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Polynomial optimization

We consider the problem of computing:
fmin = I;gg f(w):

where:
» f € R[x] is a polynomial of degree d
> S={z€R":gi(x) >0 foriec [m]}is a compact semialgebraic set

Some examples of semialgebraic sets:

» Binary hypercube: {-1,1}" ={z:1—z?=0foric[n]}

> Hypercube: [-1,1]" ={z:1—2?>0foric [n]}
» Hypersphere: st ={z:1—|z|* =0}
> Ball: B ={z:1—|=z|* >0}
> Simplex: A" ={z:2>0, 1->,2; =0}
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Examples of polynomial optimization problems

Example (MaxCur)

For the complete graph K, with edge-weights w;; > 0, we have:
MAXCUT(Kp,w) = max Z wij(zi — x5)2.

cl-11n
S o

Example (STABLESET)
The stability number of a graph G = ([n], F) can be computed as:

a(G@) = xe?i%?{l}" Z T — Z TiTj.

i€[n] {i,j}€E

Example (Motzkin, Straus (1965))

Alternatively, we have:

a(G :zrglAn le—i—Z Z TiTj.

i€[n] {i,j}eE
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Polynomial optimization (cont.)

» Polynomial optimization is generally intractable

» This motivates the search for efficient bounds on the optimum

» In this talk: two hierarchies of lower bounds due to Lasserre

» Both are based on relaxing nonnegativity to a sum-of-squares condition.
Definition
A polynomial p € R[z] is called a sum of squares if it can be written as:

p(@) = p1(2)* +p2(2)” + ...+ pr(2)”.

Note that such a polynomial is globally nonnegative. We write 3[xz] for the set of all
sum-of-squares polynomials.
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Two sum-of-squares hierarchies

We can rewrite:

fmin =max{A e R: f—XeP(S)}, P(S):={p:p(x)>0forze S}

v

Connection between minimization and verifying nonnegativity for polynomials.
Checking membership of P(.S) is still hard.
Relax by choosing a smaller and simpler set @ C P(S):

Sfmin > max{A\€R: f—AeQ}

vy

v

We get a bound f(;;y < fmin by choosing the quadratic module:

Q,(8) :={>_ gios : 0: € S[a], deg(gios) < 2r}
i=0

v

We get a (stronger) bound ?(r) < fmin by choosing the preordering:

To(8):={)_ gror:or € La], deg(gror) <2r} (91:=]] 1)

1C[m] iel

» Membership of Q,(S) and 7,(S) can be checked with semidefinite programming
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Convergence of the hierachies

Recap

» We have two hierarchies of lower bounds on fmin:

f(r) < f(’V‘Jrl) < ?(r-}—l) < ?(»,u,.g) < fmin

> fey and ?(T) can be computed by solving a semidefinite program

Convergence of the hierachies
» f(ry = fmin as 7 — oo for 'compact’ S (Putinar's Positivstellensatz)
> f(r) — fmin as r — oo for compact S (Schmiidgen's Positivstellensatz)

» Question: Can we quantify this convergence? That is, can we analyze as a function
of r the errors:

fmin - f(r) and fmin - ?(1") ?
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Convergence of the hierarchies
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The last four results all use the polynomial kernel method
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The polynomial kernel method [Fang, Fawzi 2020]

Goal: For a given polynomial f > 0 on S, show that there exists a small A > 0 such
that f + A lies in Q,.(S). This is equivalent to showing fumin — fir) < A.

» Consider a polynomial kernel K(x,y) on S with:
z = K(z,y) € Q,(5) for fixed y € S

» After choosing a measure i on S, the kernel K induces a linear operator K on
R[z] by:

Kp(z) = / K(z,9)p(y)du(y) (p € Rla])

> If p>0on S, then Kp lies in Q.(5) (!)
> If we choose A big enough s.t. K~'(f + ) > 0 on S, we find that:

FHA=KK '(f+ ) liesin Q,.(S)
———

>0

» This immediately implies: fuin — f(ry < A
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The polynomial kernel method (cont.)

Problems

» How do we ensure that z — K(z,y) € Q,(5)?
— case-by-case argument

> How do we ensure that K™ (f + ) > 0 on S?
— make sure that K ~ Id, meaning its eigenvalues are close to 1

Constructing kernels
» On the hypersphere and {—1,1}", one can use Fourier analysis/symmetry to
reduce to a univariate setting.

» On the unit ball and simplex, one can use closed forms of the Christoffel-Darboux
kernel, again reducing to a univariate setting.

» On [—1,1]", one can use the Jackson kernel, which is a well-known kernel from
functional approximation.
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An example on [—1, 1]

v

Consider the polynomial f(x) =1 — x* — 2® + 2*, which is nonnegative on [—1,1]
The Jackson kernel of degree r satisfies z — K, (x,y) € T-([—1,1])

If we set: .

K,p(x) = [ K (z,y)p(y)du(y),

-1
it is known that K, — Id as » — oo. To be more precise, its eigenvalues tend to 1
at a rate in O(1/r?).

What happens if we apply the inverse operator K. ! to f + X, setting A = 0.157?

10/12



An example on [—1,1]

3.01 — y=0+A
y=K5f(x) + A
-—- y=K7f(x) +A
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Conclusion

Summary
» Polynomial optimization captures hard combinatorial problems.

» Sum-of-squares hierarchies provide tractable lower bounds on the optimum using
semidefinite programming

» The polynomial kernel method allows one to show guarantees on the quality of
these bounds in certain special cases

» Examples include the hypersphere, the binary cube the unit box, unit ball and
simplex

Open questions

» So far, we mostly have results for the (expensive) bounds based on the preordering
T-. Can we also get results for the bounds based on the quadratic module Q,.?

» Can we add simple constraints (e.g. linear)?

» Can we extend to the noncommutative setting?
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