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Polynomial optimization

We consider the problem of computing:

fmin := min
x∈S

f(x),

where:

▶ f ∈ R[x] is a polynomial of degree d

▶ S = {x ∈ Rn : gi(x) ≥ 0 for i ∈ [m]} is a compact semialgebraic set

Some examples of semialgebraic sets:

▶ Binary hypercube: {−1, 1}n = {x : 1− x2
i = 0 for i ∈ [n]}

▶ Hypercube: [−1, 1]n = {x : 1− x2
i ≥ 0 for i ∈ [n]}

▶ Hypersphere: Sn−1 = {x : 1− ∥x∥2 = 0}
▶ Ball: Bn = {x : 1− ∥x∥2 ≥ 0}
▶ Simplex: ∆n = {x : x ≥ 0, 1−

∑
i xi = 0}
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Examples of polynomial optimization problems

Example (MaxCut)

For the complete graph Kn with edge-weights wij ≥ 0, we have:

MaxCut(Kn, w) = max
x∈[−1,1]n

∑
1≤i<j≤n

wij(xi − xj)
2.

Example (StableSet)

The stability number of a graph G = ([n], E) can be computed as:

α(G) = max
x∈{−1,1}n

∑
i∈[n]

xi −
∑

{i,j}∈E

xixj .

Example (Motzkin, Straus (1965))

Alternatively, we have:

1

α(G)
= min

x∈∆n

∑
i∈[n]

x2
i + 2

∑
{i,j}∈E

xixj .
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Polynomial optimization (cont.)

▶ Polynomial optimization is generally intractable

▶ This motivates the search for efficient bounds on the optimum

▶ In this talk: two hierarchies of lower bounds due to Lasserre

▶ Both are based on relaxing nonnegativity to a sum-of-squares condition.

Definition
A polynomial p ∈ R[x] is called a sum of squares if it can be written as:

p(x) = p1(x)
2 + p2(x)

2 + . . .+ pk(x)
2.

Note that such a polynomial is globally nonnegative. We write Σ[x] for the set of all
sum-of-squares polynomials.
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Two sum-of-squares hierarchies

We can rewrite:

fmin = max{λ ∈ R : f − λ ∈ P(S)}, P(S) := {p : p(x) ≥ 0 for x ∈ S}.

▶ Connection between minimization and verifying nonnegativity for polynomials.

▶ Checking membership of P(S) is still hard.

▶ Relax by choosing a smaller and simpler set Q ⊆ P(S):

fmin ≥ max{λ ∈ R : f − λ ∈ Q}

▶ We get a bound f(r) ≤ fmin by choosing the quadratic module:

Qr(S) := {
m∑
i=0

giσi : σi ∈ Σ[x], deg(giσi) ≤ 2r}

▶ We get a (stronger) bound f (r) ≤ fmin by choosing the preordering:

Tr(S) := {
∑

I⊆[m]

gIσI : σI ∈ Σ[x], deg(gIσI) ≤ 2r} (gI :=
∏
i∈I

gi)

▶ Membership of Qr(S) and Tr(S) can be checked with semidefinite programming
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Convergence of the hierachies

Recap

▶ We have two hierarchies of lower bounds on fmin:

f(r) ≤ f(r+1) ≤ f (r+1) ≤ f (r+2) ≤ fmin

▶ f(r) and f (r) can be computed by solving a semidefinite program

Convergence of the hierachies

▶ f(r) → fmin as r → ∞ for ’compact’ S (Putinar’s Positivstellensatz)

▶ f (r) → fmin as r → ∞ for compact S (Schmüdgen’s Positivstellensatz)

▶ Question: Can we quantify this convergence? That is, can we analyze as a function
of r the errors:

fmin − f(r) and fmin − f (r) ?
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Convergence of the hierarchies

S relaxation order of convergence citation

‘compact’ Qr 1/(log r/c)c (c > 0) [Schweighofer, 2004]

compact Tr 1/rc (c > 0) [Nie, Schweighofer, 2007]

[−1, 1]n Tr 1/r [de Klerk, Laurent, 2010]

∆n Tr 1/r [Kirschner, de Klerk, 2021]

Sn−1 Qr (= Tr) 1/r2 [Fang, Fawzi, 2020]

{−1, 1}n Qr (= Tr) ’Krawtchouk’ [Laurent, S., 2021]

[−1, 1]n Tr 1/r2 [Laurent, S., 2021]

Bn,∆n Tr 1/r2 [S., (work in progress)]

The last four results all use the polynomial kernel method
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The polynomial kernel method [Fang, Fawzi 2020]

Goal: For a given polynomial f ≥ 0 on S, show that there exists a small λ > 0 such
that f + λ lies in Qr(S). This is equivalent to showing fmin − f(r) ≤ λ.

▶ Consider a polynomial kernel K(x, y) on S with:

x 7→ K(x, y) ∈ Qr(S) for fixed y ∈ S

▶ After choosing a measure µ on S, the kernel K induces a linear operator K on
R[x] by:

Kp(x) :=

∫
S

K(x, y)p(y)dµ(y) (p ∈ R[x])

▶ If p ≥ 0 on S, then Kp lies in Qr(S) (!)

▶ If we choose λ big enough s.t. K−1(f + λ) ≥ 0 on S, we find that:

f + λ = KK−1(f + λ)︸ ︷︷ ︸
≥0

lies in Qr(S)

▶ This immediately implies: fmin − f(r) ≤ λ
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The polynomial kernel method (cont.)

Problems

▶ How do we ensure that x 7→ K(x, y) ∈ Qr(S)?
→ case-by-case argument

▶ How do we ensure that K−1(f + λ) ≥ 0 on S?
→ make sure that K ≈ Id, meaning its eigenvalues are close to 1

Constructing kernels

▶ On the hypersphere and {−1, 1}n, one can use Fourier analysis/symmetry to
reduce to a univariate setting.

▶ On the unit ball and simplex, one can use closed forms of the Christoffel-Darboux
kernel, again reducing to a univariate setting.

▶ On [−1, 1]n, one can use the Jackson kernel, which is a well-known kernel from
functional approximation.
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An example on [−1, 1]

▶ Consider the polynomial f(x) = 1− x2 − x3 + x4, which is nonnegative on [−1, 1]

▶ The Jackson kernel of degree r satisfies x 7→ Kr(x, y) ∈ Tr([−1, 1])

▶ If we set:

Krp(x) :=

∫ 1

−1

Kr(x, y)p(y)dµ(y),

it is known that Kr → Id as r → ∞. To be more precise, its eigenvalues tend to 1
at a rate in O(1/r2).

▶ What happens if we apply the inverse operator K−1
r to f + λ, setting λ = 0.15?
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An example on [−1, 1]
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Conclusion

Summary

▶ Polynomial optimization captures hard combinatorial problems.

▶ Sum-of-squares hierarchies provide tractable lower bounds on the optimum using
semidefinite programming

▶ The polynomial kernel method allows one to show guarantees on the quality of
these bounds in certain special cases

▶ Examples include the hypersphere, the binary cube the unit box, unit ball and
simplex

Open questions

▶ So far, we mostly have results for the (expensive) bounds based on the preordering
Tr. Can we also get results for the bounds based on the quadratic module Qr?

▶ Can we add simple constraints (e.g. linear)?

▶ Can we extend to the noncommutative setting?
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