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Maximum Flow Over Time

Algorithm. [Ford, Fulkerson 1958]

Input: D = (V ,A), s, t ∈ V , capacities ua, transit times τa, time θ ≥ 0

Output: maximum s-t-flow over time with time horizon θ

1 compute static s-t-flow x in D

maximizing θ |x | −
∑
a∈A

τa xa

2 determine path-decomposition

xa =
∑

P∈P: a∈P
xP for all a ∈ A

3 send flow at rate xP into s-t-paths P ∈ P,
as long as there is enough time left to arrive at the sink before time θ
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Maximum Flow Over Time: Example
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Parametric Maximum Flow Over Time

time horizon θ

max flow value

τ(P)

cut capacity

I function is piecewise linear, convex, and increasing

I every breakpoint corresponds to s-t-path P in bidirected graph

I slope of linear piece equals capacity of s-t-cut in subnetwork

I obtain value / slope at θ via static min-cost flow

I but: exponentially many breakpoints [Zadeh 1973; Disser, Sk. 2019]
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Quickest Flows

Given: D = (V ,A), s, t ∈ V , capacities ua, transit times τa, flow value b

Task: Find s-t-flow over time of value d with minimum time horizon θ∗

time horizon θ

b

θ∗

max flow value

time horizon θ

−b

θ∗

−b + max flow value

Solution methods:

I binary search: (weakly) polynomial

I parametric search [Megiddo 1979]: strongly poly. [Burkard et al. 1993]

I cost scaling: O(m2n log2 n) [Saho, Shigeno 2017; Lin, Jaillet 2015]
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Discrete Newton Method [Dinkelbach 1967]

[Radzik, Fractional Combinatorial Optimization, 1998]

Algorithm

θiθi+1θi+2

θ∗

Analysis

Observation.
In each iteration, function value or
slope decreases by factor ≤ 1/2

Lemma. [Goemans 1992]
Let u ∈ Rm, y1, . . . , yq ∈ {0, 1}m
with

0 < yi+1u ≤ 1
2yiu for all i ,

then q ∈ O(m logm).

With some more tricks, this yields strongly polynomial quickest flow algo.
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Quickest Transshipments

Given: D = (V ,A), ua, τa for a ∈ A, sources/sinks S+,S− ⊂ V with
supplies/demands b : S+ ∪ S− → R

Task: find flow over time satisfying supplies/demands in minimum time θ∗
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b(si ) > 0

b(ti ) < 0

b(S+ ∪ S−) = b(s1) + · · ·+ b(s4) + b(t1) + · · ·+ b(t3) = 0

Definition. Let oθ : 2S
+∪S− → R be defined as follows: for X ⊆ S+ ∪ S−

oθ(X ) := value of max flow over time from S+ ∩ X to S− \ X in time θ

Lemma. [Klinz 1994] θ ≥ θ∗ ⇐⇒ oθ(X ) ≥ b(X ) ∀X ⊆ S+ ∪ S−
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Quickest Transshipments

Definition. Let oθ : 2S
+∪S− → R be defined as follows: for X ⊆ S+ ∪ S−

oθ(X ) := value of max flow over time from S+ ∩ X to S− \ X in time θ

Lemma. [Klinz 1994] θ ≥ θ∗ ⇐⇒ oθ(X ) ≥ b(X ) ∀X ⊆ S+ ∪ S−

Corollary. θ ≥ θ∗ ⇐⇒ min
X⊆S+∪S−

{
oθ(X )− b(X )︸ ︷︷ ︸

dθ(X ) :=

}
≥ 0

dθ(X )

time θ

b(X )

time θ
−b(X )

θ∗

Observation. [Klinz 1994]

X 7→ oθ(X ) is submodular

X 7→ dθ(X ) is submodular
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Quickest Transshipments: State of the Art

θ

d(θ)

θ∗

Parametric Submodular Function Minimization (SFM):

θ∗ = min
{
θ ≥ 0 | min

X⊆S+∪S−
dθ(X )︸ ︷︷ ︸

=: d(θ)

≥ 0
}

k := |S+ ∪ S−| (number of terminals)

[Hoppe,Tardos 2000]:

I determine θ∗ using Megiddo’s parametric search

I 2k − 2 parametric SFMs to find quickest transshipment

[Schlöter, Sk. 2017]: quickest transshipment with only one parametric SFM

Running time for parametric SFM: Õ(m4k14)

I need fully combinatorial SFM algorithm: Õ(m2k7) [Iwata, Orlin 2009]

[Schlöter, Sk., Tran 2021]: Õ(m2k5 + m3k3 + m3n) via discrete Newton
Schlöter, Skutella, Tran A Faster Algorithm for Quickest Transshipments via an Extended Discrete Newton Method 9 / 17



First Attempt: Simple Algorithm

time θ

d(θ)

θ∗

θi θi+1 θi+2 θi+3

[Schlöter 2018; Kamiyama 2019]:

I if |S+| = 1 or |S−| = 1, then minimizers (subsets Si ) are nested

I thus, in this special case, at most k iterations
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Extended Discrete Newton with Large Jumps

Algorithm 2: Extended Discrete Newton with Large Jumps

i := 0, θ0 := 0, J :=
{

20, 21, 22, . . . , 2dlog2(k
2/4)e}

while d(θi ) < 0 do
Si := argmin{dθi (S) : S ⊆ S+ ∪ S−}
θ′i := min{θ : dθ(Si ) = 0}
θi+1 := θ′i max

(
{θ′i} ∪

{
θ =

θ′i + j · |d(θ
′
i )|

cut
θ′
i (Si )

: d(θ) < 0, j ∈ J
})

i := i + 1

end
return θi
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Extended Discrete Newton with Larger Jumps

time θ

d(θ)

θ∗

θi θ′i θi+1 θ′i+1

[Dadush, Koh, Natura, Végh 2021]:

I somewhat similar ‘look-ahead’ approach for classical discrete Newton
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Bounding the Number of Iterations

Algorithm 2: Extended Discrete Newton with Large Jumps

i := 0, θ0 := 0, J :=
{

20, 21, 22, . . . , 2dlog2(k
2/4)e}

while d(θi ) < 0 do
Si := argmin{dθi (S) : S ⊆ S+ ∪ S−}
θ′i := min{θ : dθ(Si ) = 0}
θi+1 := max

(
{θ′i}∪

{
θ = θ′i+j · |d(θ

′
i )|

cut
θ′
i (Si )

: d(θ) < 0, j ∈ J
})

i := i + 1

end
return θi

Partition iterations into three groups:

1 iterations with longest possible jump, i.e., j = 2dlog2(k
2/4)e ≥ k2/4

2 iterations with shorter jump that move over some breakpoint

3 iterations with shorter jump that do not move over breakpoint
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Bounding the Number of Iterations with Longest Jump

Lemma.
The number of iterations with longest possible jump is at most k2/4.

Proof sketch.
Consider one such iteration:

θi+1 ≥ θ′i +
k2

4
· |d(θ′i )|

cutθ
′
i (Si )

Sources S+∩Si can supply at least
k2/4 times the necessary amount
to sinks S−\Si between θ′i and θi+1.

S+

S−S+ ∩ Si

S−\Si

s1

s2

s3

s4

t1

t2

t3

I As there are ≤ k2/4 source-sink pairs, one pair alone can do the job.

I This source-sink pair can no longer occur in later iterations!
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Bounding the Number of Iterations with Short Jumps

time θ

d(θ)

θ∗

θi θ′i θi+1 θ′i+1

Lemma. For iterations with short jumps: θ∗ − θi+1 ≤ 1
2(θ∗ − θi ).

I Thus, by Goemans’ Lemma, number of iterations with breakpoint
in [θi , θi+1] is at most O(m logm).

I Number of iterations without breakpoint: O(k2 log k + m logm log k)
Analysis uses ‘ring families’, similar to [Goemans, Gupta, Jaillet 2017].
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Overall Running Time

Lemma. The number of iterations is at most O(k2 log k + m logm log k).

Proof.

I O(k2) iterations with longest possible jump

I O(m logm) iterations with short jump and breakpoint

I O(k2 log k + m logm log k) short jumps without breakpoint

Theorem. The overall running time is in Õ(m2k5 + m3k3 + m3n).

Proof. In each iteration we need to solve

I O(log k) submodular function minimizations, with running
time Õ(m2k3) each [Lee, Sidford, Wong 2015];

I one quickest s-t-flow problem, with running time Õ(m2n)
[Saho, Shigeno 2017].
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Conclusion

Quickest s-t-Flow Problem

[Saho, Shigeno 2017] Õ(m2n)

Evacuation Problem (single source or single sink)

[Schlöter 2018; Kamiyama 2019] Õ(m2k5 + m2nk)

Quickest Transshipment Problem (multiple sources and sinks)

[Hoppe, Tardos 2000] Õ(m4k15)

[Schlöter, Sk. 2017] Õ(m4k14)

[Schlöter, Sk., Tran 2021] Õ(m2k5 + m3k3 + m3n)

arxiv.org/abs/2108.06239
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