The polynomial kernel method and sum-of-squares hierarchies for polynomial optimization

Lucas Slot Monique Laurent

November 1, 2021

Polynomial optimization

We consider the problem of computing:

$$
f_{\min }:=\min _{x \in S} f(x),
$$

where:

- $f \in \mathbb{R}[x]$ is a polynomial of degree d
- $S=\left\{x \in \mathbb{R}^{n}: g_{i}(x) \geq 0\right.$ for $\left.i \in[m]\right\}$ is a compact semialgebraic set

Some examples of semialgebraic sets:

- Binary hypercube: $\quad\{-1,1\}^{n}=\left\{x: 1-x_{i}^{2}=0\right.$ for $\left.i \in[n]\right\}$
- Hypercube: $\quad[-1,1]^{n}=\left\{x: 1-x_{i}^{2} \geq 0\right.$ for $\left.i \in[n]\right\}$
- Hypersphere:
- Ball:
$S^{n-1}=\left\{x: 1-\|x\|^{2}=0\right\}$
- Simplex:
$B^{n} \quad=\left\{x: 1-\|x\|^{2} \geq 0\right\}$
$\Delta^{n} \quad=\left\{x: x \geq 0,1-\sum_{i} x_{i}=0\right\}$

Examples of polynomial optimization problems

Example (MaxCut)

For the complete graph K_{n} with edge-weights $w_{i j} \geq 0$, we have:

$$
\operatorname{MaxCut}\left(K_{n}, w\right)=\max _{x \in[-1,1]^{n}} \sum_{1 \leq i<j \leq n} w_{i j}\left(x_{i}-x_{j}\right)^{2} .
$$

Example (StableSet)
The stability number of a graph $G=([n], E)$ can be computed as:

$$
\alpha(G)=\max _{x \in\{-1,1\}^{n}} \sum_{i \in[n]} x_{i}-\sum_{\{i, j\} \in E} x_{i} x_{j} .
$$

Example (Motzkin, Straus (1965))
Alternatively, we have:

$$
\frac{1}{\alpha(G)}=\min _{x \in \Delta^{n}} \sum_{i \in[n]} x_{i}^{2}+2 \sum_{\{i, j\} \in E} x_{i} x_{j} .
$$

Polynomial optimization (cont.)

- Polynomial optimization is generally intractable
- This motivates the search for efficient bounds on the optimum
- In this talk: two hierarchies of lower bounds due to Lasserre
- Both are based on relaxing nonnegativity to a sum-of-squares condition.

Definition

A polynomial $p \in \mathbb{R}[x]$ is called a sum of squares if it can be written as:

$$
p(x)=p_{1}(x)^{2}+p_{2}(x)^{2}+\ldots+p_{k}(x)^{2} .
$$

Note that such a polynomial is globally nonnegative. We write $\Sigma[x]$ for the set of all sum-of-squares polynomials.

Two sum-of-squares hierarchies

We can rewrite:

$$
f_{\min }=\max \{\lambda \in \mathbb{R}: f-\lambda \in \mathcal{P}(S)\}, \quad \mathcal{P}(S):=\{p: p(x) \geq 0 \text { for } x \in S\} .
$$

- Connection between minimization and verifying nonnegativity for polynomials.
- Checking membership of $\mathcal{P}(S)$ is still hard.
- Relax by choosing a smaller and simpler set $Q \subseteq \mathcal{P}(S)$:

$$
f_{\min } \geq \max \{\lambda \in \mathbb{R}: f-\lambda \in Q\}
$$

- We get a bound $f_{(r)} \leq f_{\min }$ by choosing the quadratic module:

$$
\mathcal{Q}_{r}(S):=\left\{\sum_{i=0}^{m} g_{i} \sigma_{i}: \sigma_{i} \in \Sigma[x], \operatorname{deg}\left(g_{i} \sigma_{i}\right) \leq 2 r\right\}
$$

- We get a (stronger) bound $\bar{f}_{(r)} \leq f_{\text {min }}$ by choosing the preordering:

$$
\mathcal{T}_{r}(S):=\left\{\sum_{I \subseteq[m]} g_{I} \sigma_{I}: \sigma_{I} \in \Sigma[x], \operatorname{deg}\left(g_{I} \sigma_{I}\right) \leq 2 r\right\} \quad\left(g_{I}:=\prod_{i \in I} g_{i}\right)
$$

- Membership of $\mathcal{Q}_{r}(S)$ and $\mathcal{T}_{r}(S)$ can be checked with semidefinite programming

Convergence of the hierachies

Recap

- We have two hierarchies of lower bounds on $f_{\min }$:

$$
f_{(r)} \leq f_{(r+1)} \leq \bar{f}_{(r+1)} \leq \bar{f}_{(r+2)} \leq f_{\min }
$$

- $f_{(r)}$ and $\bar{f}_{(r)}$ can be computed by solving a semidefinite program

Convergence of the hierachies

- $f_{(r)} \rightarrow f_{\text {min }}$ as $r \rightarrow \infty$ for 'compact' S (Putinar's Positivstellensatz)
- $\bar{f}_{(r)} \rightarrow f_{\min }$ as $r \rightarrow \infty$ for compact S (Schmüdgen's Positivstellensatz)
- Question: Can we quantify this convergence? That is, can we analyze as a function of r the errors:

$$
f_{\min }-f_{(r)} \quad \text { and } \quad f_{\min }-\bar{f}_{(r)} \quad ?
$$

Convergence of the hierarchies

S	relaxation	order of convergence		citation
'compact'	\mathcal{Q}_{r}	$1 /(\log r / c)^{c}$	$(c>0)$	[Schweighofer, 2004]
compact	\mathcal{T}_{r}	$1 / r^{c}$	$(c>0)$	[Nie, Schweighofer, 2007]
$[-1,1]^{n}$	\mathcal{T}_{r}	$1 / r$	[de Klerk, Laurent, 2010]	
Δ^{n}	\mathcal{T}_{r}	$1 / r$	[Kirschner, de Klerk, 2021]	
S^{n-1}	$\mathcal{Q}_{r}\left(=\mathcal{T}_{r}\right)$	$1 / r^{2}$	[Fang, Fawzi, 2020]	
$\{-1,1\}^{n}$	$\mathcal{Q}_{r}\left(=\mathcal{T}_{r}\right)$	'Krawtchouk'	[Laurent, S., 2021]	
$[-1,1]^{n}$	\mathcal{T}_{r}	$1 / r^{2}$	[Laurent, S., 2021]	
B^{n}, Δ^{n}	\mathcal{T}_{r}	$1 / r^{2}$	[S., (work in progress)]	

The last four results all use the polynomial kernel method

Goal: For a given polynomial $f \geq 0$ on S, show that there exists a small $\lambda>0$ such that $f+\lambda$ lies in $\mathcal{Q}_{r}(S)$. This is equivalent to showing $f_{\min }-f_{(r)} \leq \lambda$.

- Consider a polynomial kernel $K(x, y)$ on S with:

$$
x \mapsto K(x, y) \in \mathcal{Q}_{r}(S) \text { for fixed } y \in S
$$

- After choosing a measure μ on S, the kernel K induces a linear operator \mathbf{K} on $\mathbb{R}[x]$ by:

$$
\mathbf{K} p(x):=\int_{S} K(x, y) p(y) d \mu(y) \quad(p \in \mathbb{R}[x])
$$

- If $p \geq 0$ on S, then $\mathbf{K} p$ lies in $\mathcal{Q}_{r}(S)$ (!)
- If we choose λ big enough s.t. $\mathbf{K}^{-1}(f+\lambda) \geq 0$ on S, we find that:

$$
f+\lambda=\mathbf{K} \underbrace{\mathbf{K}^{-1}(f+\lambda)}_{\geq 0} \text { lies in } \mathcal{Q}_{r}(S)
$$

- This immediately implies: $f_{\text {min }}-f_{(r)} \leq \lambda$

Problems

- How do we ensure that $x \mapsto K(x, y) \in \mathcal{Q}_{r}(S)$?
\rightarrow case-by-case argument
- How do we ensure that $\mathbf{K}^{-1}(f+\lambda) \geq 0$ on S ?
\rightarrow make sure that $\mathrm{K} \approx \mathrm{Id}$, meaning its eigenvalues are close to 1
Constructing kernels
- On the hypersphere and $\{-1,1\}^{n}$, one can use Fourier analysis/symmetry to reduce to a univariate setting.
- On the unit ball and simplex, one can use closed forms of the Christoffel-Darboux kernel, again reducing to a univariate setting.
- On $[-1,1]^{n}$, one can use the Jackson kernel, which is a well-known kernel from functional approximation.

An example on $[-1,1]$

- Consider the polynomial $f(x)=1-x^{2}-x^{3}+x^{4}$, which is nonnegative on $[-1,1]$
- The Jackson kernel of degree r satisfies $x \mapsto K_{r}(x, y) \in \mathcal{T}_{r}([-1,1])$
- If we set:

$$
\mathbf{K}_{r} p(x):=\int_{-1}^{1} K_{r}(x, y) p(y) d \mu(y),
$$

it is known that $\mathbf{K}_{r} \rightarrow$ Id as $r \rightarrow \infty$. To be more precise, its eigenvalues tend to 1 at a rate in $O\left(1 / r^{2}\right)$.

- What happens if we apply the inverse operator \mathbf{K}_{r}^{-1} to $f+\lambda$, setting $\lambda=0.15$?

An example on $[-1,1]$

Conclusion

Summary

- Polynomial optimization captures hard combinatorial problems.
- Sum-of-squares hierarchies provide tractable lower bounds on the optimum using semidefinite programming
- The polynomial kernel method allows one to show guarantees on the quality of these bounds in certain special cases
- Examples include the hypersphere, the binary cube the unit box, unit ball and simplex

Open questions

- So far, we mostly have results for the (expensive) bounds based on the preordering \mathcal{T}_{r}. Can we also get results for the bounds based on the quadratic module \mathcal{Q}_{r} ?
- Can we add simple constraints (e.g. linear)?
- Can we extend to the noncommutative setting?

