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Introduction: Relaxed Inertial Proximal Point Algorithm

Introduction: Relaxed Inertial Proximal Point Algorithm

Let H be a Real Hilbert space and A : H ⇒ H a maximally monotone
operator.

Problem

Find x ∈ H such that 0 ∈ Ax.

Let λ > 0, JλA = (I + λA)−1.

0 ∈ Ax⇐⇒ x ∈ Fix JλAx

Relaxed Inertial Proximal Point Algorithm

The sequence generated by the algorithm

yk = xk + αk(xk − xk−1)
xk+1 = (1− ρk)yk + ρkJλkA(yk)

converges weakly to a point in ZerA.
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Introduction: Relaxed Inertial Proximal Point Algorithm

Existing results for Inertial Algorithms

Objective

Our aim is to study the convergence of algorithms defined by the scheme

yn = xn + αn(xn − xn−1)
xn+1 = (1− λn)yn + λnTyn,

where T is an averaged operator.

Attouch & Cabot on 2019 proved the convergence for a general scheme

yn= xn + αn(xn − xn−1)
xn+1 = yn −Mn(yn),

where Mn is a sequence of βn-cocoercive operators.
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Convergence of inertial algorithms

Convergence of inertial algorithms

Theorem (Fierro-M-Peypouquet 2021)

Let T : H 7→ H be an α-averaged operator with FixT 6= ∅, and x0,
x1 ∈ H. Suppose that (αn) and (λn) are two sequences satisfying the
hypotheses presented later, then, the sequence generated by

yn = xn + αn(xn − xn−1)
xn+1 = (1− λn)yn + λnTyn

converges weakly to a point in FixT .

Proof idea: The scheme can be rewritten as

xn+1 = yn − λn(I − T )yn.

Mn = λn(I − T ) is βn-cocoercive, with βn = 1/(2αλn).
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Convergence of inertial algorithms

Hypotheses over αn, λn

The sequences must satisfy αn ∈ [0, 1), λn ∈ [0, 1/α)

and there must exist
c ∈ [0, 1) and c′ ∈ [c, 1) such that

lim
n→+∞

(
1

1− αn+1
− 1

1− αn

)
= c

lim
n→+∞

(λn − λn+1)

λn+1(1− αλn)(1− αn)
= c′

lim inf
n→+∞

(
1

αλn
− 1

)
(1− αn)2 > lim sup

n→+∞

αn(1 + αn)

1− c′
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Convergence of inertial algorithms

Hypotheses over αn, λn: Example

Let us consider λn ≡ λ ∈ [0, 1/α) and the sequence

αn = a− a

nq
,

with a ∈ (0, 1), q > 0.

Clearly, αn ∈ [0, 1] and the two first hypotheses are
satisfied with c = c′ = 0. The third condition implies that(

1

αλ
− 1

)
>
a(1 + a)

(1− a)2
(1)
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Framework: Primal-Dual Splitting Algorithm

Application of the Primal-Dual Splitting Algorithm

Let H and G two real Hilbert spaces, A : H → 2H , B : G→ 2G maximally
monotone operators and L : H → G a bounded linear operator.

Primal-Dual Splitting Algorithm (Briceño-Roldan, 2019)

Briceño-Roldan proposed a fixed point algorithm, such that the iterations
converges to a point (x, u) solution of the inclusion

0 ∈ Ax+ L∗u, 0 ∈ B−1u− Lx

Consider the optimization problem

min
x∈H

f(x) + g(Lx),

for the lower semicontinuous, convex and proper functions f and g. Fenchel-
Rockafellar duality conditions implies that we need to solve the inclusions

−L∗u ∈ ∂f(x), u ∈ ∂g∗(Lx),

for x ∈ H, u ∈ G.
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Framework: Primal-Dual Splitting Algorithm

Application of the Primal-Dual Splitting Algorithm

Algorithm 1:

Choose x0, x1 ∈ RN , u0, u1 ∈ Rn, τ , σ > 0, ε > 0 and r0 > ε ;
while rn > ε do

(yn, vn) = (xn, un) + αn[(xn, un)− (xn−1, un−1)];
xn+1 = proxτf (yn − τL∗vn);
un+1 = proxσg∗(un + σL(2xn+1 − xn);
rn+1 = R((xn+1, un+1), (xn, un));

end
Return (xn+1, un+1)

The scheme proposed by Briceño-Roldan converges if τσ‖L‖2 ≤ 1.
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Juan José Maulén (U de Chile/RuG) Dutch Optimization Seminar October 28, 2021 12 / 24



Numerical Experiments

Table of contents

1 Introduction: Relaxed Inertial Proximal Point Algorithm

2 Convergence of inertial algorithms

3 Framework: Primal-Dual Splitting Algorithm

4 Numerical Experiments

5 Final comments
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Numerical Experiments

Image processing

The numerical problem aims to recover a noisy image.

(a) Original Image x̄ (b) Blurred Image b = Rx̄ + e
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Numerical Experiments

Image processing: Total Variation

Let us consider ∇ : x 7→ ∇x = (D1x,D2x), the classical discrete gradient.
The model can be formulated via the optimization problem

min
x∈RN1×N2

F TV (x) :=
1

2
‖Rx− b‖2 + γ‖∇x‖1

Setting f = 0, g : (u, v1, v2) 7→ 1
2‖u − b‖2 + γ‖v1‖1 + γ‖v2‖1, L :

x 7→ (Rx,D1x,D2x), the problem can be solved via the inertial Algorithm
scheme showed before. The inertial algorithm is tested with λ = 1,

αn =
1

3 + δ
− 1

(3 + δ)n2
,

and 19 cases for τ and σ.
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Numerical Experiments

Image processing: Total Variation

Original Algorithm Inertial algorithm, q = 2
τ σ Time Iterations FTV (x) Time Iterations FTV (x)

10 0,0125 61,08 1.238 0,1301 44,44 833 0,1301
23,06 0,0054 49,11 985 0,1302 36,77 694 0,1302
53,18 0,0024 71,53 1.449 0,1302 55,12 1.052 0,1302

Table: Original algorithm vs. inertial version comparison, ε = 10−5.

Original Algorithm Inertial algorithm, q = 2
τ σ Time Iterations FTV (x) Time Iterations FTV (x)

10 0,0125 89,52 1.789 0,1301 65,19 1.223 0,1301
23,06 0,0054 91,86 1.823 0,1301 70,20 1.333 0,1301
53,18 0,0024 161,33 3.230 0,1301 124,95 2.368 0,1301

Table: Original algorithm vs. inertial version comparison, ε = 10−6.
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Numerical Experiments

Image processing: Total Variation

(c) Number of iterations. (d) Time.

Figure: Comparison for the original and inertial algorithm using ε = 10−5.
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Figure: Comparison for the original and inertial algorithm using ε = 10−6.
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Numerical Experiments

Image processing: Total Variation

(a) Original Image (b) Blurred Image (c) Recovered Image

Figure: Recovered Image. τ = 23, 06, σ = 0, 0054, ε = 10−5.
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Numerical Experiments

Image processing: Total Variation

The performance of the algorithm is tested for several values of λ. For each
one, a value of a in the sequence

αn = a− a

n2

is proposed in order to satisfy the previous conditions.

Juan José Maulén (U de Chile/RuG) Dutch Optimization Seminar October 28, 2021 20 / 24



Numerical Experiments

(a) Original Algorithm (b) Inertial Algorithm

Figure: Mean amount of iterations performed by the original and inertial
algorithm to reach the tolerance, for each value of λ, and each case of τ and σ,
ε = 10−5, using 5 starting points.
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Final comments

Final comments

The inertial algorithm is tested in two other numerical simulations on
the primal-dual splitting framework.

An inertial scheme is proposed for the three-operator splitting scheme
(Davis-Yin 2017): find x ∈ H such that

0 ∈ Ax+Bx+ Cx.

Convergence rate for the inertial algorithms.
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