Acceleration of fixed point algorithms via inertia

Juan José Maulén Advisor: Juan Peypouquet

Dutch Optimization Seminar

October 28, 2021

Juan José Maulén (U de Chile/RuG)

- Introduction: Relaxed Inertial Proximal Point Algorithm
- 2 Convergence of inertial algorithms
- 3 Framework: Primal-Dual Splitting Algorithm
- 4 Numerical Experiments
- 5 Final comments

Table of contents

Introduction: Relaxed Inertial Proximal Point Algorithm

- 2 Convergence of inertial algorithms
- 3 Framework: Primal-Dual Splitting Algorithm
- 4 Numerical Experiments
- 5 Final comments

Let H be a Real Hilbert space and $A : H \rightrightarrows H$ a maximally monotone operator.

Let H be a Real Hilbert space and $A:H\rightrightarrows H$ a maximally monotone operator.

Problem

Find $x \in H$ such that $0 \in Ax$.

Let H be a Real Hilbert space and $A:H\rightrightarrows H$ a maximally monotone operator.

Problem

Find $x \in H$ such that $0 \in Ax$.

Let $\lambda > 0$, $J_{\lambda A} = (I + \lambda A)^{-1}$.

 $0 \in Ax \iff x \in \operatorname{Fix} J_{\lambda A}x$

Let H be a Real Hilbert space and $A:H\rightrightarrows H$ a maximally monotone operator.

Problem

Find $x \in H$ such that $0 \in Ax$.

Let $\lambda > 0$, $J_{\lambda A} = (I + \lambda A)^{-1}$.

$$0 \in Ax \iff x \in \mathsf{Fix}\, J_{\lambda A}x$$

Relaxed Inertial Proximal Point Algorithm

The sequence generated by the algorithm

$$y_k = x_k + \alpha_k (x_k - x_{k-1})$$
$$x_{k+1} = (1 - \rho_k) y_k + \rho_k J_{\lambda_k A}(y_k)$$

converges weakly to a point in $\operatorname{Zer} A$.

Existing results for Inertial Algorithms

л

Objective

Our aim is to study the convergence of algorithms defined by the scheme

$$y_n = x_n + \alpha_n (x_n - x_{n-1})$$
$$x_{n+1} = (1 - \lambda_n) y_n + \lambda_n T y_n,$$

where T is an averaged operator.

Existing results for Inertial Algorithms

Objective

Our aim is to study the convergence of algorithms defined by the scheme

$$y_n = x_n + \alpha_n (x_n - x_{n-1})$$
$$x_{n+1} = (1 - \lambda_n) y_n + \lambda_n T y_n,$$

where T is an averaged operator.

Attouch & Cabot on 2019 proved the convergence for a general scheme

$$y_n = x_n + \alpha_n (x_n - x_{n-1})$$
$$x_{n+1} = y_n - M_n(y_n),$$

where M_n is a sequence of β_n -cocoercive operators.

Table of contents

Introduction: Relaxed Inertial Proximal Point Algorithm

2 Convergence of inertial algorithms

3 Framework: Primal-Dual Splitting Algorithm

4 Numerical Experiments

5 Final comments

Convergence of inertial algorithms

Theorem (Fierro-M-Peypouquet 2021)

Let $T: H \mapsto H$ be an α -averaged operator with Fix $T \neq \emptyset$, and x_0 , $x_1 \in H$. Suppose that (α_n) and (λ_n) are two sequences satisfying the hypotheses presented later, then, the sequence generated by

$$y_n = x_n + \alpha_n (x_n - x_{n-1})$$
$$x_{n+1} = (1 - \lambda_n) y_n + \lambda_n T y_n$$

converges weakly to a point in Fix T.

Convergence of inertial algorithms

Theorem (Fierro-M-Peypouquet 2021)

Let $T: H \mapsto H$ be an α -averaged operator with Fix $T \neq \emptyset$, and x_0 , $x_1 \in H$. Suppose that (α_n) and (λ_n) are two sequences satisfying the hypotheses presented later, then, the sequence generated by

$$y_n = x_n + \alpha_n (x_n - x_{n-1})$$
$$x_{n+1} = (1 - \lambda_n) y_n + \lambda_n T y_n$$

converges weakly to a point in Fix T.

Proof idea: The scheme can be rewritten as

$$x_{n+1} = y_n - \lambda_n (I - T) y_n.$$

 $M_n = \lambda_n (I - T)$ is β_n -cocoercive, with $\beta_n = 1/(2\alpha\lambda_n)$.

The sequences must satisfy $\alpha_n \in [0,1)$, $\lambda_n \in [0,1/\alpha)$

The sequences must satisfy $\alpha_n \in [0,1)$, $\lambda_n \in [0,1/\alpha)$ and there must exist $c \in [0,1)$ and $c' \in [c,1)$ such that

•
$$\lim_{n \to +\infty} \left(\frac{1}{1 - \alpha_{n+1}} - \frac{1}{1 - \alpha_n} \right) = c$$

The sequences must satisfy $\alpha_n \in [0,1)$, $\lambda_n \in [0,1/\alpha)$ and there must exist $c \in [0,1)$ and $c' \in [c,1)$ such that

•
$$\lim_{n \to +\infty} \left(\frac{1}{1 - \alpha_{n+1}} - \frac{1}{1 - \alpha_n} \right) = c$$

•
$$\lim_{n \to +\infty} \frac{(\lambda_n - \lambda_{n+1})}{\lambda_{n+1}(1 - \alpha\lambda_n)(1 - \alpha_n)} = c'$$

The sequences must satisfy $\alpha_n \in [0,1)$, $\lambda_n \in [0,1/\alpha)$ and there must exist $c \in [0,1)$ and $c' \in [c,1)$ such that

•
$$\lim_{n \to +\infty} \left(\frac{1}{1 - \alpha_{n+1}} - \frac{1}{1 - \alpha_n} \right) = c$$

•
$$\lim_{n \to +\infty} \frac{(\lambda_n - \lambda_{n+1})}{\lambda_{n+1}(1 - \alpha\lambda_n)(1 - \alpha_n)} = c'$$

•
$$\liminf_{n \to +\infty} \left(\frac{1}{\alpha\lambda_n} - 1 \right) (1 - \alpha_n)^2 > \limsup_{n \to +\infty} \frac{\alpha_n(1 + \alpha_n)}{1 - c'}$$

Hypotheses over α_n , λ_n : Example

Let us consider $\lambda_n\equiv\lambda\in[0,1/\alpha)$ and the sequence

$$\alpha_n = a - \frac{a}{n^q},$$

with $a \in (0, 1)$, q > 0.

Hypotheses over α_n , λ_n : Example

Let us consider $\lambda_n \equiv \lambda \in [0, 1/\alpha)$ and the sequence

$$\alpha_n = a - \frac{a}{n^q},$$

with $a \in (0,1)$, q > 0. Clearly, $\alpha_n \in [0,1]$ and the two first hypotheses are satisfied with c = c' = 0.

Hypotheses over α_n , λ_n : Example

Let us consider $\lambda_n \equiv \lambda \in [0, 1/\alpha)$ and the sequence

1

$$\alpha_n = a - \frac{a}{n^q},$$

with $a \in (0,1)$, q > 0. Clearly, $\alpha_n \in [0,1]$ and the two first hypotheses are satisfied with c = c' = 0. The third condition implies that

$$\left(\frac{1}{\alpha\lambda} - 1\right) > \frac{a(1+a)}{(1-a)^2} \tag{1}$$

Table of contents

Introduction: Relaxed Inertial Proximal Point Algorithm

2) Convergence of inertial algorithms

3 Framework: Primal-Dual Splitting Algorithm

- 4 Numerical Experiments
- 5 Final comments

Let H and G two real Hilbert spaces, $A: H \to 2^H$, $B: G \to 2^G$ maximally monotone operators and $L: H \to G$ a bounded linear operator.

Let H and G two real Hilbert spaces, $A: H \to 2^H$, $B: G \to 2^G$ maximally monotone operators and $L: H \to G$ a bounded linear operator.

Primal-Dual Splitting Algorithm (Briceño-Roldan, 2019)

Briceño-Roldan proposed a fixed point algorithm, such that the iterations converges to a point (x, u) solution of the inclusion

$$0 \in Ax + L^*u, \quad 0 \in B^{-1}u - Lx$$

Let H and G two real Hilbert spaces, $A: H \to 2^H$, $B: G \to 2^G$ maximally monotone operators and $L: H \to G$ a bounded linear operator.

Primal-Dual Splitting Algorithm (Briceño-Roldan, 2019)

Briceño-Roldan proposed a fixed point algorithm, such that the iterations converges to a point (x, u) solution of the inclusion

$$0 \in Ax + L^*u, \quad 0 \in B^{-1}u - Lx$$

Consider the optimization problem

 $\min_{x \in H} f(x) + g(Lx),$

for the lower semicontinuous, convex and proper functions f and g.

Let H and G two real Hilbert spaces, $A: H \to 2^H$, $B: G \to 2^G$ maximally monotone operators and $L: H \to G$ a bounded linear operator.

Primal-Dual Splitting Algorithm (Briceño-Roldan, 2019)

Briceño-Roldan proposed a fixed point algorithm, such that the iterations converges to a point (x, u) solution of the inclusion

$$0 \in Ax + L^*u, \quad 0 \in B^{-1}u - Lx$$

Consider the optimization problem

 $\min_{x \in H} f(x) + g(Lx),$

for the lower semicontinuous, convex and proper functions f and g. Fenchel-Rockafellar duality conditions implies that we need to solve the inclusions

 $-L^*u \in \partial f(x), \ u \in \partial g^*(Lx),$

for $x \in H$, $u \in G$.

Juan José Maulén (U de Chile/RuG)

Algorithm 1:

 $\begin{array}{l} \text{Choose } x_0, x_1 \in \mathbb{R}^N, \, u_0, u_1 \in \mathbb{R}^n, \, \tau, \, \sigma > 0, \, \varepsilon > 0 \, \text{and} \, r_0 > \varepsilon ; \\ \text{while } r_n > \varepsilon \, \text{do} \\ & \left(\begin{array}{c} (y_n, v_n) = (x_n, u_n) + \alpha_n [(x_n, u_n) - (x_{n-1}, u_{n-1})]; \\ x_{n+1} = \operatorname{prox}_{\tau f}(y_n - \tau L^* v_n); \\ u_{n+1} = \operatorname{prox}_{\sigma g^*}(u_n + \sigma L(2x_{n+1} - x_n); \\ r_{n+1} = R((x_{n+1}, u_{n+1}), (x_n, u_n)); \end{array} \right) \end{array}$

end

Return (x_{n+1}, u_{n+1})

Algorithm 2:

Choose $x_0, x_1 \in \mathbb{R}^N$, $u_0, u_1 \in \mathbb{R}^n$, τ , $\sigma > 0$, $\varepsilon > 0$ and $r_0 > \varepsilon$; while $r_n > \varepsilon$ do $(y_n, v_n) = (x_n, u_n) + \alpha_n[(x_n, u_n) - (x_{n-1}, u_{n-1})];$ $x_{n+1} = \operatorname{prox}_{\tau f}(y_n - \tau L^* v_n);$ $u_{n+1} = \operatorname{prox}_{\sigma g^*}(u_n + \sigma L(2x_{n+1} - x_n);$ $r_{n+1} = R((x_{n+1}, u_{n+1}), (x_n, u_n));$

end

Return (x_{n+1}, u_{n+1})

The scheme proposed by Briceño-Roldan converges if $\tau \sigma \|L\|^2 \leq 1$.

Table of contents

Introduction: Relaxed Inertial Proximal Point Algorithm

2 Convergence of inertial algorithms

3 Framework: Primal-Dual Splitting Algorithm

- 4 Numerical Experiments
- 5 Final comments

Image processing

The numerical problem aims to recover a noisy image.

Juan José Maulén (U de Chile/RuG)

Let us consider $\nabla : x \mapsto \nabla x = (D_1 x, D_2 x)$, the classical discrete gradient. The model can be formulated via the optimization problem

$$\min_{x \in \mathbb{R}^{N_1 \times N_2}} F^{TV}(x) := \frac{1}{2} \|Rx - b\|^2 + \gamma \|\nabla x\|_1$$

Let us consider $\nabla : x \mapsto \nabla x = (D_1 x, D_2 x)$, the classical discrete gradient. The model can be formulated via the optimization problem

$$\min_{x \in \mathbb{R}^{N_1 \times N_2}} F^{TV}(x) := \frac{1}{2} \|Rx - b\|^2 + \gamma \|\nabla x\|_1$$

Setting f = 0, $g : (u, v^1, v^2) \mapsto \frac{1}{2} ||u - b||^2 + \gamma ||v^1||_1 + \gamma ||v^2||_1$, $L : x \mapsto (Rx, D_1x, D_2x)$, the problem can be solved via the inertial Algorithm scheme showed before.

Let us consider $\nabla : x \mapsto \nabla x = (D_1 x, D_2 x)$, the classical discrete gradient. The model can be formulated via the optimization problem

$$\min_{x \in \mathbb{R}^{N_1 \times N_2}} F^{TV}(x) := \frac{1}{2} \|Rx - b\|^2 + \gamma \|\nabla x\|_1$$

Setting f = 0, $g : (u, v^1, v^2) \mapsto \frac{1}{2} ||u - b||^2 + \gamma ||v^1||_1 + \gamma ||v^2||_1$, $L : x \mapsto (Rx, D_1x, D_2x)$, the problem can be solved via the inertial Algorithm scheme showed before. The inertial algorithm is tested with $\lambda = 1$,

$$\alpha_n = \frac{1}{3+\delta} - \frac{1}{(3+\delta)n^2},$$

and 19 cases for τ and σ .

		Original Algorithm			Inertial algorithm, $q = 2$		
au	σ	Time	Iterations	$F^{TV}(x)$	Time	Iterations	$F^{TV}(x)$
10	0,0125	61,08	1.238	0,1301	44,44	833	0,1301
23,06	0,0054	49,11	985	0,1302	36,77	694	0,1302
53,18	0,0024	71,53	1.449	0,1302	55,12	1.052	0,1302

Table: Original algorithm vs. inertial version comparison, $\varepsilon = 10^{-5}$.

		Original Algorithm			Inertial algorithm, $q=2$		
au	σ	Time	Iterations	$F^{TV}(x)$	Time	Iterations	$F^{TV}(x)$
10	0,0125	61,08	1.238	0,1301	44,44	833	0,1301
23,06	0,0054	49,11	985	0,1302	36,77	694	0,1302
53,18	0,0024	71,53	1.449	0,1302	55,12	1.052	0,1302

Table: Original algorithm vs. inertial version comparison, $\varepsilon = 10^{-5}$.

		Original Algorithm			Inertial algorithm, $q = 2$		
au	σ	Time	Iterations	$F^{TV}(x)$	Time	Iterations	$F^{TV}(x)$
10	0,0125	89,52	1.789	0,1301	65,19	1.223	0,1301
23,06	0,0054	91,86	1.823	0,1301	70,20	1.333	0,1301
53,18	0,0024	161,33	3.230	0,1301	124,95	2.368	0,1301

Table: Original algorithm vs. inertial version comparison, $\varepsilon = 10^{-6}$.

Figure: Comparison for the original and inertial algorithm using $\varepsilon = 10^{-5}$.

Figure: Comparison for the original and inertial algorithm using $\varepsilon = 10^{-6}$.

The performance of the algorithm is tested for several values of λ . For each one, a value of a in the sequence

$$\alpha_n = a - \frac{a}{n^2}$$

is proposed in order to satisfy the previous conditions.

Numerical Experiments

(a) Original Algorithm

(b) Inertial Algorithm

Figure: Mean amount of iterations performed by the original and inertial algorithm to reach the tolerance, for each value of λ , and each case of τ and σ , $\varepsilon = 10^{-5}$, using 5 starting points.

Table of contents

Introduction: Relaxed Inertial Proximal Point Algorithm

- 2 Convergence of inertial algorithms
- 3 Framework: Primal-Dual Splitting Algorithm
- 4 Numerical Experiments
- 5 Final comments

• The inertial algorithm is tested in two other numerical simulations on the primal-dual splitting framework.

- The inertial algorithm is tested in two other numerical simulations on the primal-dual splitting framework.
- An inertial scheme is proposed for the three-operator splitting scheme (Davis-Yin 2017): find $x \in H$ such that

 $0 \in Ax + Bx + Cx.$

- The inertial algorithm is tested in two other numerical simulations on the primal-dual splitting framework.
- An inertial scheme is proposed for the three-operator splitting scheme (Davis-Yin 2017): find $x \in H$ such that

 $0 \in Ax + Bx + Cx.$

• Convergence rate for the inertial algorithms.

- Attouch, H., & Cabot, A. (2019). Convergence of a relaxed inertial forward-backward algorithm for structured monotone inclusions. Applied Mathematics & Optimization, 80(3), 547-598.
- Briceño-Arias, L., & Roldán, F. (2019). *Primal-dual splittings as fixed point iterations in the range of linear operators*. arXiv preprint arXiv:1910.02329.
- Davis, D., & Yin, W. (2017). A three-operator splitting scheme and *its optimization applications*. Set-valued and variational analysis, 25(4), 829-858