Better-Than-2 Approximations for Forest Augmentation
and Weighted Tree Augmentation

Vera Traub
ETH Zirich

joint work with Fabrizio Grandoni, Afrouz Jabal Ameli, and Rico Zenklusen

Minimum weight 2-edge-connected spanning subgraphs

Instance: graph G = (V, E), weights w : E — R>¢

Task: Find a min-weight 2-edge-connected spanning subgraph.

Forest
Augmentation

JPPELT X

-
Oumm=="

Links have weight/cost 1.
Forest edges have cost 0.

Weighted Tree
Augmentation

Links have positive weight/cost.
Tree edges have cost 0.

Min-Weight 2ECSS

connectivity for ﬁ7 wl}-weights

Weighted Tree

Forest Augmentation
Augmentation (WTAP) <

{0, 1}—weigk Aneotivity for free

Tree Augmentation (TAP)

Hardness and classical approximation algorithms

Kortsarz, Krauthgamer, and Lee [2004]:

TAP is APX-hard even on trees of diameter 5.

Classical techniques, e.g. primal-dual algorithms, iterative rounding, provide a
2-approximation for a wide class of network design problems, including Min-Weight 2ECSS.

Can we get better-than-2 approximations?

Weighted Tree Augmentation

Weighted Tree Augmentation (WTAP)

tree G = (V, E)

links L C (%) with weights w : L — Rx

Find a min weight set F' C L of links s.t.
G becomes 2-edge-connected when adding F'.

.
\
/
\

.

Weighted Tree Augmentation (WTAP)

a e
N\ \
/N

7
.

[X
.
A
A
\‘ —__—
’.-_.-_-——‘

E)

with weights w : L — Ry

Find a min weight set F' C L of links s.t.
G becomes 2-edge-connected when adding F'.

Weighted Tree Augmentation (WTAP)

a
N\ \p,
/N

-
_”‘
-

~

[R
\

7
.

E)

) with weights w : L — R

Find a min weight set F' C L of links s.t.
G becomes 2-edge-connected when adding F'.

Equivalent:

Every edge e € E must be covered by a link £ € F,
i.e.,e € Pyforsomel € F.

2-approximation algorithm

[} N
NV
A /\
li ______ o \o, 0

(1) Pick an arbitrary root r € V.

2-approximation algorithm

‘‘‘‘‘‘

(1) Pick an arbitrary root r € V.
@) “Split” every link ¢ into two up-links,
each with weight w(?).

2-approximation algorithm

(]

<
G
’
¢
S
.¥
?
]
sov
Jey
/.
[}
....-.-._.___,._
-
‘—— ’
Prae ,’
¢
/. ¢'
° / .
4
’/
@

~§
(}

N \ ~-—/\..-""x‘\\
N

cmmmmnang
7.
:~“
~.
/
[) ou
N
-
"
ks
4,
@
-
o"—\
“
*
kJ
4,
[)

‘‘‘‘‘

(1) Pick an arbitrary root r € V.

@) “Split” every link ¢ into two up-links,
each with weight w(?).

@ Compute an optimal up-link solution.

2-approximation algorithm

N \ ~;;/\..-""x‘\\
N

‘‘‘‘‘

(1) Pick an arbitrary root r € V.

@) “Split” every link ¢ into two up-links,
each with weight w(?).

@ Compute an optimal up-link solution.

—

T
o
AN
1 e
l‘ 5‘
@ 'y @ .
L} LY
[}
o7\ i\ \ e
’ R
’
’ U |
’ ! [}
' @ [] [y []
[y

[) ou
N
"—
ks
4,
@
-
o __
“
*
kJ
4,
[)

solve natural LP (integral), or
use dynamic programming

Better-than-2 approximations for special cases

» unweighted tree augmentation (TAP): 1.393-approximation [Cecchetto, T., Zenklusen, 2021]

(improving on [Nagamochi, 2003], [Even, Feldmann, Kortsarz, Nutov, 2009], [Cheriyan, Gao, 2018],
[Kortaz, Nutov, 2016], [Kortaz, Nutov, 2018], [Adjashvilli, 2018], [Nutov, 2017], [Fiorini, Grof3,
Kénemann, Sanita, 2018], [Grandoni, Kalaitzis, Zenklusen, 2018])

» constant-diameter trees: (1 + In 2)-approximation [Cohen, Nutov, 2013]

» better-than-2 approximation if an opt. solution to natural LP has no small fractional values
[lglesias, Ravi, 2018]

Our result

Theorem [T., Zenklusen, 2021]

There is a (1.5 + €)-approximation algorithm for Weighted Tree Augmentation (WTAP)
for any fixed € > 0.

Relative greedy algorithm: (1 + In 2 + ¢)-approximation

1. Compute a structured 2-approximate solution.

2. Show that every structured suboptimal solution can be improved.

The Relative Greedy Algorithm

The starting solution for relative greedy

T
.5
AN
n .
X S.
l‘ s~
-~z v @ -~
D PO\,
o o [®
’ LY
’ I 1
’] Y
) [[y .
’ -) .
’ \ [} .
[} O Y \
) s Y 3
)
[J [J [} [J

@ Compute optimal up-link solution U (2-approximation).

The starting solution for relative greedy

0=

G
4
,
4
4

.
/

/

-

/ \~

’
.9”7
’
NG
\J
\
\
Q
.

.

\\\\w
”,4’
./

-
@
@

~
Seo
S
N
"
“
-
-
o
~
~
-~
\\\:.
"
“
rmmm
%
"
"

@ Compute optimal up-link solution U (2-approximation).

(@) “Shorten” up-links s.t. P, with u € U are disjoint, i.e.,
every edge is covered by exactly one link.

Relative greedy: improving structured solutions

k._,.
?
G
’
’
’

[Invariant: U U F'is a WTAP solution.]

.
Y
1
]
()
-
@

.s
I

@ U = 2-approximate up-link solution s.t.
the paths P, with u € U are disjoint.
F=10

S

~
Seo
(]
<
7

<.'
/
o’

Relative greedy: improving structured solutions

k._,.
?
G
’
’
’

[Invariant: U U F'is a WTAP solution.]

.
Y
1
]
()
-
@

.s
I

@ U = 2-approximate up-link solution s.t.

S

% ® R N
the paths P, with u € U are disjoint. '.' \ '-‘ N
F:=10 ®

@ Aslong as w(U U F) decreases:

e Select a component C' C L.
e Add C'to F.

Relative greedy: improving structured solutions

k._,.
?
G
’
’
’

[Invariant: U U F'is a WTAP solution.]

.
Y
1
]
()
-
@

.s
I

@ U = 2-approximate up-link solution s.t.
the paths P, with u € U are disjoint.
F=10

S

~
Seo
(]
<
7

@ Aslong as w(U U F) decreases:

e Select a component C' C L.
e Add C'to F.
e Remove the following from U:

Dropy; (C) = {u eU:P, C U P[}
teC

d

4

’
4

Relative greedy: improving structured solutions

Y
1
]

()

.Q

[Invariant: U U F'is a WTAP solution.]

~
Seo
~
~
‘¢
Ze

@ U = 2-approximate up-link solution s.t.
the paths P, with u € U are disjoint.

F=10

@ Aslong as w(U U F) decreases:
e Select a component C' C L.
e Add C'to F.
e Remove the following from U:

Dropy; (C) = {u eU:P, C U P[}
teC

@) Return U U F.

.k._,.
?
G
’
’
’

Relative greedy: improving structured solutions

[Invariant: U U F'is a WTAP solution.]

@ U = 2-approximate up-link solution s.t.
the paths P, with u € U are disjoint.

F=10

@ Aslong as w(U U F) decreases:
e Select a component C' C L. f

e Remove the following from U:

Dropy; (C) = {u eU:P, C U P[}
teC

@) Return U U F.

t?>>'
?
G
’
’
’
’
’
’

Y
1
]

()

&} .Q
.. .
~
~§
. ~
" \
- ////,
Camen

Choose C'
minimizing

as a [ﬂ-thin link set

w(C)
w(Dropy, (C))

The Existence of Improving Components

r
U := set of up-links s.t. the paths P, with u € U are disjoint /'.'
Fix e > 0. & 3 iU
/ \\i ot

Decomposition Theorem [T, zenklusen, 2021] o N
‘/:'.. ‘.“:::‘".

There exists a partition C of OPT" into [1/]-thin
components s.t.: / \

> w(Dropy(C)) = (1—e)-w(U). A <
Ccec SN I\
|) LN e
I N

Forest Augmentation

Forest Augmentation Problem (FAP)

:.\ o o T e
' o/ 5 \‘\ forest G = (V, F)
/ links Z C (%)

. “)

~
Scnmm=="

Seo
-

[)
I\
.
.
.
.
.
.
.
Y
L)
[}
)
Y
[}
[}
)
@ e
~§

Task: Find min-cardinality S C L s.t. G + S is 2-edge-connected

Forest Augmentation Problem (FAP)

' X \ forest G = (V, F)
/ links L C (¥)

[)
I\
.
.
-
.
Y
.
.
[]
Y
Ly
[}
L}
~_——.
-~
DT

~
~
L O

Task: Find min-cardinality S C L s.t. G + S is 2-edge-connected

Theorem

[Grandoni, Jabal Ameli, T., 2022]

There is a 1.998-approximation algorithm for Forest Augmentation.

Prior work

» Tree Augmentation Problem (TAP): 1.393-approximation [Cecchetto, T., Zenklusen, 2021]

(improving on [Nagamochi, 2003], [Even, Feldmann, Kortsarz, Nutov, 2009], [Cheriyan, Gao, 2018],
[Kortaz, Nutov, 2016], [Kortaz, Nutov, 2018], [Adjashvilli, 2018], [Nutov, 2017], [Fiorini, Grof3,
Kénemann, Sanita, 2018], [Grandoni, Kalaitzis, Zenklusen, 2018])

» Unweighted 2-ECSS: %-approximation
[Sebd, Vygen, 2014], [Hunkenschrbéder, Vempala, Vetta, 2019]
(improving on [Khuller, Vishkin, 1994], [Cheriyan, Sebd, Szigeti, 2001])

» Matching Augmentation Problem (MAP): g-approximation
[Cheriyan, Cummings, Dippel, Zhu, 2020]
(improving on [Cheriyan, Dippel, Grandoni, Khan, Narayan, 2020], [Bamas, Drygala, Svensson, 2022])

A naive approach
1. Complete the forest F' to a spanning tree.

2. Augment the spanning tree to a 2-edge-connected graph using a p-approximation for TAP.

WARVAN

Number of edges: |V| —|F|—1+p-OPT

Issue: |V| — |F| could be as large as OPT

A second approach
1. Compute a 2-approximation S C L.

2. Choose T' C S such that F' U T is a spanning tree.
3. Improve the TAP solution S\ 7'.

\}
‘ /) T
) [}))
"2 o) =7) !
- -
- - [- - [
[] . ' [] AN '
- A} - |}
I -0 o I N ®
A [} e” 1 '
°° 1 o, [} 2 1 o, [}
.] H ~ [} ' [RN [}
1 ~ 1 1 1 ~ 1
\ J H J \ \ J H 0 \
\} 1) \} 1 1
A L} 1 A 1 \
A) 1 \} A) 1 \}
°) ° ° °

Issue: We cannot always improve the TAP solution.

A better-than-2 approximation for Forest Augmentation

Se 2
SN
J N\ . .
Use relative greedy to improve
U far from optimal up-link solution.
Construct TAP instance and /
up-link solution U
of total cost < 2 - |OPT|.
U almost optimal

Then: FAP instance is “close” to
MAP instance.

20

A 2-approximation for the Minimum Weight 2-ECSS problem

1. Replace every edge {a, b} by directed edges (a, b) and (b, a).

° ° o e

U

° ° L=

/
AN

21

A 2-approximation for the Minimum Weight 2-ECSS problem

1. Replace every edge {a, b} by directed edges (a, b) and (b, a).
2. Fix r € V and compute cheapest directed edge set D with

IDN6~(R)|>2 YO£RCV\{r)

) 0 o e

° ° L=

/
AN

21

A 2-approximation for the Minimum Weight 2-ECSS problem
1. Replace every edge {a, b} by directed edges (a, b) and (b, a).
2. Fix r € V and compute cheapest directed edge set D with
IDNé (R)|>2 VOARCV\{r}

3. Replace every edge (a,b) € D by {a,b}.

) 0 o e

° ° L=

/
AN

21

Computing a spanning tree with a cheap up-link solution

1. Fix r € V and compute cheapest directed edge set D with
IDNS (R)|>2 VOARCV\{r}

2. Choose T' C D such that F' U T is a spanning tree (ignoring orientations).

/ \
\ » .
./ \.

22

Computing a spanning tree with a cheap up-link solution

1. Fix r € V and compute cheapest directed edge set D with
IDNS (R)|>2 VOARCV\{r}

2. Choose T' C D such that F' U T is a spanning tree (ignoring orientations).

N\
AN
N\

22

Computing a spanning tree with a cheap up-link solution

1. Fix r € V and compute cheapest directed edge set D with
IDNS (R)|>2 VOARCV\{r}

2. Choose T' C D such that F' U T is a spanning tree (ignoring orientations).
3. Up-links corresponding to links in D \ T" are a solution for the TAP instance with tree F' U T

N\
AN

\\.

)
[]

link (a,b) € D\ T

/

S e

22

Computing a spanning tree with a cheap up-link solution

1. Fix r € V and compute cheapest directed edge set D with
IDNS (R)|>2 VOARCV\{r}

2. Choose T' C D such that F' U T is a spanning tree (ignoring orientations).

3. Up-links corresponding to links in D \ T" are a solution for the TAP instance with tree F' U T

least common ancestor(a, b) / \
7\, "
(L'O
link (a,b) € D\T :' °
corresponding up-link "‘ / \

22

Computing a spanning tree with a cheap up-link solution
Fix r € V and compute cheapest directed edge set D with

IDNS (R)|>2 VOARCV\{r}
2. Choose T' C D such that F' U T' is a spanning tree (ignoring orientations)

3. Up-links corresponding to links in D \ T are a solution for the TAP instance with tree FF U T

least common ancestor(a, b) / \
7\, \
(L'O
link (a,b) € D\T :' °
corresponding up-link "‘ / \

22

A better-than-2 approximation for Forest Augmentation

-

.
Y
[}

@

7"\

-
-
Sa
@ m===@
.
="
am=="

72N

Ny
[]

U far from optimal
Construct TAP instance and

Use relative greedy to improve
/ up-link solution.
up-link solution U
of total cost < 2 - |OPT].

U almost optimal

Then: FAP instance is “close” to
MAP instance.

23

Conclusions

Summary: best known approximation ratios

Min-weight 2-ECSS:
Weighted Tree Augmentation:
Forest Augmentation:

Tree Augmentation:

Conclusions

2-approximation

(1.5 + £)-approximation
1.998-approximation
1.393-approximation

Open question: Is there a better-than-2 approximation for min-weight 2-ECSS?

25

Summary: best known approximation ratios

Min-weight 2-ECSS:
Weighted Tree Augmentation:
Forest Augmentation:

Tree Augmentation:

Conclusions

2-approximation

(1.5 + £)-approximation
1.998-approximation
1.393-approximation

Open question: Is there a better-than-2 approximation for min-weight 2-ECSS?

Thank you!

25

