Better-Than-2 Approximations for Forest Augmentation and Weighted Tree Augmentation

Vera Traub
ETH Zürich

joint work with Fabrizio Grandoni, Afrouz Jabal Ameli, and Rico Zenklusen

Minimum weight 2-edge-connected spanning subgraphs

Min-Weight 2-ECSS

Instance: \quad graph $G=(V, E)$, weights $w: E \rightarrow \mathbb{R}_{\geq 0}$
Task: Find a min-weight 2-edge-connected spanning subgraph.

Hardness and classical approximation algorithms

- Kortsarz, Krauthgamer, and Lee [2004]:

TAP is APX-hard even on trees of diameter 5.

- Classical techniques, e.g. primal-dual algorithms, iterative rounding, provide a 2-approximation for a wide class of network design problems, including Min-Weight 2ECSS.

Can we get better-than-2 approximations?

Weighted Tree Augmentation

Weighted Tree Augmentation (WTAP)

Weighted Tree Augmentation (WTAP)

Weighted Tree Augmentation (WTAP)

WTAP

Find a min weight set $F \subseteq L$ of links s.t. G becomes 2-edge-connected when adding F.

Equivalent:

Every edge $e \in E$ must be covered by a link $\ell \in F$, i.e., $e \in P_{\ell}$ for some $\ell \in F$.

(1) Pick an arbitrary root $r \in V$.

2-approximation algorithm

(1) Pick an arbitrary root $r \in V$.
(2) "Split" every link ℓ into two up-links, each with weight $w(\ell)$.

2-approximation algorithm

(1) Pick an arbitrary root $r \in V$.
(2) "Split" every link ℓ into two up-links, each with weight $w(\ell)$.
(3) Compute an optimal up-link solution.

2-approximation algorithm

(1) Pick an arbitrary root $r \in V$.
(2) "Split" every link ℓ into two up-links, each with weight $w(\ell)$.
(3) Compute an optimal up-link solution.
solve natural LP (integral), or use dynamic programming

Better-than-2 approximations for special cases

- unweighted tree augmentation (TAP): 1.393-approximation [Cecchetto, T., Zenklusen, 2021] (improving on [Nagamochi, 2003], [Even, Feldmann, Kortsarz, Nutov, 2009], [Cheriyan, Gao, 2018], [Kortaz, Nutov, 2016], [Kortaz, Nutov, 2018], [Adjashvilli, 2018], [Nutov, 2017], [Fiorini, Groß, Könemann, Sanità, 2018], [Grandoni, Kalaitzis, Zenklusen, 2018])
- constant-diameter trees: $(1+\ln 2)$-approximation
[Cohen, Nutov, 2013]
- better-than-2 approximation if an opt. solution to natural LP has no small fractional values
[Iglesias, Ravi, 2018]

Our result

Theorem [T., Zenklusen, 2021]

There is a $(1.5+\varepsilon)$-approximation algorithm for Weighted Tree Augmentation (WTAP) for any fixed $\varepsilon>0$.

Relative greedy algorithm: $(1+\ln 2+\varepsilon)$-approximation

1. Compute a structured 2 -approximate solution.
2. Show that every structured suboptimal solution can be improved.

The Relative Greedy Algorithm

The starting solution for relative greedy

(1) Compute optimal up-link solution U (2-approximation).

The starting solution for relative greedy

(1) Compute optimal up-link solution U (2-approximation).
(2) "Shorten" up-links s.t. P_{u} with $u \in U$ are disjoint, i.e., every edge is covered by exactly one link.

Relative greedy: improving structured solutions

Invariant: $U \cup F$ is a WTAP solution.
(1) $U:=2$-approximate up-link solution s.t. the paths P_{u} with $u \in U$ are disjoint. $F:=\emptyset$

Relative greedy: improving structured solutions

Invariant: $U \cup F$ is a WTAP solution.
(1) $U:=2$-approximate up-link solution s.t. the paths P_{u} with $u \in U$ are disjoint. $F:=\emptyset$
(2) As long as $w(U \cup F)$ decreases:

- Select a component $C \subseteq L$.
- Add C to F.

Relative greedy: improving structured solutions

Invariant: $U \cup F$ is a WTAP solution.
(1) $U:=2$-approximate up-link solution s.t. the paths P_{u} with $u \in U$ are disjoint.
$F:=\emptyset$
(2) As long as $w(U \cup F)$ decreases:

- Select a component $C \subseteq L$.
- Add C to F.
- Remove the following from U :

$$
\operatorname{Drop}_{U}(C):=\left\{u \in U: P_{u} \subseteq \bigcup_{\ell \in C} P_{\ell}\right\}
$$

Relative greedy: improving structured solutions

Invariant: $U \cup F$ is a WTAP solution.
(1) $U:=$ 2-approximate up-link solution s.t. the paths P_{u} with $u \in U$ are disjoint.
$F:=\emptyset$
(2) As long as $w(U \cup F)$ decreases:

- Select a component $C \subseteq L$.
- Add C to F.
- Remove the following from U :

$$
\operatorname{Drop}_{U}(C):=\left\{u \in U: P_{u} \subseteq \bigcup_{\ell \in C} P_{\ell}\right\}
$$

(3) Return $U \cup F$.

Relative greedy: improving structured solutions

Invariant: $U \cup F$ is a WTAP solution.
(1) $U:=$ 2-approximate up-link solution s.t. the paths P_{u} with $u \in U$ are disjoint.
$F:=\emptyset$
(2) As long as $w(U \cup F)$ decreases:

- Select a component $C \subseteq L$.
- Add C to F.
- Remove the following from U :

$$
\operatorname{Drop}_{U}(C):=\left\{u \in U: P_{u} \subseteq \bigcup_{\ell \in C} P_{\ell}\right\}
$$

(3) Return $U \cup F$.

Choose C as a $\left\lceil\frac{1}{\varepsilon}\right\rceil$-thin link set minimizing

$$
\frac{w(C)}{w\left(\operatorname{Drop}_{U}(C)\right)}
$$

The Existence of Improving Components

$U:=$ set of up-links s.t. the paths P_{u} with $u \in U$ are disjoint Fix $\varepsilon>0$.

Decomposition Theorem [T., Zenklusen, 2021]

There exists a partition \mathcal{C} of OPT into $\lceil 1 / \varepsilon\rceil$-thin components s.t.:

$$
\sum_{C \in \mathcal{C}} w\left(\operatorname{Drop}_{U}(C)\right) \geq(1-\varepsilon) \cdot w(U)
$$

Forest Augmentation

Forest Augmentation Problem (FAP)

Task: Find min-cardinality $S \subseteq L$ s.t. $G+S$ is 2-edge-connected.

Forest Augmentation Problem (FAP)

Task: Find min-cardinality $S \subseteq L$ s.t. $G+S$ is 2-edge-connected.

Theorem [Grandoni, Jabal Ameli, T., 2022]

There is a 1.998-approximation algorithm for Forest Augmentation.

- Tree Augmentation Problem (TAP): 1.393-approximation [Cecchetto, T., Zenklusen, 2021] (improving on [Nagamochi, 2003], [Even, Feldmann, Kortsarz, Nutov, 2009], [Cheriyan, Gao, 2018], [Kortaz, Nutov, 2016], [Kortaz, Nutov, 2018], [Adjashvilli, 2018], [Nutov, 2017], [Fiorini, Groß, Könemann, Sanità, 2018], [Grandoni, Kalaitzis, Zenklusen, 2018])
- Unweighted 2-ECSS: $\frac{4}{3}$-approximation
[Sebő, Vygen, 2014], [Hunkenschröder, Vempala, Vetta, 2019] (improving on [Khuller, Vishkin, 1994], [Cheriyan, Sebő, Szigeti, 2001])
- Matching Augmentation Problem (MAP): $\frac{5}{3}$-approximation
[Cheriyan, Cummings, Dippel, Zhu, 2020]
(improving on [Cheriyan, Dippel, Grandoni, Khan, Narayan, 2020], [Bamas, Drygala, Svensson, 2022])

A naive approach

1. Complete the forest F to a spanning tree.
2. Augment the spanning tree to a 2 -edge-connected graph using a ρ-approximation for TAP.

Number of edges: $|V|-|F|-1+\rho \cdot$ OPT
Issue: $|V|-|F|$ could be as large as OPT.

A second approach

1. Compute a 2 -approximation $S \subseteq L$.
2. Choose $T \subseteq S$ such that $F \cup T$ is a spanning tree.
3. Improve the TAP solution $S \backslash T$.

Issue: We cannot always improve the TAP solution.

A better-than-2 approximation for Forest Augmentation

A 2-approximation for the Minimum Weight 2-ECSS problem

1. Replace every edge $\{a, b\}$ by directed edges (a, b) and (b, a).

A 2-approximation for the Minimum Weight 2-ECSS problem

1. Replace every edge $\{a, b\}$ by directed edges (a, b) and (b, a).
2. Fix $r \in V$ and compute cheapest directed edge set D with

$$
\left|D \cap \delta^{-}(R)\right| \geq 2 \quad \forall \emptyset \neq R \subsetneq V \backslash\{r\}
$$

A 2-approximation for the Minimum Weight 2-ECSS problem

1. Replace every edge $\{a, b\}$ by directed edges (a, b) and (b, a).
2. Fix $r \in V$ and compute cheapest directed edge set D with

$$
\left|D \cap \delta^{-}(R)\right| \geq 2 \quad \forall \emptyset \neq R \subsetneq V \backslash\{r\}
$$

3. Replace every edge $(a, b) \in D$ by $\{a, b\}$.

Computing a spanning tree with a cheap up-link solution

1. Fix $r \in V$ and compute cheapest directed edge set D with

$$
\left|D \cap \delta^{-}(R)\right| \geq 2 \quad \forall \emptyset \neq R \subsetneq V \backslash\{r\}
$$

2. Choose $T \subseteq D$ such that $F \cup T$ is a spanning tree (ignoring orientations).

Computing a spanning tree with a cheap up-link solution

1. Fix $r \in V$ and compute cheapest directed edge set D with

$$
\left|D \cap \delta^{-}(R)\right| \geq 2 \quad \forall \emptyset \neq R \subsetneq V \backslash\{r\}
$$

2. Choose $T \subseteq D$ such that $F \cup T$ is a spanning tree (ignoring orientations).

Computing a spanning tree with a cheap up-link solution

1. Fix $r \in V$ and compute cheapest directed edge set D with

$$
\left|D \cap \delta^{-}(R)\right| \geq 2 \quad \forall \emptyset \neq R \subsetneq V \backslash\{r\}
$$

2. Choose $T \subseteq D$ such that $F \cup T$ is a spanning tree (ignoring orientations).
3. Up-links corresponding to links in $D \backslash T$ are a solution for the TAP instance with tree $F \cup T$.

$$
\operatorname{link}(a, b) \in D \backslash T
$$

Computing a spanning tree with a cheap up-link solution

1. Fix $r \in V$ and compute cheapest directed edge set D with

$$
\left|D \cap \delta^{-}(R)\right| \geq 2 \quad \forall \emptyset \neq R \subsetneq V \backslash\{r\}
$$

2. Choose $T \subseteq D$ such that $F \cup T$ is a spanning tree (ignoring orientations).
3. Up-links corresponding to links in $D \backslash T$ are a solution for the TAP instance with tree $F \cup T$.

Computing a spanning tree with a cheap up-link solution

1. Fix $r \in V$ and compute cheapest directed edge set D with

$$
\left|D \cap \delta^{-}(R)\right| \geq 2 \quad \forall \emptyset \neq R \subsetneq V \backslash\{r\}
$$

2. Choose $T \subseteq D$ such that $F \cup T$ is a spanning tree (ignoring orientations).
3. Up-links corresponding to links in $D \backslash T$ are a solution for the TAP instance with tree $F \cup T$.

A better-than-2 approximation for Forest Augmentation

Construct TAP instance and up-link solution U of total cost $\leq 2 \cdot|\mathrm{OPT}|$.

Use relative greedy to improve up-link solution.

Then: FAP instance is "close" to MAP instance.

Conclusions

Conclusions

Summary: best known approximation ratios

Min-weight 2-ECSS: 2-approximation
Weighted Tree Augmentation: $(1.5+\varepsilon)$-approximation
Forest Augmentation: 1.998-approximation
Tree Augmentation: 1.393-approximation

Open question: Is there a better-than-2 approximation for min-weight 2-ECSS?

Summary: best known approximation ratios

Min-weight 2-ECSS: 2-approximation
Weighted Tree Augmentation: $(1.5+\varepsilon)$-approximation
Forest Augmentation: 1.998-approximation
Tree Augmentation: 1.393-approximation

Open question: Is there a better-than-2 approximation for min-weight 2-ECSS?

Thank you!

