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TL;DR Summary

A discrete exterior covariant derivative operator
O operating on bundle-valued forms
O structure preserving (i.e., Bianchi identities are tautologies)
0 extending DEC quite directly

> cracked it!
> onsecond thought, too combinatorial to be perfect...

Our contributions:

O Identifying crucial role of frame fields
» evaluation involves non-commutative composition of //~transport
> discretization must account for local frame field choice
O Enforcing convergence under refinement
> Bianchi identities exactly satisfied for any resolution is great...
. > but we need correct evaluations in the limit too
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> must understand how discrete and continuous forms are related
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Preamble:

Discrete Exterior Calculus
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Discrete Exterior Calculus

Foundations: discrete differential forms
0 mesh as computational structure

chains as proxies for domains with Anil Hirani, then
/ A 7 Melvin Leok , Tom
* //' - \ Tyranowski,Ari Stern

store k-forms as integrated values over simplices
» cochains extend point sampling to “simplex sampling”

O basic operators: d (exterior derivative) and * (Hodge star)
through heavy use of adjointness
d through Stokes fG do = faG ()

» dis atopological operator, hence exact

exact link to (co)homology = Dual

simplest Hodge duality via mesh duality = Primal
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> exploits (weighted) Delaunay/Voronoi duality
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Discrete De Rham Sequence

Discrete calculus through linear algebra:
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0 simple exercise in matrix assembly
0 discrete Hodge theory particularly simple
0 Whitney basis fcts extending FE picture

0 can be made higher-order or spectral accurate too!
= FEEC, subdivision EC, isogeometric analysis, etc
= even for non-flat cell complexes, power duals, etc...
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Navier-Stokes simulation

‘ ”ﬁ? ‘ Geometry processing
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What About DEC
for Bundle-Valued Forms?
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Continuous Notions At A Glance

Connection on a vectorbundlem:E->M: V=d +w
O w:local connection 1-form (depends on frame field! V.= fow? )
0 parallel transport along curve between fibers: R;: E. ;) — E. o)
0 minduces V¥4 on endomorphism bundle End(E) — M

Covariant exterior derivative
dNa=da+wAha YoacQ¥(M,E)
0 curvature 2-form: QY = dVw € Q*(M, End(E))

Bianchi identities t
0 algebraic Bianchi identity: d¥dVa =0V Ao
unlike 4, not nilpotent in general
0 differential Bianchi identity:  d QY =0
more generally, ¢V "' qV"" g = QY AB] VB € Q¥ (M,End(E))

A\V/ End
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Integration of Bundle-valued Forms

With a connection, curve integrals defined thru pullback

/n . / fa = / Ryt (7(2)) dt € Eq o),

(0,1]
Q para]lel transport everything back to initial point of curve
Extension to a k-form over a retractable region S easy too
0 define homeomorphism ¢ from S to unit &-dim ball B
0 given evaluation point v, define 7y, 5, as 0 (p(p)——p(v))
Q then define R} ¥ € Hom(E,, E,) as // transport along 7, ,,

,v[,/ o= / RYV¥vq €E,
; Js
S

0 note: the homeomorphism can be defined through a strong
deformation retraction to point v, ¢, : [0, 1]xS — §

Discrete Setup (Abstractly First)

Let a simplicial complex M be an orientable manifold

Discrete Vector Bundle (of rank r)?

0 acollection of vector spaces {E, } with v; €V (i.e., a vector
space per vertex) and dim(E, ) - r.

Section of Discrete Frame Bundle?

0 acollection of frames {F, } with v; €/’ defining an
“arbitrary” choice of frame for each vector space E, .

Discrete connection V ?
0 acollection of maps R;;: (E,, ) = (E,, ), one
for each oriented edge ¢, e of M with Ry; o R;; =Id,,
0 parallel transport maps, encoded as matrices R, glven {F,}:

3 connection I-form w,,,, = Ry, — Id

; approx. of path-ordered matrix exponential




Discrete Bundle-valued Forms |

Abstract definition, given an evaluation fiber...

Definition (Discrete (1,0)-tensor-valued £—form). A discrete vector-valued ¢—form
a on M is a collection of maps which, for each f—simplex ¢ and one of its ver-
tices v, returns a vector in E,, i.e.,

a:ge M vcac V(M) — alo,v) € B, (1)
such that if @ is the simplex o with reversed orientation, one has «(7,v) =

—a(o,v) for all veo.

0 assume for now that a discrete bundle-valued £-form is
defined through its values on all simplex-vertex pairs
Q eventually, will be one vector in E, per £-simplex a la DEC
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Discrete Bundle-valued Forms 1l

For discrete endomorphism-valued £-forms?

Definition (Discrete (1,1)—tensor-valued ¢—form). A discrete (1,1)—tensor-
valued {—form B on M is a collec riﬂﬂ'Uf\Q\apS which, for each {—simpleX 7 and
two of its vertices (w, the input (or cut) fiber, and v, the output (o cf-a,'uluat‘:‘o‘r\z)
fiber), returns a homomorphism R(:i'nztmrE.y and E,, i.e.,

B:oe M veowea— B(o,v,w) € Hom(E,, E,), (1)
such that if & is the simplex o with reversed orientation, one has 3(7,v, w) =
—B(o,v,w) for all v,wea.

0 for now, assume that this type of £-form is defined
through its values on all simplex-vertex-vertex triplets

0 wait a bit to get a better understanding of this cut fiber...
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Integration a la DEC?

Could the bundle-valued case be an ¢ ion of DEC?
ANNGYING TERM
S S S a8

O can leverage choice of frame field to bound this term!

0 pick a frame field that makes @ zero somewherein S
= will make the integration mostly about Stokes!
= more precisely, O(h**?) for an # form on an (£+1)-simplex

There is hope that a discrete bundle-valued exterior calculus
can be built out of discrete forms, where the integrals of
their smooth counterparts are evaluated using a
parallel-propagated frame field.
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Parallel-Propagated Frame

Definition (Continuous Parallel-Propagated Frame)
For a vector bunddle w: E— M with connection ¥V, let s=
region for which there exists a diffeomorphism to an €— simg
with v; v w;Vi. Let f be a local, arbitrary frame field o,
s. For any given corner v € {vg, ..., ve}. we also define a
retraction ¢, : [0,1] x s — s derived from a canonical retract
o of the simplex o through the aforementioned diffeomorphis
paths are radially joining the vertex w associated to point -u\ /
@2 : 0,1 xo —> o
(t,p) —mtw+ (1 —1t)p.
Moreover, for any point p € o, we denote by RV (p): E, — E, the V—induced
parallel transport map from E, to E, along the path induced by the retraction
@y and BYV: R"” — R” the mairiz field representing R¥"(.) expressed in f.
Frame field { {7} over s is parallel-propagated frame field from v if
RY(p)fy(p) = faw), forallpe S, foralla=1,..., .

i.e., frame fo(v) at v has been parallel-transported throughout s via V. Further-
more, we call RY" the gauge field of the PPF from ve M.

(7
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Parallel-Propagated Fram

We can now define integration of a for, = 4
3/ — /Rvma _ /RV.U. Ve (p) (@) = / ot

Note that after gauge transformation, b
= R¥"(w — (R¥)~LdR"")(R™")~  vanishes AL vertex v

0 PPF “follows” the bundle along radial lines emanating from v

3 so [[w¥?|| = O(h) if Qis bounded, / being the diameter of s

Consequently, one has
/‘(dva)v,v - / av,'u + O(h€+‘2)
s ads

O exterior covariant derivative of o over simplex approximated
% by PPF-based integrals of a over the boundary faces of s
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Discrete Exterior Covariant Derivative

Now discrete version of dV of malkes sense:
ava([UOr“a Ungl], UO)
=Ro1 of[vi, ..., ve41], 1)

J4 2
+Z +1( ) (['U(),...,Ui,...,?)g+1],1)0)

O just boundary terms; opposite face needs //-transport to v,

O this sided operator converges under refinement (4 — 0)
if @ evaluated in ppf....
2 but 0V 02V doesn’t; ouch, Bianchi ids not meaningful...

Same comments for endomorphism-valued variant
0¥ B(0,v0, ve11) = Ro1B(Tvg, V1, Vet 1)
0y e s Dy e ey Uty +Z, 1 (=1)"B(0v;,v0, ve41)
-+ (—1)“1)6(01,“1,*00, ve)Rees1
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Discrete Exterior Covariant Derivative

Idea: sided derivatives not as good as centered ones...
Averaging sided estimates can gain an order of accuracy!

Averaging operator simple with a connection:
Altv(()f)([v(}, 2eey Ug], ’U(])
= ﬁ Z sg(T)Rug v, (o) @ ([V7(0)5 -+ Ur(e)]> Vr(0))

TESp+1
Similarly for its endomorphism-valued variant

ALY B([vo, - - - , ve], vo, ve)
1 1+sg
= @+ Z ( '-»211(7} RJ:{)A:T(“)ﬁ([UT(“]: sils r’vr(f)]s Ur(0): UT(‘”))R”.—L?)-”(

TESp+1
sgn(r)—1
+%Rvn-1‘1—(:))‘6(['”7'([))- ey ”1—(!:‘)]1 Ur(0)» ?"T(f))RWT(U'7;T(!—1)R1'.—(E—1)-"‘!) .

% O note that we can prove: AltVQY([abe], a, ¢) = Q¥ ([abe], a, c)
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Discrete Exterior Covariant Derivative

So we propose a new discrete operator
vV
dV = AltVoV

O still satisfies all Bianchi identities at a discrete level

2 both converge to their continuous counterparts
clear link to continuous case and dV o dV converges

—_— 0 —xzdy 0
B=lady 0 dz| e QYR End(TR?)
0 —dz 0

i 0 —deAdy ydrAdz
AV B = dz A dy 0 2dy Andz | .

—ydzAdz —x? dyndz 0

‘ 001 010
i " W= (n nn) zdz + (1 nn) (y dz + dz)
7 T 100 000
Cf/ﬂ’




Discrete Exterior Covariant Derivative

So we propose a new discrete operator
Vv
dV = AltVoV

O still satisfies all Bianchi identities at a discrete level

0 both converge to their continuous counterparts
clear link to continuous case and dV o dV converges

0 algebraic Bianchi identity now reads
dvdva(aa UU) - m Z Qv(f, U()>wm.ﬁ,) a(fﬁawm.n)
(m,r)EK

= QY A a(s,v)

wedge product a la cup product

G
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Revisiting Curvature

In the continuous case, Y = dw + w A w

@w=RwR '—dRR™!.
QV=ROVR '=do+ & Aa.

0 butin the PPF, &(e,)w(eg) — w(eg)(e,) =0 in C'\ w, so

/QV:/ d@+m\@:/ a;:/ a)f/ &.
(6} C ac ~ Yo

Yow

mismatch at w is integral of curvature 2-form

In a PPF, we now get {

extension of holonomy !

0% VR ’
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Revisiting Curvature

In the continuous case, Y = dw + w A w

@w=RwR '—dRR™!.
QV=RQVR™!
0 butin the PPE, &(e,)w(eg) — w(eq)w!

/QV:/ d@+@/\@:/ a;:/
(6} foy acC ¥

mismatch at w is integral of curvature 2-

In a PPF, we now get {

extension of holonomy

For triangle abc, @¥(0, a, ¢) = Rap Roe — Rae € Hom(E,,E,)
0 note indeed thatitis dYVw since w,, = R, — Id
2 shown to converge too in O(h?)

0 advantage? can be summed)!
matching evaluation and cut fibers implies matching retractions

1
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Conclusions

Computation-ready exterior covariant derivatives
O structure preserving via discrete Bianchi identities
O converging to smooth equivalents in PPF
2 for simplicial meshes for now - but extends to cell complexes

Did not talk about a few details...
2 deRham and Whitney maps easy to formulate

O numerical tests require care
importance of path-ordered matrix exp, integrals thru quadratures,...
O in practice, we recommend using centroid-ppf, btw

Now what?

0 except for Yang-Mills theory and relativity, is it useful?
revisiting elasticity and/or fluids, maybe...

0 global structure of bundles satisfying Chern’s characteristics?
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QUESTIONS?
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