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Motivation

® Unused capacities (flights, trucks, ships, manufacturing lines, etc.)
® Sustainability in logistics and production

® Resource sharing
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Motivation

® Willingness to collaborate
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Motivation

® Willingness to collaborate

® Concerns about data sharing
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Motivation

® Willingness to collaborate
® Concerns about data sharing

® Regulations and privacy guarantees
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Motivation: Contribution of Collaboration
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Problem Formulation

Modeling
K . set of parties
Uk - utility vector for party k

Ay, By : shared and individual constraint matrices
c : shared resource capacities
b . individual constraint constants
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Problem Formulation

Modeling
K . set of parties
Uk - utility vector for party k
Ay, By : shared and individual constraint matrices
c : shared resource capacities
b . individual constraint constants
maximize Z ug X,
kek
subject to Z Arxk < c,
ke
Xk € Xk, kelk.

X = {Xk cR™ : Bixx < bk}
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Modeling

maximize Z ug Xk,
kek
subject to Z Arxi < c,
kek
Xk € Xy, kek.

Xy = {Xk e R™: Bixx < bk}

Definition (Data set)
Dy : {Ax; Bi, bi, ug}
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Problem Formulation
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Problem Formulation

Problem Reformulation

maximize Z Xk,
kek

subject to Arxie < s, ke,
xx € Xk, ke,
ke
sk > 0, ke K.
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Problem Reformulation

L(x,5,A) :==cTA+ Z UpXe — SEA
kek
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Problem Reformulation

L(x,5,A) :==cTA+ Z UpXe — SEA

kek
g(X; Dy) :=maximize upxk — StA,
subject to Apxy < sk,
Xk € X,
s, > 0.
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Problem Reformulation

T
g(N\; D) :=maximize Z upxe + | c— Z sk | (A,

kek kek
subject to Agx, < sk,

Xk € Xk,

sk > 0,
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Problem Reformulation: Lagrange Dual Model
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Problem Reformulation: Lagrange Dual Model

gNiDx) =cTA+ > g(AiDy)
ke
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Problem Formulation

Problem Reformulation: Lagrange Dual Model

g\ Dk) =cTA+ > g(AiDy)

kek
g(X\; Dy) :=maximize UpXk — SEA,
subject to Axi < sy,
Xk € Xk,
Sk Z 0.
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Problem Formulation

Problem Reformulation: Lagrange Dual Model

g\ Dk) =cTA+ > g(AiDy)

kek
g(X\; Dy) :=maximize UpXk — SEA,
subject to Apxp < si,
Xk € Xk,
Sk Z 0.
m)in g(X\; Di)
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Methodology: Data-hiding via Decomposition
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Methodology: Data-hiding via Decomposition

read

A = A© —
o
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Methodology: Data-hiding via Decomposition

read
A, ;D) )‘(0) -
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Methodology

Methodology: Data-hiding via Decomposition

read
- === write
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Methodology

Theoretical Results

g(A; D) =cTA+ Z g(N;Dy)
maximize Z Xk, kek
kek g(X\; Di) :==maximize ulxx —sLA,
subject to Z Axi < c, subject to  Apxx < si,
ke Xy € Xka
Xk € Xk, ke s > 0.
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Methodology

Theoretical Results

g\ Dx) =cTA + Z g\ Dy)
maximize Z X, kek
kek g(X; Di) :==maximize ulxx — S,
subject to Z Axi < c, subject to  Agxx < sq,
keK % € Xo.
Xk € Xk, ke s > 0.
Pros: Cons:

® Almost no data is shared except si e Information leakage

® Convergence to optimal .
& P ® No formal privacy guarantee
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Basics of Differential Privacy

Output
Data Algorithm
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Basics of Differential Privacy: Laplace Mechanism

Output
Data Algorithm +
Noise

Noise ~ Lap(0, Af/e)
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Basics of Differential Privacy: Sensitivity

Data Algorithm

Noise ~ Lap(0, Af/e)
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Basics of Differential Privacy: Basic Composition Theorem

(e, 6) (e,6)
Algorithm ¥ Algorithm

(2¢,26)
Algorithm
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Differential Privacy

Recall: Data-hiding via Decomposition
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Differentially Private Algorithm

read

- = = = write
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Differentially Private Algorithm

(t+1) (t+1)) _ L A()
(xk 2Sp rex arg maxy s L(x, s, ),

A 20 _ (0 (c S §(kt+1)> ’

(t+1)

400 <o 4,

wi ~ Lap(0, TAg/e).
Ak = 3klloo:

® |f no agreement: 5, < c.
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Differentially Private Algorithm

After T iteration, the difference between e-differentially private algorithm
objective function and optimal objective function:

e-differential privacy

2To |5kl

min _ (BILOq s A0) - Lo st X)) < My 5+

t=1,...,T—1

IAO = X[ < M, o =3 IBll? and Sic = 32y k-
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Differential Privacy

Differentially Private Algorithm

After T iteration, the difference between e-differentially private algorithm
objective function and optimal objective function:

e-differential privacy
. EILGEED D 20 - (<5 A*Y) < M 2To |5kl
t=1,r.T?.I,nT—1( [ (Xk ) Sk > )_ (kaskv )]) = ?4— T
IAO — X[ < M, 0= 3,k 5] and 5 = 3, cxc 5k

(e, d)-differential privacy (e € (0,0.9) ve § € (0,1])

8log (e + € 5’
terT-l-inT (E[L( (t+1) ,Sit+1),)\(t)) _ L(X;,s;,)\*)]) < M\/ g (52 6) g + ||577C_|| ’

IA@ =X < M, o =3 cxc IBlI? and Sic = 32, k-
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Simulation Study: The Setup

® Production planning example

® Five parties sharing five capacities

® Individual capacities and demand constraints
® Diminishing step-length

® Results over 100 simulation runs

® Focus is on one party (k =1)
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Simulation Study: Data-Private Model
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Simulation Study: Differential Privacy(5c = 1.20c)
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Simulation Study: Differential Privacy(5¢ = 1.50¢)
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-
Some Progress...

® Current results with diminishing step length
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-
Some Progress...

® Current results with diminishing step length
® Upgrades: Momentum based updates on (stochastic) subgradient method

At — 2B _ ) <C _ Z SE{HI)) +p (/\(t) _ /\(t71)>

kek

)\(H—l) _ /\(t) - l/(t) (C _ Z §E(t+1)> +p ()\(t) o A(Fl))

ke

» Better results on data-private model
» Theoretically a tighter bound for the differentially-private model
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-
Progress on Data-Private Model

Data Private (Momentum vs. Normal)
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Progress on Differentially Private Model

€=0.15, 6=0.10
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Next Steps...

® Privacy in other mathematical models
® Feasibility of the solutions

® Real-life applications

(6;M5 oNIvERSITEIT ROTTERDAM

Differential Privacy in Multi-Party Resource Sharing 22/23



Thank you!
Questions & Comments: karaca@ese.eur.nl
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