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Minimum weight 2-edge-connected spanning subgraphs

Instance: graph G = (V, E), weights w : E — R>¢

Task: Find a min-weight 2-edge-connected spanning subgraph.
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Augmentation
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Links have weight/cost 1.
Forest edges have cost 0.

Weighted Tree
Augmentation

Links have positive weight/cost.
Tree edges have cost 0.




Min-Weight 2ECSS

connectivity for ﬁ7 wl}-weights

Weighted Tree

Forest Augmentation
Augmentation (WTAP) <

{0, 1}—weigk Aneotivity for free

Tree Augmentation (TAP)




Hardness and classical approximation algorithms

Kortsarz, Krauthgamer, and Lee [2004]:

TAP is APX-hard even on trees of diameter 5.

Classical techniques, e.g. primal-dual algorithms, iterative rounding, provide a
2-approximation for a wide class of network design problems, including Min-Weight 2ECSS.

Can we get better-than-2 approximations?




Weighted Tree Augmentation



Weighted Tree Augmentation (WTAP)

tree G = (V, E)

links L C (%) with weights w : L — Rx

Find a min weight set F' C L of links s.t.
G becomes 2-edge-connected when adding F'.
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Weighted Tree Augmentation (WTAP)
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with weights w : L — Ry

Find a min weight set F' C L of links s.t.
G becomes 2-edge-connected when adding F'.




Weighted Tree Augmentation (WTAP)
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E)

) with weights w : L — R

Find a min weight set F' C L of links s.t.
G becomes 2-edge-connected when adding F'.

Equivalent:

Every edge e € E must be covered by a link £ € F,
i.e.,e € Pyforsomel € F.



2-approximation algorithm

[} N
NV
A /\
li ______ o \o, 0

(1) Pick an arbitrary root r € V.



2-approximation algorithm
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(1) Pick an arbitrary root r € V.
@) “Split” every link ¢ into two up-links,
each with weight w(?).



2-approximation algorithm
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(1) Pick an arbitrary root r € V.

@) “Split” every link ¢ into two up-links,
each with weight w(?).

@ Compute an optimal up-link solution.



2-approximation algorithm
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(1) Pick an arbitrary root r € V.

@) “Split” every link ¢ into two up-links,
each with weight w(?).

@ Compute an optimal up-link solution.
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solve natural LP (integral), or
use dynamic programming




Better-than-2 approximations for special cases

» unweighted tree augmentation (TAP): 1.393-approximation [Cecchetto, T., Zenklusen, 2021]

(improving on [Nagamochi, 2003], [Even, Feldmann, Kortsarz, Nutov, 2009], [Cheriyan, Gao, 2018],
[Kortaz, Nutov, 2016], [Kortaz, Nutov, 2018], [Adjashvilli, 2018], [Nutov, 2017], [Fiorini, Grof3,
Kénemann, Sanita, 2018], [Grandoni, Kalaitzis, Zenklusen, 2018])

» constant-diameter trees: (1 + In 2)-approximation [Cohen, Nutov, 2013]

» better-than-2 approximation if an opt. solution to natural LP has no small fractional values
[lglesias, Ravi, 2018]



Our result

Theorem [T., Zenklusen, 2021]

There is a (1.5 + €)-approximation algorithm for Weighted Tree Augmentation (WTAP)
for any fixed € > 0.

Relative greedy algorithm: (1 + In 2 + ¢)-approximation

1. Compute a structured 2-approximate solution.

2. Show that every structured suboptimal solution can be improved.



The Relative Greedy Algorithm



The starting solution for relative greedy
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@ Compute optimal up-link solution U (2-approximation).



The starting solution for relative greedy
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@ Compute optimal up-link solution U (2-approximation).

(@) “Shorten” up-links s.t. P, with u € U are disjoint, i.e.,
every edge is covered by exactly one link.



Relative greedy: improving structured solutions
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[ Invariant: U U F'is a WTAP solution. ]
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@ U = 2-approximate up-link solution s.t.
the paths P, with u € U are disjoint.
F=10
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Relative greedy: improving structured solutions
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[ Invariant: U U F'is a WTAP solution. ]
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@ U = 2-approximate up-link solution s.t.

S

% ® R N
the paths P, with u € U are disjoint. '.' \ '-‘ N
F:=10 ®

@ Aslong as w(U U F) decreases:

e Select a component C' C L.
e Add C'to F.



Relative greedy: improving structured solutions
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[ Invariant: U U F'is a WTAP solution. ]
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@ U = 2-approximate up-link solution s.t.
the paths P, with u € U are disjoint.
F=10
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@ Aslong as w(U U F) decreases:

e Select a component C' C L.
e Add C'to F.
e Remove the following from U:

Dropy; (C) = {u eU:P, C U P[}
teC
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Relative greedy: improving structured solutions
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[ Invariant: U U F'is a WTAP solution. ]
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@ U = 2-approximate up-link solution s.t.
the paths P, with u € U are disjoint.

F=10

@ Aslong as w(U U F) decreases:
e Select a component C' C L.
e Add C'to F.
e Remove the following from U:

Dropy; (C) = {u eU:P, C U P[}
teC

@) Return U U F.
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Relative greedy: improving structured solutions

[ Invariant: U U F'is a WTAP solution. ]

@ U = 2-approximate up-link solution s.t.
the paths P, with u € U are disjoint.

F=10

@ Aslong as w(U U F) decreases:
e Select a component C' C L. f

e Remove the following from U:

Dropy; (C) = {u eU:P, C U P[}
teC

@) Return U U F.
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Choose C'
minimizing

as a [ﬂ-thin link set

w(C)
w(Dropy, (C))




The Existence of Improving Components

r
U := set of up-links s.t. the paths P, with u € U are disjoint /'.'
Fix e > 0. & 3 iU
/ \\i ot

Decomposition Theorem [T, zenklusen, 2021] o N
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There exists a partition C of OPT" into [1/]-thin
components s.t.: / \

> w(Dropy(C)) = (1—e)-w(U). A <
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Forest Augmentation



Forest Augmentation Problem (FAP)
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' o/ 5 \‘\ forest G = (V, F)
/ links Z C (%)
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Task: Find min-cardinality S C L s.t. G + S is 2-edge-connected



Forest Augmentation Problem (FAP)

-------

' X \ forest G = (V, F)
/ links L C (¥)
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Task: Find min-cardinality S C L s.t. G + S is 2-edge-connected

Theorem

[Grandoni, Jabal Ameli, T., 2022]

There is a 1.998-approximation algorithm for Forest Augmentation.




Prior work

» Tree Augmentation Problem (TAP): 1.393-approximation [Cecchetto, T., Zenklusen, 2021]

(improving on [Nagamochi, 2003], [Even, Feldmann, Kortsarz, Nutov, 2009], [Cheriyan, Gao, 2018],
[Kortaz, Nutov, 2016], [Kortaz, Nutov, 2018], [Adjashvilli, 2018], [Nutov, 2017], [Fiorini, Grof3,
Kénemann, Sanita, 2018], [Grandoni, Kalaitzis, Zenklusen, 2018])

» Unweighted 2-ECSS: %-approximation
[Sebd, Vygen, 2014], [Hunkenschrbéder, Vempala, Vetta, 2019]
(improving on [Khuller, Vishkin, 1994], [Cheriyan, Sebd, Szigeti, 2001])

» Matching Augmentation Problem (MAP): g-approximation
[Cheriyan, Cummings, Dippel, Zhu, 2020]
(improving on [Cheriyan, Dippel, Grandoni, Khan, Narayan, 2020], [Bamas, Drygala, Svensson, 2022])



A naive approach
1. Complete the forest F' to a spanning tree.

2. Augment the spanning tree to a 2-edge-connected graph using a p-approximation for TAP.

WARVAN

Number of edges: |V| —|F|—1+p-OPT

Issue: |V| — |F| could be as large as OPT



A second approach
1. Compute a 2-approximation S C L.

2. Choose T' C S such that F' U T is a spanning tree.
3. Improve the TAP solution S\ 7'.
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Issue: We cannot always improve the TAP solution.



A better-than-2 approximation for Forest Augmentation

Se 2
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Use relative greedy to improve
U far from optimal up-link solution.
Construct TAP instance and /
up-link solution U
of total cost < 2 - |OPT|.
U almost optimal

Then: FAP instance is “close” to
MAP instance.
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A 2-approximation for the Minimum Weight 2-ECSS problem

1. Replace every edge {a, b} by directed edges (a, b) and (b, a).
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A 2-approximation for the Minimum Weight 2-ECSS problem

1. Replace every edge {a, b} by directed edges (a, b) and (b, a).
2. Fix r € V and compute cheapest directed edge set D with

IDN6~(R)|>2 YO£RCV\{r)
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A 2-approximation for the Minimum Weight 2-ECSS problem
1. Replace every edge {a, b} by directed edges (a, b) and (b, a).
2. Fix r € V and compute cheapest directed edge set D with
IDNé (R)|>2 VOARCV\{r}

3. Replace every edge (a,b) € D by {a,b}.
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Computing a spanning tree with a cheap up-link solution

1. Fix r € V and compute cheapest directed edge set D with
IDNS (R)|>2 VOARCV\{r}

2. Choose T' C D such that F' U T is a spanning tree (ignoring orientations).

/ \
\ » .
./ \.

22



Computing a spanning tree with a cheap up-link solution

1. Fix r € V and compute cheapest directed edge set D with
IDNS (R)|>2 VOARCV\{r}

2. Choose T' C D such that F' U T is a spanning tree (ignoring orientations).
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Computing a spanning tree with a cheap up-link solution

1. Fix r € V and compute cheapest directed edge set D with
IDNS (R)|>2 VOARCV\{r}

2. Choose T' C D such that F' U T is a spanning tree (ignoring orientations).
3. Up-links corresponding to links in D \ T" are a solution for the TAP instance with tree F' U T
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Computing a spanning tree with a cheap up-link solution

1. Fix r € V and compute cheapest directed edge set D with
IDNS (R)|>2 VOARCV\{r}

2. Choose T' C D such that F' U T is a spanning tree (ignoring orientations).

3. Up-links corresponding to links in D \ T" are a solution for the TAP instance with tree F' U T

least common ancestor(a, b) / \
7\, "
(L'O
link (a,b) € D\T :' °
corresponding up-link "‘ / \
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Computing a spanning tree with a cheap up-link solution
Fix r € V and compute cheapest directed edge set D with

IDNS (R)|>2 VOARCV\{r}
2. Choose T' C D such that F' U T' is a spanning tree (ignoring orientations)

3. Up-links corresponding to links in D \ T are a solution for the TAP instance with tree FF U T

least common ancestor(a, b) / \
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corresponding up-link "‘ / \
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A better-than-2 approximation for Forest Augmentation
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U far from optimal
Construct TAP instance and

Use relative greedy to improve
/ up-link solution.
up-link solution U
of total cost < 2 - |OPT].

U almost optimal

Then: FAP instance is “close” to
MAP instance.
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Conclusions



Summary: best known approximation ratios

Min-weight 2-ECSS:
Weighted Tree Augmentation:
Forest Augmentation:

Tree Augmentation:

Conclusions

2-approximation

(1.5 + £)-approximation
1.998-approximation
1.393-approximation

Open question: Is there a better-than-2 approximation for min-weight 2-ECSS?
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Summary: best known approximation ratios

Min-weight 2-ECSS:
Weighted Tree Augmentation:
Forest Augmentation:

Tree Augmentation:

Conclusions

2-approximation

(1.5 + £)-approximation
1.998-approximation
1.393-approximation

Open question: Is there a better-than-2 approximation for min-weight 2-ECSS?

Thank you!
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