# A Faster Algorithm for Quickest Transshipments via an Extended Discrete Newton Method 

Miriam Schlöter Martin Skutella Khai Van Tran

Dutch Seminar on Optimization
September 30, 2021


## Maximum Flow Over Time

## Algorithm. [Ford, Fulkerson 1958]

Input: $D=(V, A), s, t \in V$, capacities $u_{a}$, transit times $\tau_{\mathrm{a}}$, time $\theta \geq 0$
Output: maximum s-t-flow over time with time horizon $\theta$
1 compute static $s$-t-flow $x$ in $D$

$$
\text { maximizing } \quad \theta|x|-\sum_{a \in A} \tau_{a} x_{a}
$$

2 determine path-decomposition

$$
x_{a}=\sum_{P \in \mathcal{P}: a \in P} x_{P} \quad \text { for all } a \in A
$$

3 send flow at rate $x_{P}$ into $s$ - $t$-paths $P \in \mathcal{P}$,
as long as there is enough time left to arrive at the sink before time $\theta$

## Maximum Flow Over Time: Example



## Parametric Maximum Flow Over Time



- function is piecewise linear, convex, and increasing
- every breakpoint corresponds to $s$ - $t$-path $P$ in bidirected graph
- slope of linear piece equals capacity of $s$ - $t$-cut in subnetwork
- obtain value / slope at $\theta$ via static min-cost flow
- but: exponentially many breakpoints [Zadeh 1973; Disser, Sk. 2019]


## Quickest Flows

Given: $D=(V, A), s, t \in V$, capacities $u_{a}$, transit times $\tau_{a}$, flow value $b$ Task: Find $s$ - $t$-flow over time of value $d$ with minimum time horizon $\theta^{*}$ $-b+$ max flow value


Solution methods:

- binary search: (weakly) polynomial
- parametric search [Megiddo 1979]: strongly poly. [Burkard et al. 1993]
- cost scaling: $O\left(m^{2} n \log ^{2} n\right) \quad$ [Saho, Shigeno 2017; Lin, Jaillet 2015]


## Discrete Newton Method

[Radzik, Fractional Combinatorial Optimization, 1998]

Algorithm
Analysis


Observation.
In each iteration, function value or slope decreases by factor $\leq 1 / 2$

Lemma. [Goemans 1992]
Let $u \in \mathbb{R}^{m}, y_{1}, \ldots, y_{q} \in\{0,1\}^{m}$ with
$0<y_{i+1} u \leq \frac{1}{2} y_{i} u$ for all $i$,
then $q \in O(m \log m)$.
With some more tricks, this yields strongly polynomial quickest flow algo.

## Quickest Transshipments

Given: $D=(V, A), u_{a}, \tau_{a}$ for $a \in A$, sources/sinks $S^{+}, S^{-} \subset V$ with supplies/demands $b: S^{+} \cup S^{-} \rightarrow \mathbb{R}$

Task: find flow over time satisfying supplies/demands in minimum time $\theta^{*}$


Definition. Let $o^{\theta}: 2^{S^{+} \cup S^{-}} \rightarrow \mathbb{R}$ be defined as follows: for $X \subseteq S^{+} \cup S^{-}$ $o^{\theta}(X):=$ value of max flow over time from $S^{+} \cap X$ to $S^{-} \backslash X$ in time $\theta$ Lemma. [Klinz 1994] $\theta \geq \theta^{*} \Longleftrightarrow o^{\theta}(X) \geq b(X) \quad \forall X \subseteq S^{+} \cup S^{-}$

## Quickest Transshipments

Definition. Let $o^{\theta}: 2^{S^{+} \cup S^{-}} \rightarrow \mathbb{R}$ be defined as follows: for $X \subseteq S^{+} \cup S^{-}$ $o^{\theta}(X):=$ value of max flow over time from $S^{+} \cap X$ to $S^{-} \backslash X$ in time $\theta$ Lemma. [Klinz 1994] $\theta \geq \theta^{*} \Longleftrightarrow o^{\theta}(X) \geq b(X) \quad \forall X \subseteq S^{+} \cup S^{-}$ Corollary. $\theta \geq \theta^{*} \Longleftrightarrow \min _{X \subseteq S^{+} \cup S^{-}}\{\underbrace{o^{\theta}(X)-b(X)}_{d^{\theta}(X):=}\} \geq 0$


## Quickest Transshipments: State of the Art

$d(\theta) \quad$ Parametric Submodular Function Minimization (SFM):


$$
\begin{aligned}
\theta^{*}= & \min \{\theta \geq 0 \mid \underbrace{\min _{X \subseteq S^{+} \cup S^{-}} d^{\theta}(X)}_{=: d(\theta)} \geq 0\} \\
& k:=\left|S^{+} \cup S^{-}\right| \text {(number of terminals) }
\end{aligned}
$$

[Hoppe,Tardos 2000]:

- determine $\theta^{*}$ using Megiddo's parametric search
- $2 k-2$ parametric SFMs to find quickest transshipment
[Schlöter, Sk. 2017]: quickest transshipment with only one parametric SFM
Running time for parametric SFM: $\tilde{O}\left(m^{4} k^{14}\right)$
- need fully combinatorial SFM algorithm: $\tilde{O}\left(m^{2} k^{7}\right)$ [Iwata, Orlin 2009]
[Schlöter, Sk., Tran 2021]: $\tilde{O}\left(m^{2} k^{5}+m^{3} k^{3}+m^{3} n\right)$ via discrete Newton


## First Attempt: Simple Algorithm


[Schlöter 2018; Kamiyama 2019]:

- if $\left|S^{+}\right|=1$ or $\left|S^{-}\right|=1$, then minimizers (subsets $S_{i}$ ) are nested
- thus, in this special case, at most $k$ iterations


## Extended Discrete Newton with Large Jumps

Algorithm 2: Extended Discrete Newton with Large Jumps

$$
i:=0, \quad \theta_{0}:=0, \quad J:=\left\{2^{0}, 2^{1}, 2^{2}, \ldots, 2^{\left\lceil\log _{2}\left(k^{2} / 4\right)\right\rceil}\right\}
$$

$$
\text { while } d\left(\theta_{i}\right)<0 \text { do }
$$

$$
\begin{aligned}
& S_{i}:=\operatorname{argmin}\left\{d^{\theta_{i}}(S): S \subseteq S^{+} \cup S^{-}\right\} \\
& \theta_{i}^{\prime}:=\min \left\{\theta: d^{\theta}\left(S_{i}\right)=0\right\} \\
& \theta_{i+1}:=\theta_{i}^{\prime} \quad \max \left(\left\{\theta_{i}^{\prime}\right\} \cup\{\theta=\right. \\
& \left.\left.\theta_{i}^{\prime}+j \cdot \frac{\left|d\left(\theta_{i}^{\prime}\right)\right|}{\operatorname{cut}_{i}^{\theta_{i}^{\prime}}\left(S_{i}\right)}: d(\theta)<0, j \in J\right\}\right) \\
& i:=i+1
\end{aligned}
$$

end
return $\theta_{i}$

## Extended Discrete Newton with Larger Jumps


[Dadush, Koh, Natura, Végh 2021]:

- somewhat similar 'look-ahead' approach for classical discrete Newton


## Bounding the Number of Iterations

Algorithm 2: Extended Discrete Newton with Large Jumps

$$
i:=0, \quad \theta_{0}:=0, \quad J:=\left\{2^{0}, 2^{1}, 2^{2}, \ldots, 2^{\left\lceil\log _{2}\left(k^{2} / 4\right)\right\rceil}\right\}
$$

while $d\left(\theta_{i}\right)<0$ do

$$
\begin{aligned}
& \left\lvert\, \begin{array}{l}
S_{i}:=\operatorname{argmin}\left\{d^{\theta_{i}}(S): S \subseteq S^{+} \cup S^{-}\right\} \\
\quad \theta_{i}^{\prime}
\end{array}=\min \left\{\theta: d^{\theta}\left(S_{i}\right)=0\right\}\right. \\
& \quad \theta_{i+1}:=\max \left(\left\{\theta_{i}^{\prime}\right\} \cup\left\{\theta=\theta_{i}^{\prime}+j \cdot \frac{\left|d\left(\theta_{i}^{\prime}\right)\right|}{\operatorname{cut}_{i}^{\prime}\left(S_{i}\right)}: d(\theta)<0, j \in J\right\}\right) \\
& \quad i:=i+1
\end{aligned} \text { end } \begin{aligned}
& \text { return } \theta_{i}
\end{aligned}
$$

end

Partition iterations into three groups:
1 iterations with longest possible jump, i.e., $j=2^{\left\lceil\log _{2}\left(k^{2} / 4\right)\right\rceil} \geq k^{2} / 4$
$\boxed{2}$ iterations with shorter jump that move over some breakpoint
3 iterations with shorter jump that do not move over breakpoint

## Bounding the Number of Iterations with Longest Jump

## Lemma.

The number of iterations with longest possible jump is at most $k^{2} / 4$.

## Proof sketch.

Consider one such iteration:

$$
\theta_{i+1} \geq \theta_{i}^{\prime}+\frac{k^{2}}{4} \cdot \frac{\left|d\left(\theta_{i}^{\prime}\right)\right|}{\operatorname{cut}^{\theta_{i}^{\prime}}\left(S_{i}\right)}
$$

Sources $S^{+} \cap S_{i}$ can supply at least $k^{2} / 4$ times the necessary amount
 to sinks $S^{-} \backslash S_{i}$ between $\theta_{i}^{\prime}$ and $\theta_{i+1}$.

- As there are $\leq k^{2} / 4$ source-sink pairs, one pair alone can do the job.
- This source-sink pair can no longer occur in later iterations!


## Bounding the Number of Iterations with Short Jumps



Lemma. For iterations with short jumps: $\theta^{*}-\theta_{i+1} \leq \frac{1}{2}\left(\theta^{*}-\theta_{i}\right)$.

- Thus, by Goemans' Lemma, number of iterations with breakpoint in $\left[\theta_{i}, \theta_{i+1}\right]$ is at most $O(m \log m)$.
- Number of iterations without breakpoint: $O\left(k^{2} \log k+m \log m \log k\right)$ Analysis uses 'ring families', similar to [Goemans, Gupta, Jaillet 2017].


## Overall Running Time

Lemma. The number of iterations is at most $O\left(k^{2} \log k+m \log m \log k\right)$.

## Proof.

- $O\left(k^{2}\right)$ iterations with longest possible jump
- $O(m \log m)$ iterations with short jump and breakpoint
- $O\left(k^{2} \log k+m \log m \log k\right)$ short jumps without breakpoint

Theorem. The overall running time is in $\tilde{O}\left(m^{2} k^{5}+m^{3} k^{3}+m^{3} n\right)$.
Proof. In each iteration we need to solve

- $O(\log k)$ submodular function minimizations, with running time $\tilde{O}\left(m^{2} k^{3}\right)$ each [Lee, Sidford, Wong 2015];
- one quickest $s$ - $t$-flow problem, with running time $\tilde{O}\left(m^{2} n\right)$ [Saho, Shigeno 2017].


## Conclusion

Quickest s-t-Flow Problem
[Saho, Shigeno 2017]
$\tilde{O}\left(m^{2} n\right)$

Evacuation Problem (single source or single sink)
[Schlöter 2018; Kamiyama 2019] $\tilde{O}\left(m^{2} k^{5}+m^{2} n k\right)$
Quickest Transshipment Problem (multiple sources and sinks)
[Hoppe, Tardos 2000]
$\tilde{O}\left(m^{4} k^{15}\right)$
[Schlöter, Sk. 2017]
$\tilde{O}\left(m^{4} k^{14}\right)$
[Schlöter, Sk., Tran 2021]
$\tilde{O}\left(m^{2} k^{5}+m^{3} k^{3}+m^{3} n\right)$

$$
\text { arxiv.org/abs/2108. } 06239
$$

