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Maximum Flow Over Time

Algorithm. [Ford, Fulkerson 1958]

Input: D =(V,A), s, t € V, capacities u,, transit times 7,, time § > 0
Output: maximum s-t-flow over time with time horizon 6

compute static s-t-flow x in D

maximizing  0|x| — ZTaXa
acA
determine path-decomposition

X; = Z Xp forallae A
PeP: acP

send flow at rate xp into s-t-paths P € P,

as long as there is enough time left to arrive at the sink before time 6
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Parametric Maximum Flow Over Time

max flow value

A

> time horizon 6

> function is piecewise linear, convex, and increasing

P every breakpoint corresponds to s-t-path P in bidirected graph
» slope of linear piece equals capacity of s-t-cut in subnetwork
» obtain value / slope at 6 via static min-cost flow

> but: exponentially many breakpoints [Zadeh 1973; Disser, Sk. 2019]
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Quickest Flows

Given: D = (V,A), s,t € V, capacities uj,, transit times 7,, flow value b

Task: Find s-t-flow over time of value d with minimum time horizon 0*

—b + max flow value

A

> time horizon 6

_b-
Solution methods:
» binary search: (weakly) polynomial

> parametric search [Megiddo 1979]: strongly poly. [Burkardetal. 1993]
> cost scaling: O(m?nlog®n)  [Saho, Shigeno 2017; Lin, Jaillet 2015]
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Discrete Newton Method [Dinkelbach 1967]

[Radzik, Fractional Combinatorial Optimization, 1998|

Algorithm Analysis

Observation.
In each iteration, function value or
slope decreases by factor < 1/2

Lemma. [Goemans 1992]
Let u € R™, yy,...,yq € {0,1}™
with

6 1
_/ : / o 1 :
9f+2 9,’+1 9,’ 0 < Yi+1u < syid for all I,

then g € O(mlog m).

*

With some more tricks, this yields strongly polynomial quickest flow algo.
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Quickest Transshipments

Given: D = (V,A), u,, 74 for a € A, sources/sinks ST, S~ C V with
supplies/demands b: STUS™ - R

Task: find flow over time satisfying supplies/demands in minimum time 6*

51\)

\>t1
b($i)>0 §</\ <:t>X

s b(t;) <0
Sé}éx/’ \//Ytz S

Definition. Let of : 257YS™ — R be defined as follows: for X C St US~

0?(X) := value of max flow over time from ST N X to S~ \ X in time

Lemma. [Klinz 1994] 0> 6* <= 0o(X)>bh(X) VXCSTUS™
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Quickest Transshipments

Definition. Let of : 257US™ 5 R be defined as follows: for X C ST U S~
0?(X) := value of max flow over time from ST N X to S~ \ X in time
Lemma. [Klinz 1994] 6 >60* <«= o°(X)>b(X) ¥YXCStUS™

Corollary. @ > 0% <« i (X)) = b(X)} >0
orollary. 6 > ngnlgs_{O() (X)} >

Observation. [Klinz 1994]
X + 0?(X) is submodular

X + d’(X) is submodular
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Quickest Transshipments: State of the Art

d( Parametric Submodular Function Minimization (SFM):

0)
jyﬂﬂ )9 m.n{e_o\xgrggsid(X)_O}
=:d(0)

k :=|ST US| (number of terminals)

[Hoppe, Tardos 2000]:
P> determine 0* using Megiddo's parametric search

» 2k — 2 parametric SFMs to find quickest transshipment

[Schloter, Sk. 2017]: quickest transshipment with only one parametric SFM

Running time for parametric SFM: O(m*k'4)
> need fully combinatorial SFM algorithm: O(m?k7) [lwata, Orlin 2009]

[Schlter, Sk., Tran 2021]: O(m?k® + m*k® + m>n) via discrete Newton
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First Attempt: Simple Algorithm
d(0)

0; Oit1 Oiyo Oit3
[Schloter 2018; Kamiyama 2019]:
> if |[ST| =1or|S| =1, then minimizers (subsets S;) are nested

P thus, in this special case, at most k iterations
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Extended Discrete Newton with Large Jumps

Algorithm 2: Extended Discrete Newton with Large Jumps
=0, 6:=0, J:={20,21,22 . 2lle(/91}

while d(6;) < 0 do

Si = argmin{d%(S): SC St UST}

0! := min{0 : d°(S;) = 0}

Oip1:=106; max({&f.} U {0 =

' ld(67)]
9i+ T d(9)<0 _/EJ})
i=i4+1
end
return 0;
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Extended Discrete Newton with Larger Jumps

d(8)

[Dadush, Koh, Natura, Végh 2021]:
» somewhat similar ‘look-ahead’ approach for classical discrete Newton
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Bounding the Number of lterations

Algorithm 2: Extended Discrete Newton with Large Jumps

=0, fp:=0, J:={20,2122 . ollg(k/9]}
while d(0;) < 0 do

S; = argmin{d%(S):SC St US™}

0. :=min{0 : d°(S;) = 0}

041 = max({e;}u{a - 9;+j-% L d(0) <0, je J})
I=i4+1

end

return 6;

Partition iterations into three groups:
iterations with longest possible jump, i.e., j = 2[l82(K?/9)] > 2 /4
iterations with shorter jump that move over some breakpoint
iterations with shorter jump that do not move over breakpoint
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Bounding the Number of Iterations with Longest Jump

Lemma.
The number of iterations with longest possible jump is at most k2 /4.

Proof sketch.

S1
Consider one such iteration: S+ > \ ; \‘\> t
;K1) & \W <A
9,‘+129i+7‘TI ~ — \)t2
4 cut’i(S)) S3 »//7 \ //’
\

Sources STNS; can supply at least S ﬂS/* t3 S~
k2 /4 times the necessary amount Sa
to sinks S7\S; between ¢ and 0; 1.

> As there are < k2/4 source-sink pairs, one pair alone can do the job.

» This source-sink pair can no longer occur in later iterations! O
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Bounding the Number of Iterations with Short Jumps
d(6)

9

Lemma. For iterations with short jumps: 6* — ;11 < %(0* —0;). O
» Thus, by Goemans' Lemma, number of iterations with breakpoint
in [0i,0i+1] is at most O(mlog m).
» Number of iterations without breakpoint: O(k?log k + mlog mlog k)

Analysis uses ‘ring families’, similar to [Goemans, Gupta, Jaillet 2017].
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Overall Running Time

Lemma. The number of iterations is at most O(k? log k + mlog mlog k).

Proof.
» O(k?) iterations with longest possible jump
» O(mlog m) iterations with short jump and breakpoint

» O(k?log k + mlog mlog k) short jumps without breakpoint

Theorem. The overall running time is in O(mzk‘r’ + m3k3 + m3n).

Proof. In each iteration we need to solve

> O(Iog~k) submodular function minimizations, with running
time O(m?k3) each [Lee, Sidford, Wong 2015];

> one quickest s-t-flow problem, with running time O(m?n)
[Saho, Shigeno 2017]. O
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Conclusion

Quickest s-t-Flow Problem

[Saho, Shigeno 2017] O(m?n)

Evacuation Problem (single source or single sink)

[Schloter 2018; Kamiyama 2019]  O(m?k5 + m?nk)

Quickest Transshipment Problem (multiple sources and sinks)

[Hoppe, Tardos 2000] O(m*k19)
[Schidter, Sk. 2017] O(m*k*)
[Schlster, Sk., Tran 2021] O(m?k> + m3k3 + mn)

arxiv.org/abs/2108.06239
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