
Better-Than-2 Approximations for Forest Augmentation
and Weighted Tree Augmentation

Vera Traub

ETH Zürich

joint work with Fabrizio Grandoni, Afrouz Jabal Ameli, and Rico Zenklusen

Minimum weight 2-edge-connected spanning subgraphs

Min-Weight 2-ECSS

Instance: graph G = (V,E), weights w : E → R≥0

Task: Find a min-weight 2-edge-connected spanning subgraph.

2

Forest
Augmentation

Links have weight/cost 1.
Forest edges have cost 0.

Weighted Tree
Augmentation

Links have positive weight/cost.
Tree edges have cost 0.

3

Min-Weight 2ECSS

Forest AugmentationWeighted Tree
Augmentation (WTAP)

Tree Augmentation (TAP)

{0, 1}-weightsconnectivity for free

{0, 1}-weights connectivity for free

4

Hardness and classical approximation algorithms

Kortsarz, Krauthgamer, and Lee [2004]:

TAP is APX-hard even on trees of diameter 5.

Classical techniques, e.g. primal-dual algorithms, iterative rounding, provide a
2-approximation for a wide class of network design problems, including Min-Weight 2ECSS.

Can we get better-than-2 approximations?

5

Weighted Tree Augmentation

Weighted Tree Augmentation (WTAP)

tree G = (V,E)
links L ⊆

(
V
2
)

with weights w : L→ R>0

`

P`

WTAP
Find a min weight set F ⊆ L of links s.t.
G becomes 2-edge-connected when adding F .

Equivalent:
Every edge e ∈ E must be covered by a link ` ∈ F ,
i.e., e ∈ P` for some ` ∈ F .

7

Weighted Tree Augmentation (WTAP)

tree G = (V,E)
links L ⊆

(
V
2
)

with weights w : L→ R>0

`

P`

WTAP
Find a min weight set F ⊆ L of links s.t.
G becomes 2-edge-connected when adding F .

Equivalent:
Every edge e ∈ E must be covered by a link ` ∈ F ,
i.e., e ∈ P` for some ` ∈ F .

7

Weighted Tree Augmentation (WTAP)

tree G = (V,E)
links L ⊆

(
V
2
)

with weights w : L→ R>0

`

P`

WTAP
Find a min weight set F ⊆ L of links s.t.
G becomes 2-edge-connected when adding F .

Equivalent:
Every edge e ∈ E must be covered by a link ` ∈ F ,
i.e., e ∈ P` for some ` ∈ F .

7

2-approximation algorithm

r

r r

1 Pick an arbitrary root r ∈ V .

2 “Split” every link ` into two up-links,
each with weight w(`).

3 Compute an optimal up-link solution.

solve natural LP (integral), or
use dynamic programming

8

2-approximation algorithm

r r

r

1 Pick an arbitrary root r ∈ V .

2 “Split” every link ` into two up-links,
each with weight w(`).

3 Compute an optimal up-link solution.

solve natural LP (integral), or
use dynamic programming

8

2-approximation algorithm

r r r

1 Pick an arbitrary root r ∈ V .

2 “Split” every link ` into two up-links,
each with weight w(`).

3 Compute an optimal up-link solution.

solve natural LP (integral), or
use dynamic programming

8

2-approximation algorithm

r r r

1 Pick an arbitrary root r ∈ V .

2 “Split” every link ` into two up-links,
each with weight w(`).

3 Compute an optimal up-link solution.

solve natural LP (integral), or
use dynamic programming

8

Better-than-2 approximations for special cases

unweighted tree augmentation (TAP): 1.393-approximation [Cecchetto, T., Zenklusen, 2021]

(improving on [Nagamochi, 2003], [Even, Feldmann, Kortsarz, Nutov, 2009], [Cheriyan, Gao, 2018],
[Kortaz, Nutov, 2016], [Kortaz, Nutov, 2018], [Adjashvilli, 2018], [Nutov, 2017], [Fiorini, Groß,
Könemann, Sanità, 2018], [Grandoni, Kalaitzis, Zenklusen, 2018])

constant-diameter trees: (1 + ln 2)-approximation [Cohen, Nutov, 2013]

better-than-2 approximation if an opt. solution to natural LP has no small fractional values

[Iglesias, Ravi, 2018]

9

Our result

Theorem [T., Zenklusen, 2021]

There is a (1.5 + ε)-approximation algorithm for Weighted Tree Augmentation (WTAP)
for any fixed ε > 0.

Relative greedy algorithm: (1 + ln 2 + ε)-approximation

1. Compute a structured 2-approximate solution.

2. Show that every structured suboptimal solution can be improved.

10

The Relative Greedy Algorithm

The starting solution for relative greedy

r

r

1 Compute optimal up-link solution U (2-approximation).

2 “Shorten” up-links s.t. Pu with u ∈ U are disjoint, i.e.,
every edge is covered by exactly one link.

12

The starting solution for relative greedy

r r

1 Compute optimal up-link solution U (2-approximation).

2 “Shorten” up-links s.t. Pu with u ∈ U are disjoint, i.e.,
every edge is covered by exactly one link.

12

Relative greedy: improving structured solutions

Invariant: U ∪ F is a WTAP solution.

1 U := 2-approximate up-link solution s.t.
the paths Pu with u ∈ U are disjoint.

F := ∅

2 As long as w(U ∪ F) decreases:
• Select a component C ⊆ L. x
• Add C to F .

• Remove the following from U :

DropU (C) :=
{
u ∈ U : Pu ⊆

⋃
`∈C

P`

}

3 Return U ∪ F .

Choose C as a
⌈

1
ε

⌉
-thin link set

minimizing

w(C)
w(DropU (C))

13

Relative greedy: improving structured solutions

Invariant: U ∪ F is a WTAP solution.

1 U := 2-approximate up-link solution s.t.
the paths Pu with u ∈ U are disjoint.

F := ∅

2 As long as w(U ∪ F) decreases:
• Select a component C ⊆ L. x
• Add C to F .

• Remove the following from U :

DropU (C) :=
{
u ∈ U : Pu ⊆

⋃
`∈C

P`

}
3 Return U ∪ F .

Choose C as a
⌈

1
ε

⌉
-thin link set

minimizing

w(C)
w(DropU (C))

13

Relative greedy: improving structured solutions

Invariant: U ∪ F is a WTAP solution.

1 U := 2-approximate up-link solution s.t.
the paths Pu with u ∈ U are disjoint.

F := ∅

2 As long as w(U ∪ F) decreases:
• Select a component C ⊆ L. x
• Add C to F .
• Remove the following from U :

DropU (C) :=
{
u ∈ U : Pu ⊆

⋃
`∈C

P`

}

3 Return U ∪ F .

Choose C as a
⌈

1
ε

⌉
-thin link set

minimizing

w(C)
w(DropU (C))

13

Relative greedy: improving structured solutions

Invariant: U ∪ F is a WTAP solution.

1 U := 2-approximate up-link solution s.t.
the paths Pu with u ∈ U are disjoint.

F := ∅

2 As long as w(U ∪ F) decreases:
• Select a component C ⊆ L. x
• Add C to F .
• Remove the following from U :

DropU (C) :=
{
u ∈ U : Pu ⊆

⋃
`∈C

P`

}
3 Return U ∪ F .

Choose C as a
⌈

1
ε

⌉
-thin link set

minimizing

w(C)
w(DropU (C))

13

Relative greedy: improving structured solutions

Invariant: U ∪ F is a WTAP solution.

1 U := 2-approximate up-link solution s.t.
the paths Pu with u ∈ U are disjoint.

F := ∅

2 As long as w(U ∪ F) decreases:
• Select a component C ⊆ L.x
• Add C to F .
• Remove the following from U :

DropU (C) :=
{
u ∈ U : Pu ⊆

⋃
`∈C

P`

}
3 Return U ∪ F .

Choose C as a
⌈

1
ε

⌉
-thin link set

minimizing

w(C)
w(DropU (C))

13

The Existence of Improving Components

U := set of up-links s.t. the paths Pu with u ∈ U are disjoint

Fix ε > 0.

Decomposition Theorem [T., Zenklusen, 2021]

There exists a partition C of OPT into d1/εe-thin
components s.t.:∑

C∈C
w(DropU (C)) ≥ (1− ε) · w(U).

C1 DropU (C1) C2 DropU (C2)

U

OPT

r

14

Forest Augmentation

Forest Augmentation Problem (FAP)

forest G = (V, F)
links L ⊆

(
V
2
)

Task: Find min-cardinality S ⊆ L s.t. G+ S is 2-edge-connected.

Theorem [Grandoni, Jabal Ameli, T., 2022]

There is a 1.998-approximation algorithm for Forest Augmentation.

16

Forest Augmentation Problem (FAP)

forest G = (V, F)
links L ⊆

(
V
2
)

Task: Find min-cardinality S ⊆ L s.t. G+ S is 2-edge-connected.

Theorem [Grandoni, Jabal Ameli, T., 2022]

There is a 1.998-approximation algorithm for Forest Augmentation.

16

Prior work

Tree Augmentation Problem (TAP): 1.393-approximation [Cecchetto, T., Zenklusen, 2021]

(improving on [Nagamochi, 2003], [Even, Feldmann, Kortsarz, Nutov, 2009], [Cheriyan, Gao, 2018],
[Kortaz, Nutov, 2016], [Kortaz, Nutov, 2018], [Adjashvilli, 2018], [Nutov, 2017], [Fiorini, Groß,
Könemann, Sanità, 2018], [Grandoni, Kalaitzis, Zenklusen, 2018])

Unweighted 2-ECSS: 4
3 -approximation

[Sebő, Vygen, 2014], [Hunkenschröder, Vempala, Vetta, 2019]

(improving on [Khuller, Vishkin, 1994], [Cheriyan, Sebő, Szigeti, 2001])

Matching Augmentation Problem (MAP): 5
3 -approximation

[Cheriyan, Cummings, Dippel, Zhu, 2020]

(improving on [Cheriyan, Dippel, Grandoni, Khan, Narayan, 2020], [Bamas, Drygala, Svensson, 2022])

17

A naive approach

1. Complete the forest F to a spanning tree.

2. Augment the spanning tree to a 2-edge-connected graph using a ρ-approximation for TAP.

Number of edges: |V | − |F | − 1 + ρ ·OPT

Issue: |V | − |F | could be as large as OPT.

18

A second approach

1. Compute a 2-approximation S ⊆ L.

2. Choose T ⊆ S such that F ∪ T is a spanning tree.

3. Improve the TAP solution S \ T .

S T

S \ T

Issue: We cannot always improve the TAP solution.

19

A better-than-2 approximation for Forest Augmentation

Construct TAP instance and
up-link solution U

of total cost ≤ 2 · |OPT|.

Use relative greedy to improve
up-link solution.

Then: FAP instance is “close” to
MAP instance.

U far from optimal

U almost optimal

20

A 2-approximation for the Minimum Weight 2-ECSS problem

1. Replace every edge {a, b} by directed edges (a, b) and (b, a).

2. Fix r ∈ V and compute cheapest directed edge set D with

|D ∩ δ−(R)| ≥ 2 ∀ ∅ 6= R (V \ {r}.

3. Replace every edge (a, b) ∈ D by {a, b}.

r

21

A 2-approximation for the Minimum Weight 2-ECSS problem

1. Replace every edge {a, b} by directed edges (a, b) and (b, a).

2. Fix r ∈ V and compute cheapest directed edge set D with

|D ∩ δ−(R)| ≥ 2 ∀ ∅ 6= R (V \ {r}.

3. Replace every edge (a, b) ∈ D by {a, b}.

r

21

A 2-approximation for the Minimum Weight 2-ECSS problem

1. Replace every edge {a, b} by directed edges (a, b) and (b, a).

2. Fix r ∈ V and compute cheapest directed edge set D with

|D ∩ δ−(R)| ≥ 2 ∀ ∅ 6= R (V \ {r}.

3. Replace every edge (a, b) ∈ D by {a, b}.

r

21

Computing a spanning tree with a cheap up-link solution

1. Fix r ∈ V and compute cheapest directed edge set D with

|D ∩ δ−(R)| ≥ 2 ∀ ∅ 6= R (V \ {r}.

2. Choose T ⊆ D such that F ∪ T is a spanning tree (ignoring orientations).

3. Up-links corresponding to links in D \ T are a solution for the TAP instance with tree F ∪ T .

r

a

b

least common ancestor(a, b)

link (a, b) ∈ D \ T
corresponding up-link

22

Computing a spanning tree with a cheap up-link solution

1. Fix r ∈ V and compute cheapest directed edge set D with

|D ∩ δ−(R)| ≥ 2 ∀ ∅ 6= R (V \ {r}.

2. Choose T ⊆ D such that F ∪ T is a spanning tree (ignoring orientations).

3. Up-links corresponding to links in D \ T are a solution for the TAP instance with tree F ∪ T .

r

a

b

least common ancestor(a, b)

link (a, b) ∈ D \ T
corresponding up-link

22

Computing a spanning tree with a cheap up-link solution

1. Fix r ∈ V and compute cheapest directed edge set D with

|D ∩ δ−(R)| ≥ 2 ∀ ∅ 6= R (V \ {r}.

2. Choose T ⊆ D such that F ∪ T is a spanning tree (ignoring orientations).

3. Up-links corresponding to links in D \ T are a solution for the TAP instance with tree F ∪ T .

r

a

b

least common ancestor(a, b)

link (a, b) ∈ D \ T

corresponding up-link

22

Computing a spanning tree with a cheap up-link solution

1. Fix r ∈ V and compute cheapest directed edge set D with

|D ∩ δ−(R)| ≥ 2 ∀ ∅ 6= R (V \ {r}.

2. Choose T ⊆ D such that F ∪ T is a spanning tree (ignoring orientations).

3. Up-links corresponding to links in D \ T are a solution for the TAP instance with tree F ∪ T .

r

a

b

least common ancestor(a, b)

link (a, b) ∈ D \ T
corresponding up-link

22

Computing a spanning tree with a cheap up-link solution

1. Fix r ∈ V and compute cheapest directed edge set D with

|D ∩ δ−(R)| ≥ 2 ∀ ∅ 6= R (V \ {r}.

2. Choose T ⊆ D such that F ∪ T is a spanning tree (ignoring orientations).

3. Up-links corresponding to links in D \ T are a solution for the TAP instance with tree F ∪ T .

r

a

b

least common ancestor(a, b)

link (a, b) ∈ D \ T
corresponding up-link

22

A better-than-2 approximation for Forest Augmentation

Construct TAP instance and
up-link solution U

of total cost ≤ 2 · |OPT|.

Use relative greedy to improve
up-link solution.

Then: FAP instance is “close” to
MAP instance.

U far from optimal

U almost optimal

23

Conclusions

Conclusions

Summary: best known approximation ratios

Min-weight 2-ECSS: 2-approximation

Weighted Tree Augmentation: (1.5 + ε)-approximation

Forest Augmentation: 1.998-approximation

Tree Augmentation: 1.393-approximation

Open question: Is there a better-than-2 approximation for min-weight 2-ECSS?

Thank you!

25

Conclusions

Summary: best known approximation ratios

Min-weight 2-ECSS: 2-approximation

Weighted Tree Augmentation: (1.5 + ε)-approximation

Forest Augmentation: 1.998-approximation

Tree Augmentation: 1.393-approximation

Open question: Is there a better-than-2 approximation for min-weight 2-ECSS?

Thank you!

25

