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Definition

For � 2 Z>0, a matrix A is called totally �-modular if

det(A0) 2 {��,��+ 1, . . . , 0, . . . ,�� 1,�}

for all square submatrices A0 of A

Given A, let �(A) := min{� : A is totally �-modular}

Definition

The odd cycle packing number ocp(G) is the maximum number of vertex-disjoint
odd cycles in G



Examples:

A is totally unimodular (TU) () �(A) 6 1

A is the incidence matrix of graph G =) �(A) = 2ocp(G)

0

BBBBBBBBBB@

1 1 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0
1 0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0 1 0
0 0 0 0 1 0 0 0 0 1
0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 1 0 0 0 1

1

CCCCCCCCCCA
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= 2

p
☐(A) = 4=22



Our main results

Theorem (FJWY ’21)

For every integer � � 1 there exists a strongly polynomial-time algorithm for
solving the integer program (IP)

max{w|x : Ax 6 b, x 2 Zn}

where w 2 Zn, b 2 Zm, and constraint matrix A 2 Zm⇥n

is totally �-modular, and
contains at most two nonzero entries in each row (or in each column)

Theorem (FJWY ’21)

For every integer k � 0 there exists a strongly polynomial-time algorithm for the
weighted stable set problem in graphs with ocp(G) 6 k



Previous work

1 (IP) can be solved in strongly polynomial-time if � = 1

2 (IP) can be solved in strongly polynomial-time if � = 2 (Artmann, Weismantel,
Zenklusen ’17)

3 There is a polynomial-time algorithm that solves (IP) w.h.p. over the choices
of b, when A,w are fixed and � is constant (Paat, Schlöter, Weismantel ’19)

4 The diameter of P := {x : Ax 6 b} is O(�2n4 lg n�) (Bonifas, Di Summa,
Eisenbrand, Hähnle, Niemeier ’14)

5 max{w|x : Ax = b, x > 0} can be solved in time poly(m,n, lg�) (Tardos ’86)

6 max{w|x : Ax = b, x > 0} can be solved in time O(mn! lg(n) lg(�̄+ n)) time
(Dadush, Natura, Végh ’20)

• Book et al
'
: PTAS for Mwss in graphs with

OCP (G) = 011)
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Proximity result of Cook et al.

Theorem (Cook, Gerards, Schrijver, Tardos ’86)

Let A be a totally �-modular m⇥ n matrix and let b and w be integer vectors such
that

Ax 6 b has an integral solution, and
max{w|x : Ax 6 b} exists.

Then for each optimal solution x̄ to max{w|x : Ax 6 b}, there exists an optimal
solution z⇤ to max{w|x : Ax 6 b, x 2 Zn} with

||x̄� z⇤||1 6 n�



w

n�

x̄



1st reduction: reducing to A 2 {�1, 0, 1}m⇥n

After permuting rows and columns:

A =

2

66666666664

⇤ ⇤
⇤ ⇤

⇤ ⇤
⇤ ⇤

⇤ ⇤
±1 ±1
±1 ±1

±1 ±1

3

77777777775

6 2 lg�

1st reduction:

Solve LP relaxation max{w|x : Ax 6 b} ! x̄

Guess the first O(lg�) variables



2nd reduction: reducing to A 2 {0, 1}m⇥n, b = 1

Theorem (FJWY ’21)

Let A 2 {�1, 0, 1}m⇥n, b 2 Zm, w 2 Zn. Assume that
every row of A has 6 2 nonzeros,
P := {x : Ax 6 b} is bounded and P \ Zn 6= ?.

For every extremal optimal solution x̄ to max{w|x : Ax 6 b}, there exists an opt.
solution z⇤ to max{w|x : Ax 6 b, x 2 Zn} with

||x̄� z⇤||1 6 1

2



w



Final problem

After translating and reformulating, we get

max w|x
s.t. Ax 6 1

x 2 Zn

where:
A is the edge-vertex incidence matrix of some graph G

ocp(G) 6 lg�

w 2 cone(A|)
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Our structure theorem relies on the graph minor project of Robertson and
Seymour (> 23 papers, > 500 pages, ’83 ! ’10)

Definition (k-DRP)

Given a graph G and k vertex pairs (s1, t1), . . . , (sk, tk), does G contain k
vertex-disjoint paths P1, . . . , Pk such that each Pi is a si–ti path?

Definition (k-OCP)

Given a graph G, does G contain k vertex-disjoint odd cycles?

Remarks:

k-DRP is a central problem the graph minor project
both k-DRP and k-OCP have FPT algorithms
k-DRP reduces to k-OCP



NO instances of 2-DRP / 2-OCP
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Escher walls

ocp(G) = 1, oct(G) as large as ⌦(
p
n)

Definition

The odd cycle transversal number oct(G) is the minimum size of X ✓ V (G) such
that G�X is bipartite



Theorem (Lovász)

Let G be a 4-connected graph with ocp(G)  1. Then
1 oct(G)  3, or
2 G has an even-face embedding in the projective plane



1st structure theorem

Theorem (informal)

Let k � 1 be a fixed integer. For every graph G with ocp(G)  k and oct(G)
sufficiently large, there is a near embedding of G in a surface S with all parameters
bounded: size of the apex set, number and adhesion of large vortices, Euler
genus of S. Moreover, the part of G embedded in S “essentially contains” a large
Escher wall



Linear decompositions

1 2 3 4 5 6

u1
u2

u3

u4
u5
u6

a1
a2

a3
a4
a5

u1

u2 u3
u4

u5
u6

a1

a2 a3
a4 a5

Definition

The adhesion of the linear decomposition (X1, . . . , Xn) is max{|Xi \Xi+1| : i < n}



Toward the 2nd structure theorem

Resilience

Definition

Graph G is ⇢-resilient if 8X ✓ V (G) with |X| 6 ⇢, 9 component H of G�X such
that ocp(H) = ocp(G)

Remarks:

G is not ⇢-resilient iff 9X ✓ V (G) with |X| 6 ⇢ such that 8 components H of
G�X have ocp(H) < ocp(G)

X

For solving the stable set problem in graphs with bounded OCP, may assume
that G is ⇢(k)-resilient



Toward the 2nd structure theorem

Replacing small vortices by gadgets

G0



2nd structure theorem

Theorem (informal)

For every integer k � 1, and for every graph G with ocp(G)  k that is sufficiently
resilient, there is an near embedding in a non-orientable surface S with all
parameters bounded, and the extra properties:

each small vortex is bipartite
each large vortex is bipartite (even when augmented with the boundary of the
face of G0 that contains it)
large vortices are vertex-disjoint
every face of G0 is bounded by a cycle
every odd cycle in G0 defines a Möbius band in S



Proofs of the structure theorems

Using several graph minor papers + own previous work:

For the 1st theorem:
1 Reed ’99 and Kawarabayashi and Reed ’10

2 Geelen, Gerards, Reed, Seymour, Vetta ’09

3 Kawarabayashi, Thomas, Wollan ’20

For the 2nd theorem:
1 Diestel, Kawarabayashi, Müller, Wollan ’12

2 Conforti, F, Huynh, Weltge ’20

3 Conforti, F, Huynh, Joret, Weltge ’21



Outline

1 Main results and motivation

2 Reduction to stable set in graphs with bounded OCP

3 Structure of graphs with bounded OCP

4 Main algorithm







f-to
slack o_O

tight o_0
c-5 ¢5





Slack vectors

Switch vertex space RV (G) ! edge space RE(G)

Definition

Vtx weights w 2 RV (G) are induced by edge costs c 2 RE(G)
>0 if

w(v) = c(�(v)) for all v 2 V (G)

Definition

y 2 ZE(G)
�0 is a slack vector if

9x 2 ZV (G) : yvw = 1� xv � xw for all vw 2 E(G)

Remark:

w|x = c(E(G))� c|y =
1

2
w(V (G))� c|y



The sketch



The sketch



Constructing the sketch edge by edge
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Constructing the sketch edge by edge



Constructing the sketch edge by edge



Dynamic program

Main algorithm is a dynamic program (DP):
1 Cells correspond to possible faces of the (partial) sketch
2 Use precedence rule for split operations to bound the number of cells by a

polynomial
3 Every sketch edge has two corresponding cutsets, inside which the solution is

guessed
4 The DP remembers “just enough” extra information to guarantee that it

constructs solutions that are feasible

Subroutines:
Homologous flow (Morell, Seidel and Weltge ’21)
Special stable set instances “between” cutsets




