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Outline

● Introduction: shape analysis for curves and surfaces, and for
human motion data.
● Learning the equations of motion from data using a discrete

Lagrange d’Alembert principle.
● Examples on synthetic data, pixel data and real-world data.
● Other ongoing and future work.
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Given N observation of previous values of a time series {qn}n forecast future values:

● Directly from the data.
● By learning (discrete) mechanical equations first.

CMU Graphics Lab Motion Capture Database

Some challenges:
● Find appropriate metrics.
● Deal with constraints.
● Learning Hamiltonians / Lagrangians for mechanical systems.
● Learn external forces.
● Provide enough data.
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Skeletal animation
Skeleton consisting of bones connected by joints. One 3D rotation for each joint.

Human activity: g ∶ [0,T ] → J , J = SO(3)n, where [0,T ] is a time interval.
● Data obtained by motion capturing.
● Motion manipulation is the processing of the data.
● CMU Motion Capturing Database.
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Motion capturing: only data and one simple differential equation

Only data: g ∶ [0,T ] → SO(3)n

CMU Motion Capture Database R. O. Hide, NTNU, master thesis

Motion manipulation done via shape analysis
and we use one simple differential equation

ġ = q(t)g(t), g(0) = e.
expressing the need of derivative information

- M. Eslitzbichler, Modelling character motions on infinite-dimensional manifolds, The Visual
Computer, 2014.

- E. C., M. Eslitzbichler and A. Schmeding, Shape analysis on Lie groups with applications in
computer animation, J Geometric Mechanics, 2016.

- E. C., S. Eidnes and A. Schmeding, Shapes on homogeneous manifolds, The Abel Symposium,
187-220, 2018.

- P. E. Lystad, Signatures in Shape Analysis, Master Thesis, NTNU, 2019.
- E. C., H. Glöckner, J. Riseth and A. Schmeding, Deep learning of diffeomorphisms for optimal

reparametrizations of shapes, BIT, 2023.
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Classifying running, walking, jumping animations as shapes (DP)

● SO(3)n-valued time curves: the geometry of rotations is preserved.
● We treat time curves as shapes: use a reparametrisation invariant distance

function: dP
● Dynamic programming, to find the optimal reparametrisation.
● Classical multidimensional scaling to visualize distances in a lower dimensional

space.
- E. C., P.E. Lystad, N.Tapia, Signatures in Shape Analysis: an Efficient Approach to Motion

Identification, Proceedings of the GSI conference 2019.
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Shapes - when reparametrization invariance is important

● Shapes are unparametrized curves (or surfaces) in a vector space or
on a manifold.

● The use of shapes is natural in applications where one wants to
compare curves or surfaces independently of their parametrisation.

Definition of shapes via an equivalence relation: let I ⊂ R an interval,
consider

P ∶= Imm(I,Rn
) = {c ∈ C∞(I,Rn

) ∣ ċ(t) ≠ 0},

P is called pre-shape space and is an infinite dimensional manifold. Let
c0, c1 ∈ P then

c0 ∼ c1 ⇐⇒ ∃ φ ∶ c0 = c1 ○ φ

with φ ∈ Diff+(I) a orientation preserving diffeomorphism on I

Shape space:
S ∶= Imm(I,Rn

)/Diff+(I)
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Distance function on S = P/Diff+(I )
Definition of a distance function dS to measure similarities between two
shapes [c0] and [c1]. The distance function on S should be independent
of the choice of representatives.

Let dP be a reparametrization invariant distance function on P i.e.

dP(c0, c1) = dP(c0 ○ φ, c1 ○ φ) ∀φ ∈ Diff+(I).

Definition of distance on S:

dS([c0], [c1]) ∶= inf
φ∈Diff+(I)

dP(c0, c1 ○ φ).

Proposition
If dP is a reparametrization invariant distance function on P, then
dS([c0], [c1]) is independent of the choice of representatives of [c0] and [c1].
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Distance on P via SRVT and Q-transform

One can proceed first transforming the curves and then computing L2 distances:

Q ∶ P → C∞(I ,Rn), c ↦ q,

Q ∶ P → C∞(I ,Rn), c ↦ q, Q(c) ∶=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ċ
√

∥ċ∥
SRVT

√
∥ċ(⋅)∥ c(⋅) Q − transform

dP(c0, c1) = dL2(Q(c0),Q(c1)) = ∥q0 − q1∥L2 .

With this definition dP is reparametrization invariant and dS is well defined,
because Q is equivariant wrt reparametrizations:

Q(c ○ φ)(t) =
√
φ̇(t) ⋅ (Q(c) ○ φ)(t)

- A. Srivastava, E. Klassen, S.H. Joshi, and I.H. Jermyn. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2011.

- M. Mani, S. Kurtek, C. Barillot, A. Srivastava, IEEE Symposium on Biomedical Imaging, 2010.
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Optimal reparametrization problem

Optimal reparametrization problem: let q0 = Q(c0), q1 = Q(c1), given shapes [c0]
and [c1]

dS([c0], [c1]) = inf
φ∈Diff+(I)

E(φ), E(φ) = dP(c0, c1 ○ φ) = ∥q0 −
√
φ̇ (q1 ○ φ)∥2L2 .

Optimisation problem on an infinite dimensional Lie group Diff+(I), with “Lie
algebra" TidDiff+(I), I = [0,1].
We parametrize the diffeomorphisms with deep neural networks as follows:

Consider a basis v1, v2, . . . of TidDiff+(I) write

φθ = (id + h1fθ1) ○ ⋯ ○ (id + hLfθL).

fθℓ =
M

∑
j=1

βℓ
j vj , θℓ = {βℓ

j }ℓ=1,...,Lj=1,..,M

Optimise on these “approximate diffeomorphisms”.
- E. Celledoni, H. Glöckner, J. Riseth and A. Schmeding, Deep neural networks on diffeomorphism

groups for optimal shape reparametrization, BIT, 2023.
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Convergence
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Parametric surfaces embedded in R3

Domain Ω = [0,1]2. Denoting by f ∶ Ω→ R3 the parametric surface, fx and fy the
partial derivatives.

Normal vector and area scaling factor:

nf (x , y) = fx × fy , af (x , y) = ∣fx × fy ∣
then

P = {f ∈ C∞(Ω,R) ∣ af (x , y) > 0,∀(x , y) ∈ Ω}
Implicit neural representations: g ∶ R3 → R, e.g. the signed distance function
approximated by a neural network gθ

M= g−1(0).

oriented point cloud

- I.H. Jermyn, et al., Elastic shape matching of parameterized surfaces using square root normal
fields. In: A. Fitzgibbon, S. Lazebnik, P. Perona, Y. Sato, C. Schmid (eds.) Computer Vision,
ECCV 2012, Springer, (2012).

- S. Kurtek, et al., A novel Riemannian framework for shape analysis of 3d objects. In: 2010 IEEE
Computer Society Conference on Computer Vision and Pattern Recognition, (2010).

- L. Schirmer et al., Geometric implicit neural representations for signed distance functions,
Computers and Graphics, 2022.Elena Celledoni Learning dynamics



Data generation, optimal deformation

MNIST, matching of images, handwritten digits

Top λ(f1, f2, τ) ∶= τ f1 + (1 − τ)f2
Bottom γ(f1, f2, τ) ∶= τ f1 + (1 − τ)f2 ○φ

∗, φ∗ optimal reparametrization.
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- E. C., H. Glöckner, J. Riseth and A. Schmeding, Deep learning of diffeomorphisms for optimal
reparametrizations of shapes, BIT, 2023.
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Learning Mechanical systems from data
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Given N observation of previous values of a time series {qn}n forecast future values

CMU Graphics Lab Motion Capture Database

● We assume to measure only position data.
● Necessary to take into account external forces and dissipative forces.
● We use the laws of physics.
● We want to learn separately the the external forces from the conservative

forces (coming from the the Lagrangian).
● Optional: we learn separately kinetic energy (the mass matrix) and

potential energy.

Joint work with M. D. Hansen and B.K. Tapley

Elena Celledoni Learning dynamics



Lagrange d’Alembert principle - Balance of forces

LdA principle

δ (∫
tN

t0
L (q(t), q̇(t))dt) + ∫

tN

t0
F (q(t), q̇(t),u(t)) ⋅ δq(t)dt = 0,

where δ denotes variations that vanish at the endpoints

q(t0) = q0 and q(tN) = qN ,

L ∶ TQ → R is the Lagrangian function

F ∶ TQ → TQ∗ is the Lagrangian force, a fiber preserving map
F ∶ (q, q̇) ↦ (q,F(q, q̇)),

Forced Euler- Lagrange Equations (equivalent to LdA)

0 = E(L,F)(q, t) ∶= ∂L

∂q
(q(t), q̇(t)) − d

dt
(∂L
∂q̇
(q(t), q̇(t))) + F (q(t), q̇(t)) .

LdA suggests that we should learn L separately from F .

In the spirit of Geometric Mechanics-Variational Integrators, we use a discrete LdA.

- J E Marsden and M West, Discrete variational integrators, Acta Numerica, (2001);

- DM de Diego, R. Sato Martin de Almagro, Variational order for forced Lagrangian systems,
Nonlinearity, 2018.
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Discrete Lagrange d’Alembert principle: using only position data

L∆(qn,qn+1) ≈ ∫
tn+h

tn
L(q(t), q̇(t))dt,

F−∆(qn,qn+1,h) ⋅ δqn + F
+

∆(qn,qn+1,h) ⋅ δqn+1 ≈ ∫
tn+h

tn
F(q(t), q̇(t)) ⋅ δq(t)dt,

L∆ ∶ Q ×Q → R (discrete Lagrangian), F±∆ ∶ Q ×Q → T∗Q (discrete force)

π−Q = πQ ○ F−∆ π−Q ∶ Q ×Q → Q, π+Q = πQ ○ F+∆ π+Q ∶ Q ×Q → Q,

with πQ ∶ T∗Q → Q the projection.

The discrete Lagrange-d’Alembert principle: find a discrete trajectory {qn}Nn=1 s.t.

δ
N−1
∑
n=0

L∆(qn,qn+1) +
N−1
∑
n=0
[F−∆(qn,qn+1) ⋅ δqn + F

+

∆(qn,qn+1) ⋅ δqn+1] = 0,

for all variations {δqn}Nn=0 vanishing at the endpoints δq0 = δqN = 0.

Discrete forced Euler-Lagrange equations:

0 = E∆(L∆,F∆)(qn−1,qn,qn+1) ∶= D2 L∆(qn−1,qn) +D1 L∆(qn,qn+1)
+F+∆(qn−1,qn) + F

−

∆(qn,qn+1), n = 2, . . . ,N − 1,

where D1 and D2 denote differentiation with respect to the first and second variable.
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Goal: learn NNs Lθ ≈ L and Fθ ≈ F from the observed trajectories of
the mechanical system

Direct Discrete Lagrange d’Alembert setting: Given L
Lagrangian and F forces compute trajectories {qn}Nn=0 of the mechanical
system satisfying Discrete LdA principle.

Inverse discrete LdA setting:
Given multiple observed (discrete) trajectories {qn}Nn=0 we seek
approximations to the Lagrangian and forces (L,F ).
We replace (L,F ) with neural networks approximations

Lθ ≈ L, Fθ ≈ F

(Lθ,Fθ) are then the unknowns of our problem which we find minimizing
the loss function

L = Lmech(Lθ,Fθ) + Lreg
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Example - discretization of the LdA - loss function to find the
parameters

L∆(qn,qn+1) ∶= h Lθ (
qn + qn+1

2
,
qn+1 − qn

h
) = h Lθ (q̄n+ 1

2
, ¯̇qn+ 1

2
)

F+∆(qn,qn+1,h) ∶=
h

2
Fθ (

qn + qn+1
2

,
qn+1 − qn

h
) = h

2
Fθ (q̄n+ 1

2
, ¯̇qn+ 1

2
)

F−∆(qn,qn+1,h) ∶=
h

2
Fθ (

qn + qn+1
2

,
qn+1 − qn

h
) = h

2
Fθ (q̄n+ 1

2
, ¯̇qn+ 1

2
)

where

q̄n+ 1
2
= 1

2
(qn + qn+1)

¯̇qn+ 1
2
= 1
h
(qn+1 − qn).

Loss function is the residual of the discrete forced Euler- Lagrange equations:

Lmech(Lθ,Fθ) =
h

2
∑
T

N−1
∑
n=2

XXXXXXXXXXX
D1 Lθ (q̄n− 1

2
, ¯̇qn− 1

2
) + 2

h
D2 Lθ (q̄n− 1

2
, ¯̇qn− 1

2
)

+D1 Lθ (q̄n+ 1
2
, ¯̇qn+ 1

2
) − 2

h
D2 Lθ (q̄n+ 1

2
, ¯̇qn+ 1

2
)

+ Fθ (q̄n− 1
2
, ¯̇qn− 1

2
) + Fθ (q̄n+ 1

2
, ¯̇qn+ 1

2
)
XXXXXXXXXXX2
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Structure of Lagrangians, Forces and Regularization
● free: Lθ = Lθ(q, q̇), Fθ = Fθ(q, q̇), feed forward NNs.
● structured:

● a mechanical Lagrangian

Lθ(q, q̇) =
1
2
q̇TMθ(q)q̇ −Uθ(q),

with Mθ(q) SPD:

Mθ(q) = ϵI + C
T
θ (q)Cθ(q)

learn Mθ through the factors Cθ, and learn Uθ,
● and dissipative force Fθ = −Kθq̇ with Kθ = K

T
θ a symmetric

positive definite matrix.

Regularization: Impose Lθ to be a regular Lagrangian, i.e.

S ∶= (∂
2Lθ(q, q̇)
∂q̇i∂q̇j

) ,

Lreg =
1
Nr

Nr

∑
r=1
∣log (∣det(Sr)∣)∣ , Sr = S(q̄r+ 1

2
, ¯̇qr+ 1

2
)

on Nr regularization points given from the training dataset.
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Related work: by Offen and Ober-Blöbaum

● Propose to learn the Lagrangian of Euler-Lagrange dynamics, with no
external forces. Approximate the Lagrangian using Gaussian Processes.

● Discuss the problem of non uniqueness of the Lagrangian and propose
ways to learn regular Lagrangians.

● Introduce the concept of inverse modified Lagrangian Linvmod ≈ L and

L = Linvmod + L̃ hp +O(hp+1)

● For more accurate approximations of L use Lagrangian Backward Error
Analysis and Linvmod .

● Use only position data.
● Experiments on synthetic data.

- S Ober-Blöbaum, C. Offen, Variational Learning of Euler-Lagrange Dynamics from Data.
Journal of Computational and Applied Mathematics, 421, 2023.

- C. Offen, S. Ober-Blöbaum, Symplectic integration of learned Hamiltonian systems, Chaos, 2022.

- C. Offen, S. Ober-Blöbaum, Learning discrete Lagrangians for variational PDEs from data and
detection of travelling waves, 2023, arXiv preprint arXiv:2302.08232.
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Higher order approximations of L and F

● We use a symmetric multi-step approach.
● Symmetric multi-step variational discretization have good geometric

properties. (Hairer and Lubich)

Order 4:

L∆(qn−2,qn−1,qn+1,qn+2) = hLθ(q̄n, v̄n),

F+∆(qn−2,qn−1,qn+1,qn+2) =
h

2
Fθ(q̄n, v̄n),

F−∆(qn−2,qn−1,qn+1,qn+2) =
h

2
Fθ(q̄n, v̄n),

where

q̄n =
1
12
(−qn−2 + 8qn−1 + 4qn+1 + qn+2), v̄n =

1
12h
(qn−2 − 8qn−1 + 8qn+1 − qn+2).

Higher order: use coefficients δj (j = −k, . . . , k), δj = −δ−j , for a derivative
approximation of order 2k,

v̄n =
1
h

k

∑
j=−k

δjqn−j , q̄n = (1 − δ1)qn+1 −
k

∑
j=−k,j≠0,1

δjqn−j , δj =
(−1)j−1

j

k!2

(k − j)!(k + j)! ,

for j = 1, . . . , k and where δ0 = 0.
- E. Hairer and C. Lubich, Symmetric multistep methods over long times. Numer. Math., 2004
- E. Hairer and C. Lubich, Symmetric multistep methods for charged particle dynamics. SMAI J.

Comput. Math., 2017.
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Higher order: use coefficients δj (j = −k, . . . , k), δj = −δ−j , for a derivative
approximation of order 2k,

v̄n =
1
h

k

∑
j=−k

δjqn−j , q̄n = (1 − δ1)qn+1 −
k

∑
j=−k,j≠0,1

δjqn−j , δj =
(−1)j−1

j

k!2

(k − j)!(k + j)! ,

for j = 1, . . . , k and where δ0 = 0.
- E. Hairer and C. Lubich, Symmetric multistep methods over long times. Numer. Math., 2004
- E. Hairer and C. Lubich, Symmetric multistep methods for charged particle dynamics. SMAI J.

Comput. Math., 2017.
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Related work: Lagrangian NN and Generalized Lagrangian NN
● Formulate their learning problem starting from the (Forced) Euler-

Lagrange Equations:

0 = ∂L

∂q
(q(t), q̇(t)) − d

dt
(∂L
∂q̇
(q(t), q̇(t))) + F (q(t), q̇(t)) .

● By expanding d
dt
( ∂L
∂q̇
(q(t), q̇(t))) and assuming ∂2L

∂q̇2 invertible one
obtains

q̈ = (∂
2L

∂q̇2 )
−1

(∂L
∂q
− q̇ ⋅ ∂2L

∂q∂q̇
+ F)

Then solve this equation numerically to obtain {q̂n, ˙̂qn}Nn=0 to compare
with the observed data {qn, q̇n}Nn=0 in a least squares loss function.

● Learn both Lθ and Fθ.
● Need both position and velocity data (or approximate velocity with finite

differences).
● Experiments on synthetic data.
- Miles Cranmer, Sam Greydanus, Stephan Hoyer, Peter Battaglia, David Spergel, and Shirley Ho.

Lagrangian neural networks, arXiv:2003.04630.
- Xiao, S., Zhang, J. and Tang, Y. Generalized Lagrangian Neural Networks. arXiv:2401.03728.

Jan. 2024. http://arxiv.org/abs/2401.03728 (June 26, 2024).
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Experiments: error measures

Extrapolation error: is the error at the k-th step of a trajectory computed
numerically, with k ≥ 2 after Lθ and Fθ are learned.

Extrapolation Errork =
1

NT

NT
∑
i=0
∥ q{i}

k
− q̂{i}

k
∥22 . (1)

Mean square error associated to the k-th step of a predicted trajectory:
● qik true trajectory at time step k given the initial condition for {qi0,qi1};
● q̂

{i}
k is the solution of E∆(q̂ik−2, q̂ik−1, q̂ik) = 0 for trajectory i , starting from
E∆(qi0,qi1, q̂i2) = 0.

Where NT is the number of trajectories of N steps (segments of triplets
{qn−1,qn,qn+1} are selected from each trajectory and used as input to the NNs during
training).
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Experiments (synthetic data): damped double pendulum

The model was trained on the damped dataset and evaluated on a test
dataset with same damping.

Left: Extrapolation error given time step h = C ⋅ 10−2 and a training dataset
containing 320 trajectories. Test dataset contains 10 trajectories.

Right: Prediction rollouts.

Elena Celledoni Learning dynamics



Experiments (synthetic data): damped double pendulum

Figure: Evaluating the conservative part of the trained Lagrangian-based
models on an undamped double pendulum dataset. The lightgray line is
included as a reference to the damped system that the model is being
trained on.
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Dimensionality reduction for pixel data and human motion data

An autoencoder is applied to reduce the high-dimensional input dimension to a

lower-dimensional latent space. The proposed model is applied to the dynamics in the

latent space.

Elena Celledoni Learning dynamics



Experiments (synthetic data): pixel pendulum
Experiment inspired by:

- L. Mars Gao and J. Nathan Kutz, Bayesian autoencoders for data-driven discovery of coordinates,
governing equations and fundamental constants, Prooceedings of the Royal Society A, 2024.

Figure: Results for a simple pendulum represented through pixel images. The models
are trained on a damped dataset, and evaluated on a test dataset with the same
damping. Elena Celledoni Learning dynamics



Experiments (synthetic data): pixel pendulum

Figure: Results for a simple pendulum represented through pixel images. The models are trained on a
damped dataset, the conservative part of the trained Lagrangian-based models is evaluated on an
undamped simple pendulum system. The lightgray line and figures are included as a reference to the
damped system that the model has been trained on.
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Experiments (real-world data)

● Too few trajectories for the same motion: need to augment the data-set.
● Use two trials of the same motion for the same person.
● Extract 10 trajectories per trial for a total of 20 trajectories.
● We track the motion of 10 joints: rtibia, rfemur, rhipjoint, root,

lowerback, upperback, thorax, rclavicle, rhumerus, and rradius.
● Use a Savitzky-Golay filter to smoothen the data.
● Perform dimensionality reduction including the parameters of an

autoencoder in the training.
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Experiments (real-world data)

● Too few trajectories for the same motion: need to augment the data-set.
● Use two trials of the same motion for the same person.
● Extract 10 trajectories per trial for a total of 20 trajectories.
● We track the motion of 10 joints: rtibia, rfemur, rhipjoint, root,

lowerback, upperback, thorax, rclavicle, rhumerus, and rradius.
● Use a Savitzky-Golay filter to smoothen the data.
● Perform dimensionality reduction including the parameters of an

autoencoder in the training.
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Experiments (real-life data): swinging motion

Reconstruction of human motion, capturing a swinging motion. (Black - recorded motion)

Top Extrapolation error.

Left Prediction rollouts in coordinate space for the root of the skeleton.

Right Prediction rollouts for the the right femur.
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Animated skeletal movement

Elena Celledoni Learning dynamics



Skeletal movement snapshots

Green notation is DFLNN (proposed), yellow is the GLNN model, and pink lines a

Neural ODE. The ground truth is indicated in black. Full movement represented as a

skeletal sketch.
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