The polynomial kernel method and sum-of-squares hierarchies for polynomial optimization

Lucas Slot Monique Laurent

November 1, 2021

Polynomial optimization

We consider the problem of computing:

$$f_{\min} := \min_{x \in S} f(x),$$

where:

• $f \in \mathbb{R}[x]$ is a polynomial of degree d

▶ $S = \{x \in \mathbb{R}^n : g_i(x) \ge 0 \text{ for } i \in [m]\}$ is a compact semialgebraic set

Some examples of semialgebraic sets:

Binary hypercube:	$\{-1,1\}^n$	$= \{x: 1 - x_i^2 = 0 ext{ for } i \in [n] \}$
Hypercube:	$[-1,1]^n$	$= \{x: 1 - x_i^2 \ge 0 \text{ for } i \in [n]\}$
Hypersphere:	S^{n-1}	$= \{x: 1 - \ x\ ^2 = 0\}$
Ball:	B^n	$= \{x: 1 - \ x\ ^2 \ge 0\}$
Simplex:	Δ^n	$= \{x : x \ge 0, \ 1 - \sum_i x_i = 0\}$

Examples of polynomial optimization problems

Example (MAXCUT)

For the complete graph K_n with edge-weights $w_{ij} \ge 0$, we have:

MAXCUT
$$(K_n, w) = \max_{x \in [-1,1]^n} \sum_{1 \le i < j \le n} w_{ij} (x_i - x_j)^2.$$

Example (STABLESET)

The stability number of a graph G = ([n], E) can be computed as:

$$\alpha(G) = \max_{x \in \{-1,1\}^n} \sum_{i \in [n]} x_i - \sum_{\{i,j\} \in E} x_i x_j.$$

Example (Motzkin, Straus (1965))

Alternatively, we have:

$$\frac{1}{\alpha(G)} = \min_{x \in \Delta^n} \sum_{i \in [n]} x_i^2 + 2 \sum_{\{i,j\} \in E} x_i x_j.$$

Polynomial optimization (cont.)

- Polynomial optimization is generally intractable
- This motivates the search for efficient bounds on the optimum
- ▶ In this talk: two hierarchies of lower bounds due to Lasserre
- Both are based on relaxing nonnegativity to a sum-of-squares condition.

Definition

A polynomial $p \in \mathbb{R}[x]$ is called a sum of squares if it can be written as:

$$p(x) = p_1(x)^2 + p_2(x)^2 + \ldots + p_k(x)^2.$$

Note that such a polynomial is globally nonnegative. We write $\Sigma[x]$ for the set of all sum-of-squares polynomials.

Two sum-of-squares hierarchies

We can rewrite:

 $f_{\min} = \max\{\lambda \in \mathbb{R} : f - \lambda \in \mathcal{P}(S)\}, \quad \mathcal{P}(S) := \{p : p(x) \ge 0 \text{ for } x \in S\}.$

- Connection between minimization and verifying nonnegativity for polynomials.
- Checking membership of $\mathcal{P}(S)$ is still hard.
- Relax by choosing a smaller and simpler set $Q \subseteq \mathcal{P}(S)$:

$$f_{\min} \ge \max\{\lambda \in \mathbb{R} : f - \lambda \in Q\}$$

• We get a bound $f_{(r)} \leq f_{\min}$ by choosing the quadratic module:

$$\mathcal{Q}_r(S) := \{\sum_{i=0}^m g_i \sigma_i : \sigma_i \in \Sigma[x], \ \deg(g_i \sigma_i) \le 2r\}$$

▶ We get a (stronger) bound $\overline{f}_{(r)} \leq f_{\min}$ by choosing the preordering:

$$\mathcal{T}_r(S) := \{ \sum_{I \subseteq [m]} g_I \sigma_I : \sigma_I \in \Sigma[x], \ \deg(g_I \sigma_I) \le 2r \} \quad (g_I := \prod_{i \in I} g_i)$$

• Membership of $Q_r(S)$ and $T_r(S)$ can be checked with semidefinite programming

Convergence of the hierachies

Recap

• We have two hierarchies of lower bounds on f_{\min} :

$$f_{(r)} \leq f_{(r+1)} \leq \overline{f}_{(r+1)} \leq \overline{f}_{(r+2)} \leq f_{\min}$$

• $f_{(r)}$ and $\overline{f}_{(r)}$ can be computed by solving a semidefinite program

Convergence of the hierachies

- ▶ $f_{(r)} \to f_{\min}$ as $r \to \infty$ for 'compact' S (Putinar's Positivstellensatz)
- ▶ $\overline{f}_{(r)} \rightarrow f_{\min}$ as $r \rightarrow \infty$ for compact S (Schmüdgen's Positivstellensatz)
- Question: Can we quantify this convergence? That is, can we analyze as a function of r the errors:

$$f_{\min} - f_{(r)}$$
 and $f_{\min} - \overline{f}_{(r)}$?

Convergence of the hierarchies

S	relaxation	order of convergence	citation
'compact'	\mathcal{Q}_r	$1/(\log r/c)^c (c>0)$	[Schweighofer, 2004]
compact	\mathcal{T}_r	$1/r^c \qquad (c>0)$	[Nie, Schweighofer, 2007]
$[-1,1]^n$	\mathcal{T}_r	1/r	[de Klerk, Laurent, 2010]
Δ^n	\mathcal{T}_r	1/r	[Kirschner, de Klerk, 2021]
S^{n-1}	$\mathcal{Q}_r \ (=\mathcal{T}_r)$	$1/r^{2}$	[Fang, Fawzi, 2020]
$\{-1,1\}^n$	$\mathcal{Q}_r \ (=\mathcal{T}_r)$	'Krawtchouk'	[Laurent, S ., 2021]
$[-1,1]^n$	\mathcal{T}_r	$1/r^{2}$	[Laurent, S ., 2021]
B^n, Δ^n	\mathcal{T}_r	$1/r^{2}$	[S ., (work in progress)]

The last four results all use the polynomial kernel method

The polynomial kernel method [Fang, Fawzi 2020]

Goal: For a given polynomial $f \ge 0$ on S, show that there exists a small $\lambda > 0$ such that $f + \lambda$ lies in $\mathcal{Q}_r(S)$. This is equivalent to showing $f_{\min} - f_{(r)} \le \lambda$.

• Consider a polynomial kernel K(x, y) on S with:

$$x \mapsto K(x,y) \in \mathcal{Q}_r(S)$$
 for fixed $y \in S$

• After choosing a measure μ on S, the kernel K induces a linear operator \mathbf{K} on $\mathbb{R}[x]$ by:

$$\mathbf{K}p(x) := \int_{S} K(x, y) p(y) d\mu(y) \quad (p \in \mathbb{R}[x])$$

• If $p \ge 0$ on S, then $\mathbf{K}p$ lies in $\mathcal{Q}_r(S)$ (!)

▶ If we choose λ big enough s.t. $\mathbf{K}^{-1}(f + \lambda) \ge 0$ on S, we find that:

$$f + \lambda = \mathbf{K} \underbrace{\mathbf{K}^{-1}(f + \lambda)}_{\geq 0}$$
 lies in $\mathcal{Q}_r(S)$

▶ This immediately implies: $f_{\min} - f_{(r)} \leq \lambda$

The polynomial kernel method (cont.)

Problems

- ► How do we ensure that $x \mapsto K(x, y) \in Q_r(S)$? \rightarrow case-by-case argument
- How do we ensure that $\mathbf{K}^{-1}(f + \lambda) \ge 0$ on S?
 - \rightarrow make sure that $\mathbf{K}\approx \mathrm{Id},$ meaning its eigenvalues are close to 1

Constructing kernels

- On the hypersphere and {-1,1}ⁿ, one can use Fourier analysis/symmetry to reduce to a univariate setting.
- On the unit ball and simplex, one can use closed forms of the Christoffel-Darboux kernel, again reducing to a univariate setting.
- ► On [-1,1]ⁿ, one can use the Jackson kernel, which is a well-known kernel from functional approximation.

▶ Consider the polynomial $f(x) = 1 - x^2 - x^3 + x^4$, which is nonnegative on [-1, 1]

▶ The Jackson kernel of degree r satisfies $x \mapsto K_r(x,y) \in \mathcal{T}_r([-1,1])$

If we set:

$$\mathbf{K}_r p(x) := \int_{-1}^1 K_r(x, y) p(y) d\mu(y),$$

it is known that $\mathbf{K}_r \to \mathrm{Id}$ as $r \to \infty$. To be more precise, its eigenvalues tend to 1 at a rate in $O(1/r^2)$.

• What happens if we apply the inverse operator \mathbf{K}_r^{-1} to $f + \lambda$, setting $\lambda = 0.15$?

An example on $\left[-1,1\right]$

Conclusion

Summary

- Polynomial optimization captures hard combinatorial problems.
- Sum-of-squares hierarchies provide tractable lower bounds on the optimum using semidefinite programming
- The polynomial kernel method allows one to show guarantees on the quality of these bounds in certain special cases
- Examples include the hypersphere, the binary cube the unit box, unit ball and simplex

Open questions

- So far, we mostly have results for the (expensive) bounds based on the preordering T_r . Can we also get results for the bounds based on the quadratic module Q_r ?
- Can we add simple constraints (e.g. linear)?
- Can we extend to the noncommutative setting?