Multigrid expansion: u(z) ~ u’(z) =




Neural network design

O Ildea 1;

Relative solution error is related to local fruncation error:

u(z) = 7(z2) — e(2)




Neural network design

O Ildea 1;
Relative solution error is related to local truncation error:

u(z) = 7(z) = e(z)
O Construct neural network P to relate u 1o e:

u(2) = u'(2) + e2(2) + €3(2)
=u (2) + P*(u'(2)) + P*(u*(2))




Neural network design

u(z) = 7(2) = ¢

IR

Convolutional neural network Fully connected neural network

Latent quantity
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Neural network design

O ldea 2;

Relative errors e(z) have similar spatial sfructure: e?(z) ~e(z) ~ ...

Re=800

Re=800

e’(z)

e’(z)

fine grid




Neural network design

O ldea 2;

Relative errors e(z) have similar spatial sfructure: e?(z) ~e(z) ~ ...

O Use transfer learning o train subsequent neural networks

large number of unknowns -> large training set small number of unknowns -> small training set
22

pP?

unknown weights/biases weights and biases from P®  unknown weights/biases




Backward-facing step flow

Re=800




Backward-facing step flow

O Uncertainty in Reynolds number
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Sloshing

O Two uncertainties in
prescribed rotationadl
gravitational field
(rotation around two
axes)

O Particle-in-cell method

low-fidelity

high-fidelity




Sloshing
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UQ with ML-constructed approximate model

UQ&ML J
Model output
/\ /\ u(z)

physics Input Physical model /
d;g z 4_ PDE(v,z)
\ Experimental
data

N
ML: Approximate
model




UQ with ROM-constructed approximate model

VQ&ROM /\ /\ Mo?l(;))u’rkpu’r

physics Input Physical model /
d(;o z 4_ PDE(v,z)
\ Experimental
data

v
ROM: Approximate
model

B. Sanderse, Non-linearly stable reduced-order models for incompressible flow with energy-conserving
finite volume methods, Journal of Computational Physics, 2020




Roll-up of shear flow

Full-order model (FOM], Reduced-order model (ROM),
40,000 degrees of frfledom 16 degrees of freedom



Structure-preserving ROM

“Offline” (expensive)

“Online” (cheap)

PDE(u,z)
Discretize Idea 1: Structure-preserving discretization

v

Discretized PDE :
Project

Solve Gather snapshots Modes

— v

Compute SVD & _
truncate Idea 2: Constrained

SVD enforces
“Legrning” conservation

Input z
1 ROM(Ugrom.Z)
“:{ Typically unstable fM




Speed-up: O(102-103)
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“potential for reduction”



ROM for wind-farm aerodynamics
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57,840 degrees of freedom 10 degrees of freedom



Advantages

Multigrid neural networks:

v Uncertainties computable
on coarse grids

v Non-infrusive, not PDE-
specific

v Based on error structure
between grid levels

Structure-preserving ROMs:

v Time-dependent
approximation to entire
solution

v Very large speed-ups

v’ Structure-preservation of
continuous equations:
stability guaranteed




Challenges

Multigrid neural networks:
o Time-dependent Qols

o High-dimensional spaces of
uncertain parameters

Structure-preserving ROMs:

o Intrusive (code access
required)

o Requires identification of
“structure” and associated
discretization




Thank you for your interest
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