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Need for Uncertainty Quantification (UQ)
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NWO Perspective program 

                           = Sloshing of Liquefied Natural Gas 

 Budget: 3.5 M€

 10 industrial partners, among which:

Shell,  Argos,  Total,  Damen  and  Gaztransport et Technigaz
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NWO Perspective program 

At Gaztransport et 

Technigaz:

Till recently:
R&D driven by 

experimental data

Since recently:
R&D driven by
experimental data 
and computational 
models
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Old UQ (Monte Carlo)
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Computationally very, very expensive !
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Still computationally expensive, but less
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Neural-Network constructed 
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+

data



Multigrid neural networks

o Goal: computationally very efficient 

approximate model

o Approach: grid coarsening (multigrid)

o Idea: neural networks learn relative 

solution errors between grid levels

o Assumption: less samples needed on 

finer grids (because of less variance)

Sloshing is very sensitive to
uncertainty in parameters

Y. van Halder, B. Sanderse, B. Koren, Multi-level neural networks for PDEs with uncertain parameters,

ArXiv 2004.131128,  2020 



Multigrid expansion

u1(z) u2(z)

coarse grid fine grid

uN(z)…

many samples z few samples z

…

PDE(u,z)

Multigrid expansion:



Neural network design

 Idea 1: 

Relative solution error is related to local truncation error:



Neural network design

 Idea 1: 

Relative solution error is related to local truncation error:

Construct neural network P to relate u to e:



Neural network design

Convolutional neural network

Latent quantity

Fully connected neural network



Neural network design

 Idea 2: 

Relative errors e(z) have similar spatial structure:

coarse grid fine grid

e2(z) e3(z) e4(z)



Neural network design

 Use transfer learning to train subsequent neural networks

 Idea 2: 

Relative errors e(z) have similar spatial structure:



Backward-facing step flow



Backward-facing step flow

 Uncertainty in Reynolds number



Sloshing

 Two uncertainties in 
prescribed rotational 
gravitational field
(rotation around two 
axes)

 Particle-in-cell method



Sloshing

error decreases 

rapidly

#samples decreases 

rapidly



UQ&ML

Physical model 

PDE(u,z)

Model output
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ML: Approximate 
model

physics 

+

data

UQ with ML-constructed approximate model



UQ&ROM

Physical model 

PDE(u,z)

Model output

u(z)
Input

z

Experimental 

data

ROM: Approximate 
model

physics 

+

data

UQ with ROM-constructed approximate model

B. Sanderse, Non-linearly stable reduced-order models for incompressible flow with energy-conserving 

finite volume methods, Journal of Computational Physics, 2020



Roll-up of shear flow

Initial condition
Full-order model (FOM),

40,000 degrees of freedom

Reduced-order model (ROM), 

16 degrees of freedom



PDE(u,z)

ROM(uROM,z)

“Offline” (expensive) “Online” (cheap)

Discretized PDE

Idea 1: Structure-preserving discretization

Gather snapshots

Compute SVD & 
truncate

Discretize

Project

Input z

“Learning”

Solve Modes
✓ Energy-conserving ROM

✓ Unconditional stability

Idea 2: Constrained 

SVD enforces 

conservation

Structure-preserving ROM

Typically unstable



Speed-up: O(102-103)

Speed-up
Singular value decay = 

“potential for reduction”



ROM for wind-farm aerodynamics

ROM 

10 degrees of freedom

FOM

57,840 degrees of freedom



Advantages

Multigrid neural networks:

✓ Uncertainties computable 

on coarse grids

✓ Non-intrusive, not PDE-

specific

✓ Based on error structure 

between grid levels

Structure-preserving ROMs:

✓ Time-dependent 

approximation to entire 

solution

✓ Very large speed-ups

✓ Structure-preservation of 

continuous equations: 

stability guaranteed



Challenges

Multigrid neural networks:

o Time-dependent QoIs

o High-dimensional spaces of 

uncertain parameters

Structure-preserving ROMs:

o Intrusive (code access 

required)

o Requires identification of 

“structure” and associated 

discretization



Thank you for your interest
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