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Definition
For A € Z~, a matrix A is called totally A-modular if

det(A) e {-A,-A+1,...,0,...,A—1A}
for all square submatrices A’ of A

Given A, let  A(A) := min{A : A is totally A-modular}

Definition
The odd cycle packing number ocp(G) is the maximum number of vertex-disjoint
odd cycles in G



Examples:

@ A is totally unimodular (TU) <— A(4) <1

90cp(G)

@ A is the incidence matrix of graph G — A(A)
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Examples:

@ A is totally unimodular (TU) <— A(4) <1

90cp(G)

@ A is the incidence matrix of graph G — A(A)
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Our main results

Theorem (FJWY ’21)

For every integer A > 1 there exists a strongly polynomial-time algorithm for
solving the integer program (IP)

max{w'z : Az < b, x € Z"}

where w € 7", b € Z™, and constraint matrix A € 7Z™*"
@ s totally A-modular, and
@ contains at most two nonzero entries in each row (or in each column)

Theorem (FJWY ’21)

For every integer k > 0 there exists a strongly polynomial-time algorithm for the
weighted stable set problem in graphs with ocp(G) < k



Previous work v Botkorol’ 1 PINS Por MWSS T gruphs widn
OCR (¢)=00)

@ (IP) can be solved in strongly polynomial-time if A =1

© (IP) can be solved in strongly polynomial-time if A = 2 (Artmann, Weismantel,
Zenklusen ’17)

© There is a polynomial-time algorithm that solves (IP) w.h.p. over the choices
of b, when A, w are fixed and A is constant (Paat, Schicter, Weismantel *19)

Q The diameter of P := {x : Az < b} is O(A%n*1gnA) (Bonifas, Di Summa,
Eisenbrand, Hahnle, Niemeier *14)

©Q max{wTz: Az = b, > 0} can be solved in time poly(m,n,lg A) (Tardos ’86)

Q max{wTz: Ax = b, z > 0} can be solved in time O(mn* Ig(n)lg(x + n)) time
(Dadush, Natura, Végh ’20)
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Proximity result of Cook et al.

Theorem (Cook, Gerards, Schrijver, Tardos '86)

Let A be a totally A-modular m x n matrix and letb and w be integer vectors such
that

@ Ax < b has an integral solution, and
@ max{wTz : Az < b} exists.

Then for each optimal solution z to max{wTx : Ax < b}, there exists an optimal
solution z* to max{wTz : Az < b, x € Z"} with

|

[|Z — 2*||oo < RA
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1st reduction: reducingto A € {—1,0,1}"*"

After permuting rows and columns:

1st reduction:

<21gA

lole

®®

®©

OO

*

+1 £1
+1

+1
+1

+1

@ Solve LP relaxation max{wTz : Az < b} — &

@ Guess the first O(1g A) variables




2nd reduction: reducingto A € {0,1}™*", b =1

Theorem (FJWY ’21)

LetAe {-1,0,1}™", beZ™, w e Z". Assume that
@ every row of A has < 2 nonzeros,
@ P:={x: Az < b} is bounded and P N Z" # @.

For every extremal optimal solution = to max{wTz : Az < b}, there exists an opt.
solution z* to max{wTz : Az < b, x € Z"} with

N

17 = 2%loo <






Final problem

After translating and reformulating, we get

max wlx
st. Ar <1
TezZ”

where:
@ A is the edge-vertex incidence matrix of some graph G
® ocp(G) < IgA
@ w € cone(AT)
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Our structure theorem relies on the graph minor project of Robertson and
Seymour (> 23 papers, > 500 pages, ‘83 — ’10)

Definition (¥-DRP)

Given a graph G and k vertex pairs (s1,t1), ..., (sk, tx), does G contain k
vertex-disjoint paths Py, ..., P such that each P, is a s;,—t; path?

Definition (k-OCP)
Given a graph G, does G contain k vertex-disjoint odd cycles?

Remarks:
@ k-DRP is a central problem the graph minor project
@ both k-DRP and k-OCP have FPT algorithms
@ k-DRP reduces to k-OCP



NO instances of 2-DRP / 2-OCP

smal| vorhices




NO instances of 2-DRP / 2-OCP




Escher walls

ocp(G) =1, oct(G) as large as Q(y/n)

Definition
The odd cycle transversal number oct(G) is the minimum size of X C V(G) such
that G — X is bipartite




Theorem (Lovasz)

Let G be a 4-connected graph with ocp(G) < 1. Then
Q oct(G) <3, 0r
© G has an even-face embedding in the projective plane




1st structure theorem

Theorem (informal)

Letk > 1 be a fixed integer. For every graph G with ocp(G) < k and oct(G)
sufficiently large, there is a near embedding of G in a surface S with all parameters
bounded: size of the apex set, number and adhesion of large vortices, Euler
genus of S. Moreover, the part of G embedded in'S “essentially contains” a large
Escher wall




Linear decompositions

as
a9 a4
= as
aq a3 a2 as a4
U4 Ue
U2 U5
U1l us Ul Ue
u
— e X 5
1 2 3 4 5 6 2 uz 4

The adhesion of the linear decomposition (X1, ..., X,,) is max{|X; N X;41| : ¢ < n}



Toward the 2nd structure theorem

Resilience
Definition
Graph G is p-resilientif X C V(G) with | X| < p, 3 component H of G — X such
that ocp(H) = ocp(G)

Remarks:
@ G is not p-resilient iff 3X C V(G) with | X| < p such that V components H of

G — X have ocp(H) < ocp(G)

@ For solving the stable set problem in graphs with bounded OCP, may assume
that G is p(k)-resilient



Toward the 2nd structure theorem

Replacing small vortices by gadgets

Go



2nd structure theorem

Theorem (informal)

For every integer k > 1, and for every graph G with ocp(G) < k that is sufficiently
resilient, there is an near embedding in a non-orientable surface S with all
parameters bounded, and the extra properties:

each small vortex is bipartite

each large vortex is bipartite (even when augmented with the boundary of the
face of G that contains it)

large vortices are vertex-disjoint
every face of G is bounded by a cycle
every odd cycle in Gy defines a Mébius band in S



Proofs of the structure theorems

Using several graph minor papers + own previous work:

For the 1st theorem:
© Reed ’99 and Kawarabayashi and Reed 10
@ Geelen, Gerards, Reed, Seymour, Vetta *09
© Kawarabayashi, Thomas, Wollan 20

For the 2nd theorem:

@ Diestel, Kawarabayashi, Miiller, Wollan 12
@ Conforti, F, Huynh, Weltge *20

© Conforti, F, Huynh, Joret, Weltge ’21
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Slack vectors

Switch  vertex space RV (%) — edge space R¥(©)
Vix weights w € RY(©) are induced by edge costs ¢ € R%G) if
w(v) = ¢(d(v)) forall v € V(G)

y € Zg(()G) is a slack vector if

3z € ZVD : gy =1 — 2, — z, for all vw € E(G)

Remark: )
wle = c(E(G)) — Ty = iw(V(G)) —cly



The sketch
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The sketch
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Constructing the sketch edge by edge
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Constructing the sketch edge by edge
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Constructing the sketch edge by edge
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Constructing the sketch edge by edge
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Dynamic program

Main algorithm is a dynamic program (DP):
@ Cells correspond to possible faces of the (partial) sketch

© Use precedence rule for split operations to bound the number of cells by a
polynomial

© Every sketch edge has two corresponding cutsets, inside which the solution is
guessed

© The DP remembers “just enough” extra information to guarantee that it
constructs solutions that are feasible

Subroutines:
@ Homologous flow (Morell, Seidel and Weltge *21)
@ Special stable set instances “between” cutsets






