On the diameter and the circuit-diameter of polytopes

Laura Sanita

Department of Mathematics and Computer Science
TU Eindhoven (Netherlands)

Dutch seminar on optimization,
December 2020



The Simplex Algorithm

e The Simplex algorithm is an extremely popular method to solve Linear
Programs (LP) (named as one of the “top 10 algorithms” of the 20th century).



The Simplex Algorithm
e The Simplex algorithm is an extremely popular method to solve Linear
Programs (LP) (named as one of the “top 10 algorithms” of the 20th century).

e |t exploits the fact that an optimal solution of an LP defined on a polytope
can be found at one of its extreme points



The Simplex Algorithm
e The Simplex algorithm is an extremely popular method to solve Linear
Programs (LP) (named as one of the “top 10 algorithms” of the 20th century).

e |t exploits the fact that an solution of an LP defined on a polytope
can be found at one of its extreme points

e Simplex Algorithm’s idea: move from an extreme point to an improving
adjacent one, until the optimum is found!



The Simplex Algorithm
e The Simplex algorithm is an extremely popular method to solve Linear
Programs (LP) (named as one of the “top 10 algorithms” of the 20th century).

e |t exploits the fact that an solution of an LP defined on a polytope
can be found at one of its extreme points

e Simplex Algorithm’s idea: move from an extreme point to an improving
adjacent one, until the optimum is found!



The Simplex Algorithm
e The Simplex algorithm is an extremely popular method to solve Linear
Programs (LP) (named as one of the “top 10 algorithms” of the 20th century).

e |t exploits the fact that an solution of an LP defined on a polytope
can be found at one of its extreme points

e Simplex Algorithm’s idea: move from an extreme point to an improving
adjacent one, until the optimum is found!

e The operation of moving between extreme points is called pivoting.
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e Many pivoting rules have been proposed in the literature in the past decades

» Dantzig's rule » Random pivot rules

» Greatest improvement » Cunningham'’s pivot rule
» Bland’s rule » Zadeh's pivot rule

> Steepest-edge > ...

...exhibiting a worst-case (sub)exponential behaviour for the Simplex algorithm
[Klee&Minty'72, Jeroslow'73, Avis& Chvatal'78, Goldfarb&Sit'79,
Friedmann&Hansen&Zwick'11, Friedmann'l1, Avis&Friedmann'17,
Disser&Hopp'19]

e The Simplex algorithm (with e.g. Dantzig's rule) can ‘implicitly’ solve hard
problems [Adler,Papadimitriou&Rubinstein’14, Skutella&Disser'15,
Fearnley&Savani’'15]
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Is there a polynomial pivoting rule?

e After more than 70 years of use/studies, we still do not know the answer!

e LPs can be solved in polynomial-time using other algorithms (Ellipsoid
algorithm [Khachiyan'79], Interior-point methods [Karmarkar'84])

» However, such algorithms run in weakly polynomial-time
(poly(d, n,log L) where L := largest coefficient)

e The existence of a polynomial pivoting rule could imply a strongly
polynomial-time algorithm for solving LPs
(# elementary operations polynomial in the number of different input values)

» Mentioned as one of the mathematical
problems for next century by Fields
Medalist S. Smale in 2000

Related Question: What is the maximum length of a ‘shortest path’ between
two extreme points of a polytope?
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Diameter of polytopes

e We can naturally associate an undirected graph to a given polytope P C R
» the vertices correspond to the extreme points of P

» the edges are given by the 1-dimensional faces of P

e The diameter of P is the maximum value of a shortest path between a pair of
vertices on this graph (1-skeleton of P).

Remark: In order for a polynomial pivoting rule to exist, a necessary condition
is a polynomial bound on the value of the diameter!
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e A famous conjecture, proposed by [Hirsch'57], was the Hirsch conjecture,
stating that the diameter of a d-dimensional polytope with n facets is < n—d.

» Disproved first for unbounded polyhedra [Klee&Walkup'67]
» ..and later for bounded ones [Santos'12]
> holds e.g. for for 0/1-polytopes [Naddef'89]

e Importantly, its polynomial-version is still open:
Is the diameter of a d-dimensional polytope with n facets bounded by f(d, n),

for some polynomial function f(d, n)?

e Best bound: ~ (n — d)e0d/ed)  [g,kegawa'18]
(strengthening [Kalai&Kleitman’'92,
Todd'14, Sukegawa&Kitahara'15] )

e The diameter of a polytope has been studied from many different
perspectives...
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Diameter of polytopes

e Many researchers studied the diameter of polytopes describing feasible
solutions of combinatorial optimization problems (and their relaxations).

— Just to mention a few: Matching, TSP, Flow and Transportation,
Edge-cover, Stable marriage, Stable set, Partition, and many more. ..

e The diameter of a polytope has been investigated also from a computational
complexity point of view.

> [Frieze& Teng'94]: Computing the diameter of a polytope is weakly
NP-hard.

> [S.'18]: Computing the diameter of a polytope is strongly NP-hard.
Computing a pair of vertices at maximum distance is APX-hard.

— This latter result holds for half-integral polytopes with a very easy
description (fractional matching polytope).



In this talk

e Characterization of the diameter of the fractional matching polytope

e Discuss hardness and algorithmic implications

e Recent generalization: circuit-diameter

e Final remarks and open questions
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e The matching polytope (Pu) is given by the convex hull of characteristic
vectors of matchings of G.

G=(V,E)

(0, 1,0)
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e As a consequence, they showed that the diameter of Py is equal to the size
of a maximum matching of G, i.e.
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The matching polytope

e [Edmonds'65] gave an LP-description of Ppy:

Pu:={x€ Rgo : EeeE:eijG <1 Vv E V,
Seceis Xe < 5 VS C V1 [S] odd}.

2

e [Balinski& Russakoff'74,Chvatal’75]: Two vertices of Py are adjacent iff the
symmetric difference of the corresponding matchings induces one component

|1

(a) (6)

e As a consequence, they showed that the diameter of Py is equal to the size
of a maximum matching of G, i.e.

diameter(Py) =  max_ {17x} — computable in polynomial time
x€vertices(Pp)
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The fractional matching polytope

e [Balinski'70]: Pem is a half-integral polytope. For a vertex x of Peum
> the edges {e € E : xc = 1} — induce a matching (M)
> the edges {e € E : xe = 1} — induce a collection of odd cycles (Cx)

——o RN
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e Our characterization of the diameter is as follows:

Theorem [S.’18]

. c.
dlameter(PFM) = maxxevertices(PFM){lTX P %}

e Obs: For a bipartite graph Cx =0 — diameter(Pem) = diameter(Pu).
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e To prove the result, we show that the value maxxe‘,e,t,-ces(pFM){lTX + %}
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(i) is a upper bound on the diameter of Pry

e First question: How do we move from one vertex to another? Rely on some
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Note: In all cases, (# of degree-1 nodes + # of odd cycles ) <2
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Lower bound

e Let w be any vertex.
o Claim: the distance between w and the O-vertex is > 17w + ‘CT“”'
> Note: (# of degree-1 nodes + # of odd cycles ) = 2(1TW + ‘CTWl)

> Show: At each move, the above quantity can decrease by at most 2
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e The selection of the moves to take is not straightforward. Recall the
adjacencies we mentioned:

1T LD 7 7

/ —o o—o .:,‘x... / —o o—o
*—e -t *—e
© »
e Note: An easy “attempt” to go from z to y would be to define:
» (i) a path from z to a 0/1-vertex Z by removing one C € C, at each step
» (ii) a path from y to a 0/1-vertex y by removing one C € C, at each step
» (iii) a path from Z to y (e.g. using the l-skeleton of Py)

...but unfortunately this may lead to paths longer than the claimed bound!
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e Given two distinct vertices z and y of Prum, we

» Define a path of the form:

z— w — y for some “maximal” vertex w of

Prm satisfying: support(w) C support(z) U support(y)

> Rely on a token argument: assign a token of value
each cycle C in support(w)
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Upper bound

e Given two distinct vertices z and y of Prum, we

» Define a path of the form:

z— w — y for some “maximal” vertex w of

Prm satisfying: support(w) C support(z) U support(y)

> Rely on a token argument: assign a token of value

1 to each node v and

each cycle C in support(w) (Note: total token value = 17w + 'c—;l)

» Show: each move on the path can be payed using two tokens of

nodes/cycles
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Theorem [S.’18]
Computing the diameter of a polytope is a strongly NP-hard problem.

e Reduction from the (strongly) NP-hard problem Partition Into Triangles.
> Given: A graph G = (V,E)
» Decide: V can be partitioned into {V4,..., V4}: Vi, V; induces a triangle

e With some extra effort, we can strengthen the result to show APX-hardness.
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Hardness

e Do the previous results have some hardness implication on the performance
Simplex algorithm? Not in the current form... but some implications can be
derived easily with little extra work.

Proposition [De Loera, Kafer, S.’19]
Given a vertex of a bipartite matching polytope and an objective function,

deciding if there exists a neighboring optimal vertex is NP-hard.

e Note: Similar observation in [Barahona&Tardos'89] for circulation polytope.

Corollary

Finding the shortest monotone path to an optimal solution is NP-hard, and
hard-to-approximate within a factor better than 2.
e Consequences (unless P=NP):

» For any efficient pivoting rule, an edge-walking algorithm (like Simplex)
can't reach the optimum with a min number of augmentations.
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e One interesting way to enlarge the set of directions is to look at circuits:
all potential edge-directions that can arise by translating some facets of P.

e Circuits have a long history [Rockafellar'69], [Graver'75], [Bland'76]. Since
then, appeared in many papers on linear/integer optimization...

e [Borgwardt,Finhold,Hemmecke'14] formalized the notion of circuit-diameter.

Circuit-diameter: max-value of a shortest path between two extreme points,
assuming that at any given point we can move maximally along any circuit.
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e This (more powerful) notion of diameters can be used to get new insights on
long-standing conjectures in the literature.

e [De Loera, Hemmecke, Lee'15] studied some circuit-augmentation algorithms
for rational LPs in equality form based on circuits:
» moving maximally along the circuit that yields the greatest improvement,
one reaches the optimum in (weakly) polynomially many steps!
(— in contrast w.r.t. the Simplex!)

e As a corollary, we get a (weakly) polynomial bound on the circuit-diameter of
rational polyhedra.

Corollary [De Loera, Kafer, S."19]

There exists a polynomial function f(m, «) that bounds the circuit-diameter
of any rational polyhedron P = {x € R" : Ax = b, Bx < d} with m constraints
and maximum encoding length of a coefficient equal to .
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Interesting aspects

e In fact, this is the case for 0/1-polytopes!

Def. For a given extreme point x of an LP and objective function vector c,

a steepest-edge direction g is an edge-direction incident at x maximizing Hcgili

Thm [De Loera, Kafer, S.’19]

For 0/1-LPs, moving along a steepest-edge yields an optimal solution from an
initial extreme point in a strongly-polynomial number of augmentations.

Proof idea:

» Main ingredient: Showing that moving along a steepest-edge direction
yields an n-approximation of moving along a greatest-improvement circuit.

» Improve the analysis relying on the technique of [Frank, Tardos'87], to
make the above number strongly polynomial. (I
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e Main questions:
» |s the polynomial-Hirsch conjecture true?

» Is there a polynomial pivoting rule for the Simplex algorithm?

e All hardness results shown before are for non simple polytopes...

» What is the complexity of computing the diameter of a simple polytope?
(Mentioned in the survey of [Kaibel&Pfetsch'03])

e On circuits:
» (Approximation) algorithms for selecting circuits?

» What is the complexity of computing the circuit-diameter of a polytope?

Thank you!







