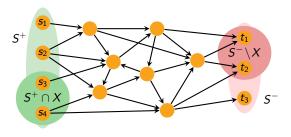
A Faster Algorithm for Quickest Transshipments via an Extended Discrete Newton Method

Miriam Schlöter Martin Skutella Khai Van Tran

Dutch Seminar on Optimization September 30, 2021



Maximum Flow Over Time

Algorithm. [Ford, Fulkerson 1958]

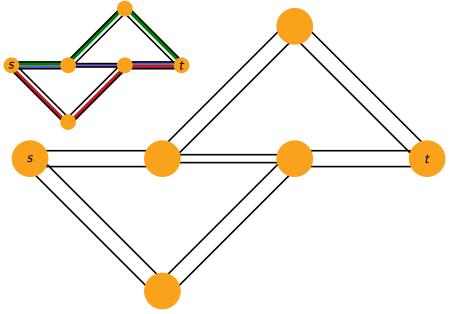
Input: D = (V, A), $s, t \in V$, capacities u_a , transit times τ_a , time $\theta \ge 0$ Output: maximum *s*-*t*-flow over time with time horizon θ

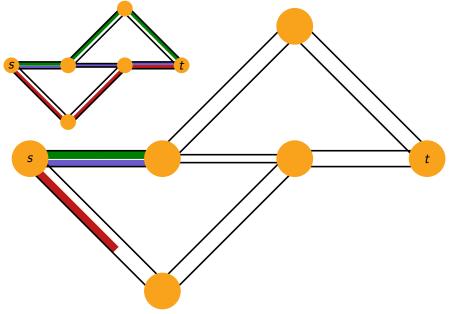
1 compute static s-t-flow x in D
maximizing
$$\theta |x| - \sum_{a \in A} \tau_a x_a$$

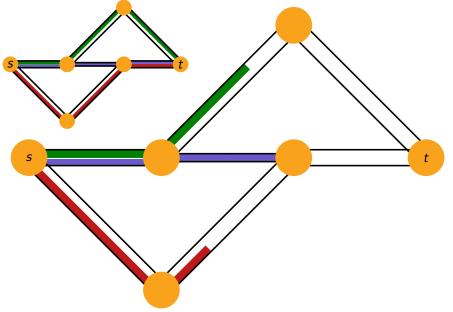
2 determine path-decomposition

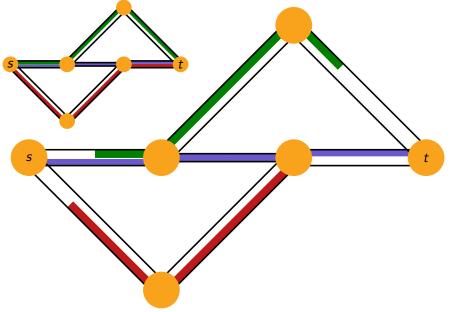
$$x_a = \sum_{P \in \mathcal{P}: a \in P} x_P$$
 for all $a \in A$

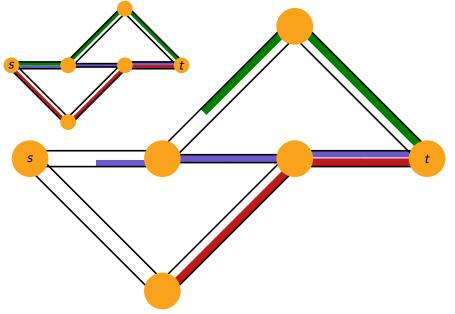
3 send flow at rate x_P into *s*-*t*-paths $P \in \mathcal{P}$, as long as there is enough time left to arrive at the sink before time θ

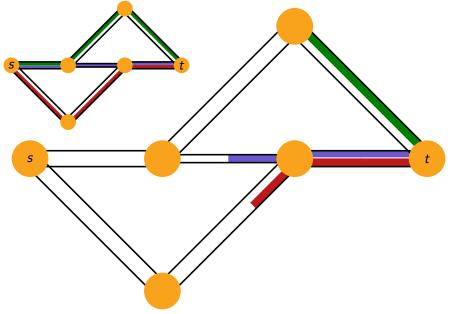


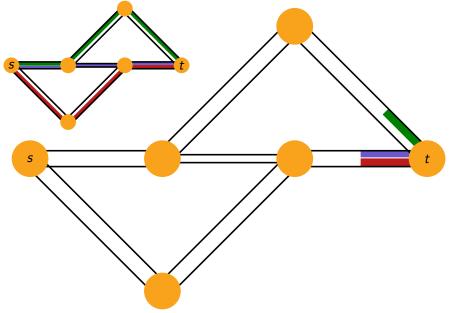


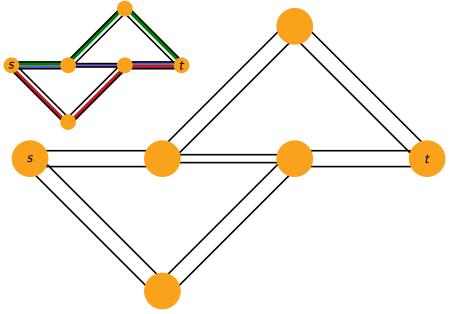




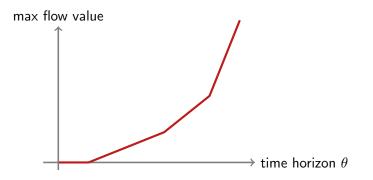








Parametric Maximum Flow Over Time

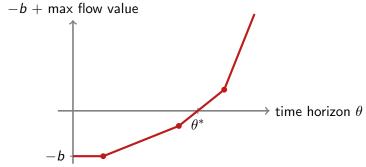


- function is piecewise linear, convex, and increasing
- every breakpoint corresponds to s-t-path P in bidirected graph
- slope of linear piece equals capacity of s-t-cut in subnetwork
- obtain value / slope at θ via static min-cost flow
- but: exponentially many breakpoints [Zadeh 1973; Disser, Sk. 2019]

Schlöter, Skutella, Tran A Faster Algorithm for Quickest Transshipments via an Extended Discrete Newton Method 4 / 17

Quickest Flows

Given: D = (V, A), $s, t \in V$, capacities u_a , transit times τ_a , flow value bTask: Find *s*-*t*-flow over time of value d with minimum time horizon θ^*



Solution methods:

- binary search: (weakly) polynomial
- parametric search [Megiddo 1979]: strongly poly. [Burkard et al. 1993]
- ▶ cost scaling: $O(m^2 n \log^2 n)$ [Saho, Shigeno 2017; Lin, Jaillet 2015]

Schlöter, Skutella, Tran A Faster Algorithm for Quickest Transshipments via an Extended Discrete Newton Method 5 / 17

[Radzik, Fractional Combinatorial Optimization, 1998]

 $\theta^* \\ \theta_{i+2} \\ \theta_{i+1} \\ \theta_i$

Algorithm

Analysis

Observation.

In each iteration, function value or slope decreases by factor \leq 1/2

Lemma. [Goemans 1992] Let $u \in \mathbb{R}^m$, $y_1, \ldots, y_q \in \{0, 1\}^m$ with

$$0 < y_{i+1}u \leq \frac{1}{2}y_iu$$
 for all i ,

then $q \in O(m \log m)$.

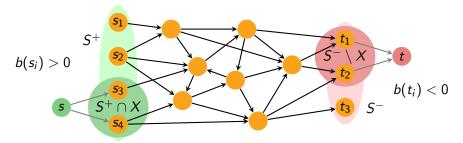
With some more tricks, this yields strongly polynomial quickest flow algo.

Schlöter, Skutella, Tran

Quickest Transshipments

Given: D = (V, A), u_a , τ_a for $a \in A$, sources/sinks $S^+, S^- \subset V$ with supplies/demands $b : S^+ \cup S^- \to \mathbb{R}$

Task: find flow over time satisfying supplies/demands in minimum time θ^*



Definition. Let $o^{\theta} : 2^{S^+ \cup S^-} \to \mathbb{R}$ be defined as follows: for $X \subseteq S^+ \cup S^$ $o^{\theta}(X) :=$ value of max flow over time from $S^+ \cap X$ to $S^- \setminus X$ in time θ

Lemma. [Klinz 1994] $\theta \ge \theta^* \iff o^{\theta}(X) \ge b(X) \quad \forall X \subseteq S^+ \cup S^-$

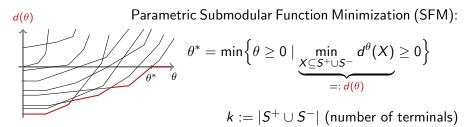
Schlöter, Skutella, Tran A Faster Algorithm for Quickest Transshipments via an Extended Discrete Newton Method 7 / 17

Quickest Transshipments

Definition. Let $o^{\theta}: 2^{S^+ \cup S^-} \to \mathbb{R}$ be defined as follows: for $X \subseteq S^+ \cup S^$ $o^{\theta}(X) :=$ value of max flow over time from $S^+ \cap X$ to $S^- \setminus X$ in time θ Lemma. [Klinz 1994] $\theta \ge \theta^* \iff o^{\theta}(X) \ge b(X) \quad \forall X \subseteq S^+ \cup S^-$ Corollary. $\theta \ge \theta^* \iff \min_{X \subseteq S^+ \cup S^-} \{\underbrace{o^{\theta}(X) - b(X)}_{d^{\theta}(X) :=}\} \ge 0$ time θ A* -b(X)Observation. [Klinz 1994] $X \mapsto o^{\theta}(X)$ is submodular $X \mapsto d^{\theta}(X)$ is submodular

Schlöter, Skutella, Tran A Faster Algorithm for Quickest Transshipments via an Extended Discrete Newton Method 8 / 17

Quickest Transshipments: State of the Art



[Hoppe, Tardos 2000]:

- determine θ* using Megiddo's parametric search
- ▶ 2k 2 parametric SFMs to find quickest transshipment

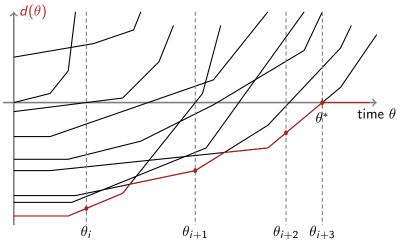
[Schlöter, Sk. 2017]: quickest transshipment with only one parametric SFM

Running time for parametric SFM: $\tilde{O}(m^4k^{14})$

▶ need fully combinatorial SFM algorithm: $\tilde{O}(m^2k^7)$ [Iwata, Orlin 2009]

[Schlöter, Sk., Tran 2021]: $\tilde{O}(m^2k^5 + m^3k^3 + m^3n)$ via discrete Newton

First Attempt: Simple Algorithm



[Schlöter 2018; Kamiyama 2019]:

▶ if $|S^+| = 1$ or $|S^-| = 1$, then minimizers (subsets S_i) are nested

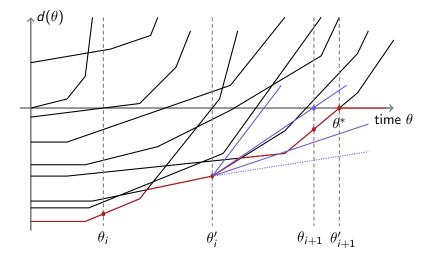
thus, in this special case, at most k iterations

Schlöter, Skutella, Tran A Faster Algorithm for Quickest Transshipments via an Extended Discrete Newton Method 10 / 17

Algorithm 2: Extended Discrete Newton with Large Jumps

$$\begin{split} i &:= 0, \ \theta_0 := 0, \ J := \left\{ 2^0, 2^1, 2^2, \dots, 2^{\lceil \log_2(k^2/4) \rceil} \right\} \\ \text{while } d(\theta_i) < 0 \text{ do} \\ & \left| \begin{array}{c} S_i := \arg\min\{d^{\theta_i}(S) : S \subseteq S^+ \cup S^-\} \\ \theta'_i := \min\{\theta : d^{\theta}(S_i) = 0\} \\ \theta_{i+1} := \theta'_i \\ \theta_i' + j \cdot \frac{|d(\theta'_i)|}{\operatorname{cut}^{\theta'_i}(S_i)} : d(\theta) < 0, \ j \in J \right\} \right) \\ & i := i+1 \\ \text{end} \\ \text{return } \theta_i \end{split}$$

Extended Discrete Newton with Larger Jumps



[Dadush, Koh, Natura, Végh 2021]:

▶ somewhat similar 'look-ahead' approach for classical discrete Newton

Schlöter, Skutella, Tran A Faster Algorithm for Quickest Transshipments via an Extended Discrete Newton Method 12 / 17

Bounding the Number of Iterations

Algorithm 2: Extended Discrete Newton with Large Jumps

$$i := 0, \ \theta_0 := 0, \ J := \{2^0, 2^1, 2^2, \dots, 2^{\lceil \log_2(k^2/4) \rceil}\}$$
while $d(\theta_i) < 0$ do

$$\begin{vmatrix} S_i := \operatorname{argmin} \{d^{\theta_i}(S) : S \subseteq S^+ \cup S^-\} \\ \theta'_i := \min\{\theta : d^{\theta}(S_i) = 0\} \\ \theta_{i+1} := \max\left(\{\theta'_i\} \cup \left\{\theta = \theta'_i + j \cdot \frac{|d(\theta'_i)|}{\operatorname{cut}^{\theta'_i}(S_i)} : d(\theta) < 0, \ j \in J\right\}\right)$$

$$i := i + 1$$
end
return θ_i

Partition iterations into three groups:

- **1** iterations with longest possible jump, i.e., $j = 2^{\lceil \log_2(k^2/4) \rceil} \ge k^2/4$
- 2 iterations with shorter jump that move over some breakpoint
- 3 iterations with shorter jump that do not move over breakpoint

Schlöter, Skutella, Tran A Faster Algorithm for Quickest Transshipments via an Extended Discrete Newton Method 13 / 17

Bounding the Number of Iterations with Longest Jump

Lemma.

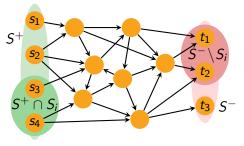
The number of iterations with longest possible jump is at most $k^2/4$.

Proof sketch.

Consider one such iteration:

$$heta_{i+1} \geq heta_i' + rac{k^2}{4} \cdot rac{|d(heta_i')|}{\operatorname{cut}^{ heta_i'}(S_i)}$$

Sources $S^+ \cap S_i$ can supply at least $k^2/4$ times the necessary amount to sinks $S^- \setminus S_i$ between θ'_i and θ_{i+1} .

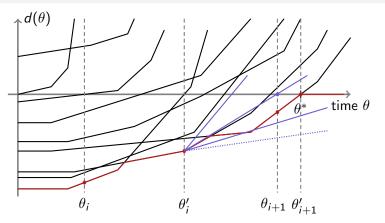


• As there are $\leq k^2/4$ source-sink pairs, one pair alone can do the job.

This source-sink pair can no longer occur in later iterations!

Schlöter, Skutella, Tran A Faster Algorithm for Quickest Transshipments via an Extended Discrete Newton Method 14 / 17

Bounding the Number of Iterations with Short Jumps



Lemma. For iterations with short jumps: θ^{*} − θ_{i+1} ≤ ½(θ^{*} − θ_i).
 Thus, by Goemans' Lemma, number of iterations with breakpoint in [θ_i, θ_{i+1}] is at most O(m log m).

Number of iterations without breakpoint: O(k² log k + m log m log k) Analysis uses 'ring families', similar to [Goemans, Gupta, Jaillet 2017].

Schlöter, Skutella, Tran A Faster Algorithm for Quickest Transshipments via an Extended Discrete Newton Method 15 / 17

Overall Running Time

Lemma. The number of iterations is at most $O(k^2 \log k + m \log m \log k)$.

Proof.

- $O(k^2)$ iterations with longest possible jump
- O(m log m) iterations with short jump and breakpoint
- $O(k^2 \log k + m \log m \log k)$ short jumps without breakpoint

Theorem. The overall running time is in $\tilde{O}(m^2k^5 + m^3k^3 + m^3n)$.

Proof. In each iteration we need to solve

- ► O(log k) submodular function minimizations, with running time Õ(m²k³) each [Lee, Sidford, Wong 2015];
- one quickest s-t-flow problem, with running time Õ(m²n) [Saho, Shigeno 2017].

Conclusion

Quickest s-t-Flow Problem	
[Saho, Shigeno 2017]	$\tilde{O}(m^2n)$
Evacuation Problem (single source or single sink)	
[Schlöter 2018; Kamiyama 2019]	$\tilde{O}(m^2k^5+m^2nk)$
Quickest Transshipment Problem (multiple sources and sinks)	
[Hoppe, Tardos 2000]	$\tilde{O}(m^4k^{15})$
[Schlöter, Sk. 2017]	$\tilde{O}(m^4k^{14})$
[Schlöter, Sk., Tran 2021]	$\tilde{O}(m^2k^5+m^3k^3+m^3n)$

arxiv.org/abs/2108.06239