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Let H be a Real Hilbert space and A : H = H a maximally monotone
operator.

Find x € H such that 0 € Az.
Let A >0, Jya = (I +2A)7L.

0 € Ax <=z € FixJyyz
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Introduction: Relaxed Inertial Proximal Point Algorithm

Introduction: Relaxed Inertial Proximal Point Algorithm

Let H be a Real Hilbert space and A : H = H a maximally monotone
operator.

Problem

Find x € H such that 0 € Ax.
Let A >0, Jya = (I +2A)7L.

0 € Az <= z € FixJyax

Relaxed Inertial Proximal Point Algorithm

The sequence generated by the algorithm

Uy = B A @5l — B
Trr1 = (1 — pr)yk + pedr,a(yr)

converges weakly to a point in Zer A.
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Introduction: Relaxed Inertial Proximal Point Algorithm

Existing results for Inertial Algorithms

Our aim is to study the convergence of algorithms defined by the scheme

Yn = Ty + an(xn - xn—l)

Tn+1 = (1 — /\n)yn + /\nTyna

where T is an averaged operator.
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Introduction: Relaxed Inertial Proximal Point Algorithm

Existing results for Inertial Algorithms

Objective

Our aim is to study the convergence of algorithms defined by the scheme

Yn = Ty + an(xn - xn—l)
Tn+1 = (1 — /\n)yn + /\nTyna

where T is an averaged operator.

Attouch & Cabot on 2019 proved the convergence for a general scheme

Yn= Tn + an(l’n - :L’n71>

In+l = Yn — Mn(yn)v

where M, is a sequence of 3,,-cocoercive operators.
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Convergence of inertial algorithms
Convergence of inertial algorithms

Theorem (Fierro-M-Peypouquet 2021)

Let T : H — H be an a-averaged operator with FixT # ), and xo,
x1 € H. Suppose that (ay,) and (\,,) are two sequences satisfying the
hypotheses presented later, then, the sequence generated by

Yn = Tp, + O‘n(wn - wn—l)
Tn4+1 = (1 - )\n)yn + AnTyn

converges weakly to a point in Fix 7.
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Convergence of inertial algorithms
Convergence of inertial algorithms

Theorem (Fierro-M-Peypouquet 2021)

Let T : H — H be an a-averaged operator with FixT # ), and xo,
x1 € H. Suppose that (ay,) and (\,,) are two sequences satisfying the
hypotheses presented later, then, the sequence generated by

Yn = Tp, + O‘n(wn - wn—l)
Tn4+1 = (1 - )\n)yn + AnTyn

converges weakly to a point in Fix 7.

Proof idea: The scheme can be rewritten as

Tnt1 = Yn — ML — T)yn.

M,, = \,(I —T) is Bp-cocoercive, with 3, = 1/(2a\,).
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Hypotheses over a,,, A\,

The sequences must satisfy oy, € [0,1), A\, € [0,1/a)
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Convergence of inertial algorithms

Hypotheses over a,,, A\,

The sequences must satisfy a,, € [0,1), A, € [0,1/a) and there must exist
c€[0,1) and ¢ € [¢, 1) such that

o lim — =c
n—=+too \ 1 —any1 1—ay
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o lim — =c
n—=+too \ 1 —any1 1—ay
(>‘n - )‘n+1) /

li =
® S o1l —ar)(1—an) ¢
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Convergence of inertial algorithms

Hypotheses over a,,, A\,

The sequences must satisfy a,, € [0,1), A, € [0,1/a) and there must exist
c€[0,1) and ¢ € [¢, 1) such that

o lim — =c
n—=+too \ 1 —any1 1—ay

(>‘n - )‘n+1) -

y
e At (1 — adn)(1 — an)

.. 1 2 . an(l + an)
o lim inf (m - 1> (1= )" > limsup =7
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Convergence of inertial algorithms

Hypotheses over ay,, A,: Example

Let us consider A, = A € [0,1/«) and the sequence

a
o, =a — —
n nq’

with a € (0,1), ¢ > 0.
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Convergence of inertial algorithms
Hypotheses over ay,, A,: Example

Let us consider A, = A € [0,1/«) and the sequence

a

Ap — a — E,
with a € (0,1), ¢ > 0. Clearly, a;, € [0,1] and the two first hypotheses are
satisfied with ¢ = ¢/ = 0.

Juan José Maulén (U de Chile/RuG) Dutch Optimization Seminar October 28, 2021 9/24



Convergence of inertial algorithms
Hypotheses over ay,, A,: Example

Let us consider A, = A € [0,1/«) and the sequence

a
o, =a — —
n nq’

with a € (0,1), ¢ > 0. Clearly, a;, € [0,1] and the two first hypotheses are
satisfied with ¢ = ¢/ = 0. The third condition implies that

(a3 1)> 2
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Application of the Primal-Dual Splitting Algorithm

Let H and G two real Hilbert spaces, A: H — 2 B.G — 26 maximally
monotone operators and L : H — G a bounded linear operator.
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Application of the Primal-Dual Splitting Algorithm

Let H and G two real Hilbert spaces, A: H — 2 B.G — 26 maximally
monotone operators and L : H — G a bounded linear operator.

Primal-Dual Splitting Algorithm (Bricefio-Roldan, 2019)

Bricefio-Roldan proposed a fixed point algorithm, such that the iterations
converges to a point (x,u) solution of the inclusion

0 Az + L*u, 0e B 'u—Lz
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Application of the Primal-Dual Splitting Algorithm

Let H and G two real Hilbert spaces, A: H — 2 B.G — 26 maximally
monotone operators and L : H — G a bounded linear operator.

Primal-Dual Splitting Algorithm (Bricefio-Roldan, 2019)

Bricefio-Roldan proposed a fixed point algorithm, such that the iterations
converges to a point (x,u) solution of the inclusion

0 Az + L*u, 0e B 'u—Lz

Consider the optimization problem

min f(z) + g(L),

for the lower semicontinuous, convex and proper functions f and g.
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Framework: Primal-Dual Splitting Algorithm

Application of the Primal-Dual Splitting Algorithm

Let H and G two real Hilbert spaces, A: H — 2 B.G — 26 maximally
monotone operators and L : H — G a bounded linear operator.

Primal-Dual Splitting Algorithm (Bricefio-Roldan, 2019)

Bricefio-Roldan proposed a fixed point algorithm, such that the iterations
converges to a point (x,u) solution of the inclusion

0 Az + L*u, 0e B 'u—Lz

Consider the optimization problem

min f(z) + g(L),

for the lower semicontinuous, convex and proper functions f and g. Fenchel-
Rockafellar duality conditions implies that we need to solve the inclusions

—L*'u € 0f(x), u € 9g*(Lx),

fore e H,ued.
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Framework: Primal-Dual Splitting Algorithm

Application of the Primal-Dual Splitting Algorithm

Algorithm 1:
Choose zg, 21 € RY, ug,u1 € R*, 7,0 >0, e >0and 19 > ¢ ;
while r,, > ¢ do
(ynv Un) - (xna un) + an[(ﬂjna un) - (ajnfly unfl)];
Tpt1 = ProX, f(yn — 7L 0p);
Upt1 = ProX, g« (Un + 0 L(2Tn11 — Tn);
Tn1 = R((Tnt1, Unt1), (Tn, un));
end
Return (p41, Unt1)
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Framework: Primal-Dual Splitting Algorithm

Application of the Primal-Dual Splitting Algorithm

Algorithm 2:
Choose zg, 21 € RY, ug,u1 € R*, 7,0 >0, e >0and 19 > ¢ ;
while r,, > ¢ do
(ynv Un) - (xna un) + an[(ﬂjna un) - (ajnfly unfl)];
Tpt1 = ProX, f(yn — 7L 0p);
Upt1 = ProX, g« (Un + 0 L(2Tn11 — Tn);
Tn1 = R((Tnt1, Unt1), (Tn, un));
end
Return (p41, Unt1)

The scheme proposed by Bricefio-Roldan converges if T7o||L||? < 1.
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Numerical Experiments

Image processing

The numerical problem aims to recover a noisy image.

100
150

200

250
] 50 100 150 200 250 ] 50 100 150 200 250

(a) Original Image = (b) Blurred Image b= RZ + ¢
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Numerical Experiments

Image processing: Total Variation

Let us consider V : & — Vax = (Djz, Dax), the classical discrete gradient.
The model can be formulated via the optimization problem
. TV 1 2
min "7 (z) := S||Rx — || + |V

z€RN1XN2 2
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Numerical Experiments

Image processing: Total Variation

Let us consider V : & — Vax = (Djz, Dax), the classical discrete gradient.
The model can be formulated via the optimization problem

. 1
min  FTV(z) := §||RT —b|]2 4+ 4[| Vz1

zeRN1XN2

Setting f = 0, g : (u,0",0%) = gllu = bl]* + [0 1 + Allo*[1, L :
x — (Rx, D1z, Dax), the problem can be solved via the inertial Algorithm
scheme showed before.
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Numerical Experiments

Image processing: Total Variation

Let us consider V : & — Vax = (Djz, Dax), the classical discrete gradient.
The model can be formulated via the optimization problem

1
in  F™V(2) := =||Rx —b|? \Y
i F ()= gl R = BT+ AVl
Setting f = 0, g : (u,v',v?) — Fllu —b|? + ~[v |1 + v|v?1, L :
x — (Rx, D1z, Dax), the problem can be solved via the inertial Algorithm
scheme showed before. The inertial algorithm is tested with A =1,

1 1
340 (3+6)n?’

On,

and 19 cases for 7 and o.
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Numerical Experiments

Image processing: Total Variation

Original Algorithm Inertial algorithm, ¢ = 2
T o | Time lterations FTV(z) | Time lterations FTV(x)
10 10,0125 | 61,08 1.238 0,1301 | 44,44 833 0,1301
23,06 10,0054 | 49,11 985 0,1302 | 36,77 694 0,1302
53,18 0,0024 | 71,53 1.449 0,1302 | 55,12 1.052 0,1302

Table: Original algorithm vs. inertial version comparison, ¢ = 1075,
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Numerical Experiments

Image processing: Total Variation

Original Algorithm Inertial algorithm, ¢ = 2
T o | Time lterations FTV(z) | Time lterations FTV(x)
10 10,0125 | 61,08 1.238 0,1301 | 44,44 833 0,1301
23,06 10,0054 | 49,11 985 0,1302 | 36,77 694 0,1302
53,18 0,0024 | 71,53 1.449 0,1302 | 55,12 1.052 0,1302

Table: Original algorithm vs. inertial version comparison, ¢ = 1075,

Original Algorithm Inertial algorithm, ¢ = 2
T o Time lterations FTV(z) | Time Iterations FTV(x)
10 10,0125 89,52 1.789 0,1301 65,19 1.223 0,1301
23,06 0,0054 91,86 1.823 0,1301 70,20 1.333 0,1301
53,18 0,0024 | 161,33 3.230 0,1301 | 124,95 2.368 0,1301

Table: Original algorithm vs. inertial version comparison, ¢ = 1076.
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Numerical Experiments

Image processing: Total Variation

200
40001 —— original 1o |7 nal
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(c) Number of iterations. (d) Time.

Figure: Comparison for the original and inertial algorithm using ¢ = 1075.
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Numerical Experiments

Image processing: Total Variation
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Numerical Experiments

Image processing: Total Variation

50 100 150 200 250 50 100 150 200 50 100 150 200 250

(a) Original Image (b) Blurred Image (c) Recovered Image
Figure: Recovered Image. 7 = 23,06, o = 0,0054, ¢ = 107°.
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Numerical Experiments

Image processing: Total Variation

The performance of the algorithm is tested for several values of A. For each
one, a value of a in the sequence

a
oy =0 — —
n2

is proposed in order to satisfy the previous conditions.
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Numerical Experiments
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(a) Original Algorithm (b) Inertial Algorithm

Figure: Mean amount of iterations performed by the original and inertial
algorithm to reach the tolerance, for each value of A, and each case of 7 and o,
e = 1072, using 5 starting points.
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Final comments

Final comments

@ The inertial algorithm is tested in two other numerical simulations on
the primal-dual splitting framework.
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Final comments

@ The inertial algorithm is tested in two other numerical simulations on
the primal-dual splitting framework.

@ An inertial scheme is proposed for the three-operator splitting scheme
(Davis-Yin 2017): find € H such that

0¢€ Az + Bz + Cx.
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Final comments

Final comments

@ The inertial algorithm is tested in two other numerical simulations on
the primal-dual splitting framework.

@ An inertial scheme is proposed for the three-operator splitting scheme
(Davis-Yin 2017): find € H such that

0¢€ Az + Bz + Cx.

@ Convergence rate for the inertial algorithms.
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