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The Simplex Algorithm

• The Simplex algorithm is an extremely popular method to solve Linear
Programs (LP) (named as one of the “top 10 algorithms” of the 20th century).

• It exploits the fact that an optimal solution of an LP defined on a polytope
can be found at one of its extreme points

• Simplex Algorithm’s idea: move from an extreme point to an improving
adjacent one, until the optimum is found!

• The operation of moving between extreme points is called pivoting.
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Pivoting

• Clearly, the path followed by the algorithm depends on the pivoting rule:
How do we choose the next (improving) extreme point?

• Dantzig’s pivoting rule: move along the edge that “seems” more promising in
term of cost-function improvement

I [Klee & Minty’72] showed that
pivoting according to that rule
requires an exponential in d
number of steps.

• Other pivoting rules?
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Pivoting

• Many pivoting rules have been proposed in the literature in the past decades

I Dantzig’s rule

I Greatest improvement

I Bland’s rule

I Steepest-edge

I Random pivot rules

I Cunningham’s pivot rule

I Zadeh’s pivot rule

I . . .

...exhibiting a worst-case (sub)exponential behaviour for the Simplex algorithm
[Klee&Minty’72, Jeroslow’73, Avis&Chvàtal’78, Goldfarb&Sit’79,
Friedmann&Hansen&Zwick’11, Friedmann’11, Avis&Friedmann’17,
Disser&Hopp’19]

• The Simplex algorithm (with e.g. Dantzig’s rule) can ‘implicitly’ solve hard
problems [Adler,Papadimitriou&Rubinstein’14, Skutella&Disser’15,
Fearnley&Savani’15]
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Is there a polynomial pivoting rule?

• After more than 70 years of use/studies, we still do not know the answer!

• LPs can be solved in polynomial-time using other algorithms (Ellipsoid
algorithm [Khachiyan’79], Interior-point methods [Karmarkar’84])

I However, such algorithms run in weakly polynomial-time
(poly(d , n, log L) where L := largest coefficient)

• The existence of a polynomial pivoting rule could imply a strongly
polynomial-time algorithm for solving LPs
(# elementary operations polynomial in the number of different input values)

I Mentioned as one of the mathematical
problems for next century by Fields
Medalist S. Smale in 2000

Related Question: What is the maximum length of a ‘shortest path’ between
two extreme points of a polytope?



Is there a polynomial pivoting rule?

• After more than 70 years of use/studies, we still do not know the answer!

• LPs can be solved in polynomial-time using other algorithms (Ellipsoid
algorithm [Khachiyan’79], Interior-point methods [Karmarkar’84])

I However, such algorithms run in weakly polynomial-time
(poly(d , n, log L) where L := largest coefficient)

• The existence of a polynomial pivoting rule could imply a strongly
polynomial-time algorithm for solving LPs
(# elementary operations polynomial in the number of different input values)

I Mentioned as one of the mathematical
problems for next century by Fields
Medalist S. Smale in 2000

Related Question: What is the maximum length of a ‘shortest path’ between
two extreme points of a polytope?



Is there a polynomial pivoting rule?

• After more than 70 years of use/studies, we still do not know the answer!

• LPs can be solved in polynomial-time using other algorithms (Ellipsoid
algorithm [Khachiyan’79], Interior-point methods [Karmarkar’84])

I However, such algorithms run in weakly polynomial-time
(poly(d , n, log L) where L := largest coefficient)

• The existence of a polynomial pivoting rule could imply a strongly
polynomial-time algorithm for solving LPs
(# elementary operations polynomial in the number of different input values)

I Mentioned as one of the mathematical
problems for next century by Fields
Medalist S. Smale in 2000

Related Question: What is the maximum length of a ‘shortest path’ between
two extreme points of a polytope?



Is there a polynomial pivoting rule?

• After more than 70 years of use/studies, we still do not know the answer!

• LPs can be solved in polynomial-time using other algorithms (Ellipsoid
algorithm [Khachiyan’79], Interior-point methods [Karmarkar’84])

I However, such algorithms run in weakly polynomial-time
(poly(d , n, log L) where L := largest coefficient)

• The existence of a polynomial pivoting rule could imply a strongly
polynomial-time algorithm for solving LPs
(# elementary operations polynomial in the number of different input values)

I Mentioned as one of the mathematical
problems for next century by Fields
Medalist S. Smale in 2000

Related Question: What is the maximum length of a ‘shortest path’ between
two extreme points of a polytope?



Is there a polynomial pivoting rule?

• After more than 70 years of use/studies, we still do not know the answer!

• LPs can be solved in polynomial-time using other algorithms (Ellipsoid
algorithm [Khachiyan’79], Interior-point methods [Karmarkar’84])

I However, such algorithms run in weakly polynomial-time
(poly(d , n, log L) where L := largest coefficient)

• The existence of a polynomial pivoting rule could imply a strongly
polynomial-time algorithm for solving LPs
(# elementary operations polynomial in the number of different input values)

I Mentioned as one of the mathematical
problems for next century by Fields
Medalist S. Smale in 2000

Related Question: What is the maximum length of a ‘shortest path’ between
two extreme points of a polytope?



Is there a polynomial pivoting rule?

• After more than 70 years of use/studies, we still do not know the answer!

• LPs can be solved in polynomial-time using other algorithms (Ellipsoid
algorithm [Khachiyan’79], Interior-point methods [Karmarkar’84])

I However, such algorithms run in weakly polynomial-time
(poly(d , n, log L) where L := largest coefficient)

• The existence of a polynomial pivoting rule could imply a strongly
polynomial-time algorithm for solving LPs
(# elementary operations polynomial in the number of different input values)

I Mentioned as one of the mathematical
problems for next century by Fields
Medalist S. Smale in 2000

Related Question: What is the maximum length of a ‘shortest path’ between
two extreme points of a polytope?



Diameter of polytopes

• We can naturally associate an undirected graph to a given polytope P ⊆ Rd :

I the vertices correspond to the extreme points of P

I the edges are given by the 1-dimensional faces of P

• The diameter of P is the maximum value of a shortest path between a pair of
vertices on this graph

(1-skeleton of P).

Remark: In order for a polynomial pivoting rule to exist, a necessary condition
is a polynomial bound on the value of the diameter!
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Diameter of polytopes

• A famous conjecture, proposed by [Hirsch’57], was the Hirsch conjecture,
stating that the diameter of a d-dimensional polytope with n facets is ≤ n − d .

I Disproved first for unbounded polyhedra [Klee&Walkup’67]

I ..and later for bounded ones [Santos’12]

I holds e.g. for for 0/1-polytopes [Naddef’89]

• Importantly, its polynomial-version is still open:

Is the diameter of a d-dimensional polytope with n facets bounded by f (d , n),
for some polynomial function f (d , n)?

• Best bound: ∼ (n − d)logO(d/ log d) [Sukegawa’18]
(strengthening [Kalai&Kleitman’92,
Todd’14, Sukegawa&Kitahara’15] )

• The diameter of a polytope has been studied from many different
perspectives...
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Diameter of polytopes

• Many researchers studied the diameter of polytopes describing feasible
solutions of combinatorial optimization problems (and their relaxations).

→ Just to mention a few: Matching, TSP, Flow and Transportation,
Edge-cover, Stable marriage, Stable set, Partition, and many more. . .

• The diameter of a polytope has been investigated also from a computational
complexity point of view.

I [Frieze&Teng’94]: Computing the diameter of a polytope is weakly
NP-hard.

I [S.’18]: Computing the diameter of a polytope is strongly NP-hard.
Computing a pair of vertices at maximum distance is APX-hard.

→ This latter result holds for half-integral polytopes with a very easy
description (fractional matching polytope).
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In this talk

• Characterization of the diameter of the fractional matching polytope

• Discuss hardness and algorithmic implications

• Recent generalization: circuit-diameter

• Final remarks and open questions



The matching polytope

• For a graph G = (V ,E), a matching
is a subset of edges that have no node
in common.

• The matching polytope (PM) is given by the convex hull of characteristic
vectors of matchings of G .
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The matching polytope

• [Edmonds’65] gave an LP-description of PM :

PM := {x ∈ Rm
≥0 :

∑
e∈E :e⊃v xe ≤ 1 ∀v ∈ V ,∑
e∈E [S] xe ≤

|S|−1
2

∀S ⊆ V : |S | odd}.

• [Balinski&Russakoff’74,Chvàtal’75]: Two vertices of PM are adjacent iff the
symmetric difference of the corresponding matchings induces one component

• As a consequence, they showed that the diameter of PM is equal to the size
of a maximum matching of G , i.e.

diameter(PM) = max
x∈vertices(PM )

{1T x}

→ computable in polynomial time
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• The fractional matching polytope is given by a standard LP-relaxation:
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∑
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xe ≤ 1 ∀v ∈ V , x ≥ 0}
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The fractional matching polytope

• [Balinski’70]: PFM is a half-integral polytope.

For a vertex x of PFM

I the edges {e ∈ E : xe = 1} → induce a matching (Mx)

I the edges {e ∈ E : xe = 1
2
} → induce a collection of odd cycles (Cx)

• Our characterization of the diameter is as follows:

Theorem [S.’18]

diameter(PFM) = maxx∈vertices(PFM ){1T x + |Cx |
2
}

• Obs: For a bipartite graph Cx = ∅ → diameter(PFM) = diameter(PM).
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Note: In all cases,
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Upper bound

• The selection of the moves to take is not straightforward.

Recall the
adjacencies we mentioned:

• Note: An easy “attempt” to go from z to y would be to define:

I (i) a path from z to a 0/1-vertex z̄ by removing one C ∈ Cz at each step

I (ii) a path from y to a 0/1-vertex ȳ by removing one C ∈ Cy at each step

I (iii) a path from z̄ to ȳ (e.g. using the 1-skeleton of PM)

...but unfortunately this may lead to paths longer than the claimed bound!
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I (ii) a path from y to a 0/1-vertex ȳ by removing one C ∈ Cy at each step
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Upper bound

• Given two distinct vertices z and y of PFM , we

I Define a path of the form: z → w → y for some “maximal” vertex w of
PFM satisfying: support(w) ⊆ support(z) ∪ support(y)

I Rely on a token argument: assign a token of value 1
2

to each node v and
each cycle C in support(w)
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Hardness

Theorem [S.’18]

Computing the diameter of a polytope is a strongly NP-hard problem.

• Reduction from the (strongly) NP-hard problem Partition Into Triangles.

I Given: A graph G = (V ,E)

I Decide: V can be partitioned into {V1, . . . ,Vq}: ∀i , Vi induces a triangle

• With some extra effort, we can strengthen the result to show APX-hardness.
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Hardness

• Do the previous results have some hardness implication on the performance
Simplex algorithm? Not in the current form...

but some implications can be
derived easily with little extra work.

Proposition [De Loera, Kafer, S.’19]

Given a vertex of a bipartite matching polytope and an objective function,
deciding if there exists a neighboring optimal vertex is NP-hard.

• Note: Similar observation in [Barahona&Tardos’89] for circulation polytope.

Corollary

Finding the shortest monotone path to an optimal solution is NP-hard, and
hard-to-approximate within a factor better than 2.

• Consequences (unless P=NP):

I For any efficient pivoting rule, an edge-walking algorithm (like Simplex)
can’t reach the optimum with a min number of augmentations.
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Generalization: circuit-diameter

• What if we “relax” the setting by enlarging the set of directions?

• One interesting way to enlarge the set of directions is to look at circuits:
all potential edge-directions that can arise by translating some facets of P.

• Circuits have a long history [Rockafellar’69], [Graver’75], [Bland’76]. Since
then, appeared in many papers on linear/integer optimization...

• [Borgwardt,Finhold,Hemmecke’14] formalized the notion of circuit-diameter.

Circuit-diameter: max-value of a shortest path between two extreme points,
assuming that at any given point we can move maximally along any circuit.



Generalization: circuit-diameter

• What if we “relax” the setting by enlarging the set of directions?

• One interesting way to enlarge the set of directions is to look at circuits:
all potential edge-directions that can arise by translating some facets of P.

• Circuits have a long history [Rockafellar’69], [Graver’75], [Bland’76]. Since
then, appeared in many papers on linear/integer optimization...

• [Borgwardt,Finhold,Hemmecke’14] formalized the notion of circuit-diameter.

Circuit-diameter: max-value of a shortest path between two extreme points,
assuming that at any given point we can move maximally along any circuit.



Generalization: circuit-diameter

• What if we “relax” the setting by enlarging the set of directions?

• One interesting way to enlarge the set of directions is to look at circuits:
all potential edge-directions that can arise by translating some facets of P.

• Circuits have a long history [Rockafellar’69], [Graver’75], [Bland’76]. Since
then, appeared in many papers on linear/integer optimization...

• [Borgwardt,Finhold,Hemmecke’14] formalized the notion of circuit-diameter.

Circuit-diameter: max-value of a shortest path between two extreme points,
assuming that at any given point we can move maximally along any circuit.



Generalization: circuit-diameter

• What if we “relax” the setting by enlarging the set of directions?

• One interesting way to enlarge the set of directions is to look at circuits:
all potential edge-directions that can arise by translating some facets of P.

• Circuits have a long history [Rockafellar’69], [Graver’75], [Bland’76]. Since
then, appeared in many papers on linear/integer optimization...

• [Borgwardt,Finhold,Hemmecke’14] formalized the notion of circuit-diameter.

Circuit-diameter: max-value of a shortest path between two extreme points,
assuming that at any given point we can move maximally along any circuit.



Generalization: circuit-diameter

• What if we “relax” the setting by enlarging the set of directions?

• One interesting way to enlarge the set of directions is to look at circuits:
all potential edge-directions that can arise by translating some facets of P.

• Circuits have a long history [Rockafellar’69], [Graver’75], [Bland’76]. Since
then, appeared in many papers on linear/integer optimization...

• [Borgwardt,Finhold,Hemmecke’14] formalized the notion of circuit-diameter.

Circuit-diameter: max-value of a shortest path between two extreme points,
assuming that at any given point we can move maximally along any circuit.



Generalization: circuit-diameter

• What if we “relax” the setting by enlarging the set of directions?

• One interesting way to enlarge the set of directions is to look at circuits:
all potential edge-directions that can arise by translating some facets of P.

• Circuits have a long history [Rockafellar’69], [Graver’75], [Bland’76]. Since
then, appeared in many papers on linear/integer optimization...

• [Borgwardt,Finhold,Hemmecke’14] formalized the notion of circuit-diameter.

Circuit-diameter: max-value of a shortest path between two extreme points,
assuming that at any given point we can move maximally along any circuit.



Generalization: circuit-diameter

• What if we “relax” the setting by enlarging the set of directions?

• One interesting way to enlarge the set of directions is to look at circuits:
all potential edge-directions that can arise by translating some facets of P.

• Circuits have a long history [Rockafellar’69], [Graver’75], [Bland’76]. Since
then, appeared in many papers on linear/integer optimization...

• [Borgwardt,Finhold,Hemmecke’14] formalized the notion of circuit-diameter.

Circuit-diameter: max-value of a shortest path between two extreme points,
assuming that at any given point we can move maximally along any circuit.



Generalization: circuit-diameter

• What if we “relax” the setting by enlarging the set of directions?

• One interesting way to enlarge the set of directions is to look at circuits:
all potential edge-directions that can arise by translating some facets of P.

• Circuits have a long history [Rockafellar’69], [Graver’75], [Bland’76]. Since
then, appeared in many papers on linear/integer optimization...

• [Borgwardt,Finhold,Hemmecke’14] formalized the notion of circuit-diameter.

Circuit-diameter: max-value of a shortest path between two extreme points,
assuming that at any given point we can move maximally along any circuit.



Interesting aspects

• This (more powerful) notion of diameters can be used to get new insights on
long-standing conjectures in the literature.

• [De Loera, Hemmecke, Lee’15] studied some circuit-augmentation algorithms
for rational LPs in equality form based on circuits:

I moving maximally along the circuit that yields the greatest improvement,
one reaches the optimum in (weakly) polynomially many steps!

(→ in contrast w.r.t. the Simplex!)

• As a corollary, we get a (weakly) polynomial bound on the circuit-diameter of
rational polyhedra.

Corollary [De Loera, Kafer, S.’19]

There exists a polynomial function f (m, α) that bounds the circuit-diameter
of any rational polyhedron P = {x ∈ Rn : Ax = b,Bx ≤ d} with m constraints
and maximum encoding length of a coefficient equal to α.
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Interesting aspects

• Question: How hard is selecting the “greatest-improvement” circuit?

Lemma [De Loera, Kafer, S.’19]

Selecting the circuit that yields the greatest improvement is NP-hard already
for the bipartite matching polytope. However, any γ-approximation algorithm
with γ polynomial in the input size, still guarantees convergence in polytime.
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• This raises a natural question:

When is that an augmentation along an edge-direction is a
‘good’ approximation of a greatest-improvement circuit
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Interesting aspects

• In fact, this is the case for 0/1-polytopes!

Def. For a given extreme point x of an LP and objective function vector c,

a steepest-edge direction g is an edge-direction incident at x maximizing cT g
||g||1

Thm [De Loera, Kafer, S.’19]

For 0/1-LPs, moving along a steepest-edge yields an optimal solution from an
initial extreme point in a strongly-polynomial number of augmentations.

Proof idea:

I Main ingredient: Showing that moving along a steepest-edge direction
yields an n-approximation of moving along a greatest-improvement circuit.

I Improve the analysis relying on the technique of [Frank,Tardos’87], to
make the above number strongly polynomial.
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Final remarks

• Main questions:

I Is the polynomial-Hirsch conjecture true?

I Is there a polynomial pivoting rule for the Simplex algorithm?

• All hardness results shown before are for non simple polytopes...

I What is the complexity of computing the diameter of a simple polytope?
(Mentioned in the survey of [Kaibel&Pfetsch’03])

• On circuits:

I (Approximation) algorithms for selecting circuits?

I What is the complexity of computing the circuit-diameter of a polytope?

Thank you!
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