Integer programs with bounded subdeterminants and two nonzeros per row (or column)

Outline

(1) Main results and motivation
(2) Reduction to stable set in graphs with bounded OCP
(3) Structure of graphs with bounded OCP

4 Main algorithm

Outline

(1) Main results and motivation
(2) Reduction to stable set in graphs with bounded OCP
(3) Structure of graphs with bounded OCP
(4) Main algorithm

Definition

For $\Delta \in \mathbb{Z}_{\geqslant 0}$, a matrix A is called totally Δ-modular if

$$
\operatorname{det}\left(A^{\prime}\right) \in\{-\Delta,-\Delta+1, \ldots, 0, \ldots, \Delta-1, \Delta\}
$$

for all square submatrices A^{\prime} of A
Given A, let $\quad \Delta(A):=\min \{\Delta: A$ is totally Δ-modular $\}$

Definition

The odd cycle packing number ocp (G) is the maximum number of vertex-disjoint odd cycles in G

Examples:

- A is totally unimodular $(\mathrm{TU}) \Longleftrightarrow \Delta(A) \leqslant 1$
- A is the incidence matrix of graph $G \Longrightarrow \Delta(A)=2^{\operatorname{ocp}(G)}$

$$
\left(\begin{array}{llllllllll}
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1
\end{array}\right)
$$

Examples:

- A is totally unimodular $(\mathrm{TU}) \Longleftrightarrow \Delta(A) \leqslant 1$
- A is the incidence matrix of graph $G \Longrightarrow \Delta(A)=2^{\operatorname{ocp}(G)}$

$$
\left(\begin{array}{llllllllll}
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1
\end{array}\right)
$$

Examples:

- A is totally unimodular $(\mathrm{TU}) \Longleftrightarrow \Delta(A) \leqslant 1$
- A is the incidence matrix of graph $G \Longrightarrow \Delta(A)=2^{\operatorname{ocp}(G)}$

Our main results

Theorem (EJWY '21)

For every integer $\Delta \geq 1$ there exists a strongly polynomial-time algorithm for solving the integer program (IP)

$$
\max \left\{w^{\top} x: A x \leqslant b, x \in \mathbb{Z}^{n}\right\}
$$

where $w \in \mathbb{Z}^{n}, b \in \mathbb{Z}^{m}$, and constraint matrix $A \in \mathbb{Z}^{m \times n}$

- is totally Δ-modular, and
- contains at most two nonzero entries in each row (or in each column)

Theorem (EJWY '21)

For every integer $k \geq 0$ there exists a strongly polynomial-time algorithm for the weighted stable set problem in graphs with $\operatorname{ocp}(G) \leqslant k$

Previous work
 - Borketal': PTAS for MWSS in grephs with OCP(G)=O(1)

(1) (IP) can be solved in strongly polynomial-time if $\Delta=1$
(2) (IP) can be solved in strongly polynomial-time if $\Delta=2$ (Artmann, Weismantel, Zenklusen '17)
(3) There is a polynomial-time algorithm that solves (IP) w.h.p. over the choices of b, when A, w are fixed and Δ is constant (Paat, Schlöter, Weismantel '19)
(4) The diameter of $P:=\{x: A x \leqslant b\}$ is $O\left(\Delta^{2} n^{4} \lg n \Delta\right)$ (Bonifas, Di Summa, Eisenbrand, Hähnle, Niemeier '14)
(5) $\max \left\{w^{\top} x: A x=b, x \geqslant 0\right\}$ can be solved in time poly $(m, n, \lg \Delta)$ (Tardos '86)
(6) $\max \left\{w^{\top} x: A x=b, x \geqslant 0\right\}$ can be solved in time $O\left(m n^{\omega} \lg (n) \lg (\bar{\chi}+n)\right)$ time (Dadush, Natura, Végh '20)

Outline

(1) Main results and motivation
(2) Reduction to stable set in graphs with bounded OCP

3 Structure of graphs with bounded OCP

4 Main algorithm

Proximity result of Cook et al.

Theorem (Cook, Gerards, Schrijver, Tardos '86)

Let A be a totally Δ-modular $m \times n$ matrix and let b and w be integer vectors such that

- $A x \leqslant b$ has an integral solution, and
- $\max \left\{w^{\top} x: A x \leqslant b\right\}$ exists.

Then for each optimal solution \bar{x} to $\max \left\{w^{\top} x: A x \leqslant b\right\}$, there exists an optimal solution z^{*} to $\max \left\{w^{\top} x: A x \leqslant b, x \in \mathbb{Z}^{n}\right\}$ with

$$
\left\|\bar{x}-z^{*}\right\|_{\infty} \leqslant n \Delta
$$

\xrightarrow{w}

1st reduction: reducing to $A \in\{-1,0,1\}^{m \times n}$

After permuting rows and columns:

1st reduction:

- Solve LP relaxation $\max \left\{w^{\top} x: A x \leqslant b\right\} \rightarrow \bar{x}$
- Guess the first $O(\lg \Delta)$ variables

2nd reduction: reducing to $A \in\{0,1\}^{m \times n}, b=1$

Theorem (FJWY '21)

Let $A \in\{-1,0,1\}^{m \times n}, b \in \mathbb{Z}^{m}, w \in \mathbb{Z}^{n}$. Assume that

- every row of A has $\leqslant 2$ nonzeros,
- $P:=\{x: A x \leqslant b\}$ is bounded and $P \cap \mathbb{Z}^{n} \neq \varnothing$.

For every extremal optimal solution \bar{x} to $\max \left\{w^{\top} x: A x \leqslant b\right\}$, there exists an opt. solution z^{*} to $\max \left\{w^{\top} x: A x \leqslant b, x \in \mathbb{Z}^{n}\right\}$ with

$$
\left\|\bar{x}-z^{*}\right\|_{\infty} \leqslant \frac{1}{2}
$$

w

Final problem

After translating and reformulating, we get

$$
\begin{aligned}
\max & w^{\top} x \\
\text { s.t. } & A x \leqslant \mathbf{1} \\
& x \in \mathbb{Z}^{n}
\end{aligned}
$$

where:

- A is the edge-vertex incidence matrix of some graph G
- ocp $(G) \leqslant \lg \Delta$
- $w \in \operatorname{cone}\left(A^{\top}\right)$

Outline

(1) Main results and motivation
(2) Reduction to stable set in graphs with bounded OCP
(3) Structure of graphs with bounded OCP
(4) Main algorithm

Our structure theorem relies on the graph minor project of Robertson and Seymour ($\geqslant 23$ papers, $\geqslant 500$ pages, ' $83 \rightarrow$ ' 10)

Definition (k-DRP)

Given a graph G and k vertex pairs $\left(s_{1}, t_{1}\right), \ldots,\left(s_{k}, t_{k}\right)$, does G contain k vertex-disjoint paths P_{1}, \ldots, P_{k} such that each P_{i} is a $s_{i}-t_{i}$ path?

Definition (k-OCP)

Given a graph G, does G contain k vertex-disjoint odd cycles?

Remarks:

- k-DRP is a central problem the graph minor project
- both k-DRP and k-OCP have FPT algorithms
- k-DRP reduces to k-OCP

NO instances of 2-DRP / 2-OCP

NO instances of 2-DRP / 2-OCP

Escher walls

Definition

The odd cycle transversal number oct (G) is the minimum size of $X \subseteq V(G)$ such that $G-X$ is bipartite

Theorem (Lovász)

Let G be a 4-connected graph with $\operatorname{ocp}(G) \leq 1$. Then
(1) $\operatorname{oct}(G) \leq 3$, or
(2) G has an even-face embedding in the projective plane

1st structure theorem

Theorem (informal)

Let $k \geq 1$ be a fixed integer. For every graph G with ocp $(G) \leq k$ and oct (G) sufficiently large, there is a near embedding of G in a surface \mathbb{S} with all parameters bounded: size of the apex set, number and adhesion of large vortices, Euler genus of \mathbb{S}. Moreover, the part of G embedded in \mathbb{S} "essentially contains" a large Escher wall

Linear decompositions

Definition

The adhesion of the linear decomposition $\left(X_{1}, \ldots, X_{n}\right)$ is $\max \left\{\left|X_{i} \cap X_{i+1}\right|: i<n\right\}$

Toward the 2nd structure theorem

Resilience

Definition

Graph G is ρ-resilient if $\forall X \subseteq V(G)$ with $|X| \leqslant \rho, \exists$ component H of $G-X$ such that ocp $(H)=\operatorname{ocp}(G)$

Remarks:

- G is not ρ-resilient iff $\exists X \subseteq V(G)$ with $|X| \leqslant \rho$ such that \forall components H of $G-X$ have ocp $(H)<\operatorname{ocp}(G)$

- For solving the stable set problem in graphs with bounded OCP, may assume that G is $\rho(k)$-resilient

Toward the 2nd structure theorem

Replacing small vortices by gadgets

2nd structure theorem

Theorem (informal)

For every integer $k \geq 1$, and for every graph G with $\operatorname{ocp}(G) \leq k$ that is sufficiently resilient, there is an near embedding in a non-orientable surface \mathbb{S} with all parameters bounded, and the extra properties:

- each small vortex is bipartite
- each large vortex is bipartite (even when augmented with the boundary of the face of G_{0} that contains it)
- large vortices are vertex-disjoint
- every face of G_{0} is bounded by a cycle
- every odd cycle in G_{0} defines a Möbius band in \mathbb{S}

Proofs of the structure theorems

Using several graph minor papers + own previous work:
For the 1st theorem:
(1) Reed '99 and Kawarabayashi and Reed '10
(2) Geelen, Gerards, Reed, Seymour, Vetta '09
(3) Kawarabayashi, Thomas, Wollan '20

For the 2nd theorem:
(1) Diestel, Kawarabayashi, Müller, Wollan '12
(2) Conforti, F, Huynh, Weltge '20
(3) Conforti, E, Huynh, Joret, Weltge '21

Outline

(1) Main results and motivation
2) Reduction to stable set in graphs with bounded OCP
(3) Structure of graphs with bounded OCP
(4) Main algorithm

Slack vectors

$$
\text { Switch } \quad \text { vertex space } \mathbb{R}^{V(G)} \rightarrow \text { edge space } \mathbb{R}^{E(G)}
$$

Definition

Vtx weights $w \in \mathbb{R}^{V(G)}$ are induced by edge costs $c \in \mathbb{R}_{\geqslant 0}^{E(G)}$ if

$$
w(v)=c(\delta(v)) \text { for all } v \in V(G)
$$

Definition

$y \in \mathbb{Z}_{\geq 0}^{E(G)}$ is a slack vector if

$$
\exists x \in \mathbb{Z}^{V(G)}: y_{v w}=1-x_{v}-x_{w} \text { for all } v w \in E(G)
$$

Remark:

$$
w^{\top} x=c(E(G))-c^{\top} y=\frac{1}{2} w(V(G))-c^{\top} y
$$

The sketch

The sketch

Constructing the sketch edge by edge

Constructing the sketch edge by edge

Constructing the sketch edge by edge

Constructing the sketch edge by edge

Constructing the sketch edge by edge

Constructing the sketch edge by edge

Dynamic program

Main algorithm is a dynamic program (DP):
(1) Cells correspond to possible faces of the (partial) sketch
(2) Use precedence rule for split operations to bound the number of cells by a polynomial
(3) Every sketch edge has two corresponding cutsets, inside which the solution is guessed
(4) The DP remembers "just enough" extra information to guarantee that it constructs solutions that are feasible

Subroutines:

- Homologous flow (Morell, Seidel and Weltge '21)
- Special stable set instances "between" cutsets

