Symmetry handling in binary programs through propagation

## Symmetries in binary programs

$$
\begin{aligned}
& \text { Minimize } c^{\top} x \\
& \text { Subject to } A x \leq b \\
& \qquad x \in\{0,1\}^{n}
\end{aligned}
$$

## Definition

A permutation $\gamma$ on $\{1, \ldots, n\}$ is a symmetry for the program if for all $x \in\{0,1\}^{n}$ holds $c^{\top} x=c^{\top} \gamma(x)$ and $A x \leq b \Longleftrightarrow A \gamma(x) \leq b$, where $\gamma(x):=\left(x_{\gamma^{-1}(1)}, \cdots, x_{\gamma^{-1}(n)}\right)$.

- The symmetries of a program define a group.
- In this presentation: $\Gamma$ is a symmetry group of the program.


## Symmetry in Branch-and-Bound



## Symmetry in Branch-and-Bound



## Previous work on symmetry handling in MILP

- Symmetry breaking inequalities [Friedman, 2007], [Kaibel and Loos, 2010], [Liberti, 2010], [Kaibel et al., 2011], [Liberti, 2013], [Hojny and Pfetsch, 2018], [Hojny, 2020], [Hojny et al., 2021+];
- Branching [Ostrowski et al., 2007], [Ostrowski et al., 2015];
- Propagation [Margot, 2002], [Margot, 2003], [Ostrowski et al., 2007], [Bendotti et al., 2021].


## Solution approach

- Given: A problem symmetry group 「 of the program;
- Restrict region: Symmetrical solutions have (at least) a single representative;
- Enforce: by propagation.



## Symmetry handling using lexicographic order

## Definition (Lexicographic order)

$x, y \in\{0,1\}^{n}$;

- $x \succ y$ if there is a $j \in\{1, \ldots, n\}$ with $x_{i}=y_{i}$ for all $i<j$, and $x_{j}>y_{j}$;
- $x \succeq y$ if $x \succ y$ or $x=y$.


## Definition (Lexicographic leader in orbit)

Let $x \in\{0,1\}^{n}$.
If $x \succeq \gamma(x)$ for all $\gamma \in \Gamma$, then $x$ is the lexicographic leader in its $\Gamma$-orbit $\{\gamma(x): \gamma \in \Gamma\}$.

## Propagation

Common in CP/CSP/SAT/MINLP solvers.
"Reduce (sub)problem size by logical deduction, restricting variable bounds."

- Problem variables $x \in\{0,1\}^{n}$;
- Set $\mathcal{C}$ of constraints;
- $I_{0}, I_{1} \subseteq\{1, \ldots, n\}:$ Variable indices fixed to 0 and 1 .

$$
\mathcal{C}\left(I_{0}, I_{1}\right):=\left\{x \in\{0,1\}^{n}: x \text { satisfy constraints of } \mathcal{C}, \quad \begin{array}{l}
x_{i}=0 \text { for all } i \in I_{0}, \\
x_{i}=1 \text { for all } i \in I_{1}
\end{array}\right\}
$$

Goal of propagation: Find $\hat{I}_{0}, \hat{I}_{1} \supseteq I_{0}, I_{1}$ such that $\mathcal{C}\left(I_{0}, I_{1}\right)=\mathcal{C}\left(\hat{I}_{0}, \hat{I}_{1}\right)$.
Complete: When $\hat{I}_{0}, \hat{I}_{1}$ are inclusionwise maximal.

## Solution approach

- Given: A problem symmetry group 「 of the program;
- Restrict region: Symmetrical solutions have (at least) a single representative:
- Constraint for lexicographic leaders in $\Gamma$-orbit:

$$
x \succeq \gamma(x) \text { for all } \gamma \in \Gamma \text {. }
$$

- Enforce: by propagation.



## Simpler case: Propagation for a single permutation

Compute complete set of fixings of $x \succeq \gamma(x)$ for a single permutation $\gamma$.

## Example

$\gamma=(1,2,5)(3,4)$; Initial fixings: $x_{1}=1, x_{3}=0, x_{5}=1$.

$$
x=\left[\begin{array}{l}
x_{1}= \\
x_{2}= \\
x_{2} \\
x_{3}= \\
0 \\
x_{4}= \\
x_{5}= \\
\hline
\end{array}\right] \succeq\left[\begin{array}{ll}
x_{5}= & 1 \\
x_{1}= & 1 \\
x_{4}= & - \\
x_{3}= & 0 \\
x_{2}= & -
\end{array}\right]=\gamma(x)
$$

## Simpler case: Propagation for a single permutation

Compute complete set of fixings of $x \succeq \gamma(x)$ for a single permutation $\gamma$.

## Example

$\gamma=(1,2,5)(3,4)$; Initial fixings: $x_{1}=1, x_{3}=0, x_{5}=1$.

$$
x=\left[\begin{array}{l}
x_{1}= \\
x_{2}= \\
x_{2} \\
x_{3}= \\
x_{4}= \\
x_{4} \\
x_{5}= \\
\hline
\end{array}\right] \succeq\left[\begin{array}{ll}
x_{5}= & 1 \\
x_{1}= & 1 \\
x_{4}= & - \\
x_{3}= & 0 \\
x_{2}= & 1
\end{array}\right]=\gamma(x)
$$

## Simpler case: Propagation for a single permutation

Compute complete set of fixings of $x \succeq \gamma(x)$ for a single permutation $\gamma$.

## Example

$\gamma=(1,2,5)(3,4)$; Initial fixings: $x_{1}=1, x_{3}=0, x_{5}=1$.

$$
x=\left[\begin{array}{ll}
x_{1}= & 1 \\
x_{2}= & 1 \\
x_{3}= & 0 \\
x_{4}= & 0 \\
x_{5}= & 1
\end{array}\right] \succeq\left[\begin{array}{ll}
x_{5}= & 1 \\
x_{1}= & 1 \\
x_{4}= & 0 \\
x_{3}= & 0 \\
x_{2}= & 1
\end{array}\right]=\gamma(x)
$$

## Simpler case: Propagation for a single permutation

## Lemma

For $\gamma$ permuting $\{1, \ldots, n\}$, the complete set of fixings of $x \succeq \gamma(x)$ can be found in $\mathcal{O}(n)$ time.

## Proof.

Compare $x_{i}$ and $\gamma(x)_{i}$, starting at $i=1$, for increasing $i$ up to $n$.
9 possible situations of $\left(x_{i}, \gamma(x)_{i}\right)$ :

- $\left(0,{ }_{2}\right)$ or (_, 1 );
- $(0,0)$ or $(1,1)$;
- $(1,0)$;
- $(0,1)$;
- $\left(1,,_{\text {_ }}\right),(, 0)$ or (_, _).



## Simpler case: Propagation for a single permutation

## Lemma

For $\gamma$ permuting $\{1, \ldots, n\}$, the complete set of fixings of $x \succeq \gamma(x)$ can be found in $\mathcal{O}(n)$ time.

## Proof.

Compare $x_{i}$ and $\gamma(x)_{i}$, starting at $i=1$, for increasing $i$ up to $n$.
9 possible situations of $\left(x_{i}, \gamma(x)_{i}\right)$ :

- $\left(0,{ }_{2}\right)$ or (_, 1 );
- $(0,0)$ or $(1,1)$;
- $(1,0)$;
- $(0,1)$;
- $\left(1,,_{\text {_ }}\right),(, 0)$ or (_, _).



## Simpler case: Propagation for a single permutation

## Lemma

For $\gamma$ permuting $\{1, \ldots, n\}$, the complete set of fixings of $x \succeq \gamma(x)$ can be found in $\mathcal{O}(n)$ time.

## Proof.

Compare $x_{i}$ and $\gamma(x)_{i}$, starting at $i=1$, for increasing $i$ up to $n$.
9 possible situations of $\left(x_{i}, \gamma(x)_{i}\right)$ :

- $\left(0,{ }_{2}\right)$ or (_, 1 );
- $(0,0)$ or $(1,1)$;
- $(1,0)$;
- $(0,1)$;




## Simpler case: Propagation for a single permutation

## Lemma

For $\gamma$ permuting $\{1, \ldots, n\}$, the complete set of fixings of $x \succeq \gamma(x)$ can be found in $\mathcal{O}(n)$ time.

## Proof.

Compare $x_{i}$ and $\gamma(x)_{i}$, starting at $i=1$, for increasing $i$ up to $n$.
9 possible situations of $\left(x_{i}, \gamma(x)_{i}\right)$ :

- $\left(0,{ }_{2}\right)$ or ( $(, 1)$;
- $(0,0)$ or $(1,1)$;
- $(1,0)$;
- $(0,1)$;




## Simpler case: Propagation for a single permutation

## Lemma

For $\gamma$ permuting $\{1, \ldots, n\}$, the complete set of fixings of $x \succeq \gamma(x)$ can be found in $\mathcal{O}(n)$ time.

## Proof.

Compare $x_{i}$ and $\gamma(x)_{i}$, starting at $i=1$, for increasing $i$ up to $n$.
9 possible situations of $\left(x_{i}, \gamma(x)_{i}\right)$ :

- $\left(0,{ }_{2}\right)$ or (_, 1 );
- $(0,0)$ or $(1,1)$;
- $(1,0)$;
- $(0,1)$;




## Propagation for a set of permutations

## Lemma (Previous result)

For $\gamma$ permuting $\{1, \ldots, n\}$, the complete set of fixings of constraint $x \succeq \gamma(x)$ can be found in $\mathcal{O}(n)$ time.

Input: A set $S$ of permutations on $\{1, \ldots, n\}$.
Corollary (Naive propagation loop)
The complete set of fixings for each (individual) constraint $x \succeq \gamma(x)$ for all $\gamma \in S$ can be found in $\mathcal{O}\left(n^{2}|S|\right)$ time.

Can do better. $\rightsquigarrow \mathcal{O}(n|S|)$

## Solution approach

- Given: A problem symmetry group 「 of the program;
- Restrict region: Symmetrical solutions have (at least) a single representative:
- Constraint for lexicographic leaders in $\Gamma$-orbit:

$$
x \succeq \gamma(x) \text { for all } \gamma \in \Gamma \text {. }
$$

- Enforce: by propagation.



## Meta-algorithm: Find the complete set of fixings

Algorithm: Complete propagation algorithm for lexicographic leaders of $\Gamma$-orbit. Input: Symmetry group $\Gamma$, and an initial set of fixings.
if There are no lexicographic leaders in the 「-orbit respecting the fixings then
return INFEASIBLE;
foreach Entry $i$ with $x_{i}$ unfixed do
if There are no lexicographic leaders $y$ in the $\Gamma$-orbit respecting the fixing and $y_{i}=1$ then Fix $x_{i}$ to 0.
if There are no lexicographic leaders $y$ in the $\Gamma$-orbit respecting the fixing and $y_{i}=0$ then Fix $x_{i}$ to 1.
return Feasible, and complete set of fixings;

## Meta-algorithm: Find the complete set of fixings

Algorithm: Complete propagation algorithm for lexicographic leaders of $\Gamma$-orbit. Input: Symmetry group $\Gamma$, and an initial set of fixings.
if There are no lexicographic leaders in the 「-orbit respecting the fixings then
return INFEASIBLE;
foreach Entry $i$ with $x_{i}$ unfixed do
if There are no lexicographic leaders $y$ in the $\Gamma$-orbit respecting the fixing and $y_{i}=1$ then Fix $x_{i}$ to 0.
if There are no lexicographic leaders $y$ in the $\Gamma$-orbit respecting the fixing and $y_{i}=0$ then Fix $x_{i}$ to 1 .
return FEASIBLE, and complete set of fixings;

- Oracle for lines 1, 4, 6: "Does a lexicographic leader exists respecting fixings?"
- Meta-algorithm takes $\mathcal{O}(n \cdot f(\Gamma, n))$ time, where $f(\Gamma, n)$ is the oracle complexity.


## Meta-algorithm: Find the complete set of fixings

Meta-algorithm takes $\mathcal{O}(n \cdot f(\Gamma, n))$ time, where $f(\Gamma, n)$ is the oracle complexity.
"Does a lexicographic leader in the 「-orbit exist that respects initial fixings?"

- Special case: If all variables are fixed at 0 or 1 , testing this is coNP-complete:

Theorem (Babai and Luks (1983), Luks and Roy (2002))
"The problem of testing whether a 0/1 string $X$ is the lexicographic leader in its $\Gamma$-orbit is coNP-complete."

- Restriction to classes of groups $\Gamma$.


## Special case: A cyclic group with monotone representation

"Does a lexicographic leader in the 「-orbit exist that respects initial fixings?" Special case: $\Gamma \leq\langle(1,2, \ldots, n)\rangle$. (monotone cycle)

## Special case: A cyclic group with monotone representation

"Does a lexicographic leader in the 「-orbit exist that respects initial fixings?" Special case: $\Gamma \leq\langle(1,2, \ldots, n)\rangle$. (monotone cycle)

## Proposition (Feasibility statement for monotone cycles)

Let $\Gamma \leq\langle(1, \ldots, n)\rangle$, a set of variable fixings, and $F \subseteq\{0,1\}^{n}$ the set of all binary vectors respecting the variable fixings.

If the set of fixings is complete for $x \succeq \gamma(x)$ for each $\gamma \in \Gamma$, then:
For all $\gamma \in \Gamma$ there exists an $x \in F$ with $x \succeq \gamma(x) \quad$ (Feasible vector exists for all $x \succeq \gamma(x)$ )
$\qquad$
There exists an $x \in F$ with $x \succeq \gamma(x)$ for all $\gamma \in \Gamma$. (Lex-leader exists in $\Gamma$-orbit.)

## Collecting results

- Oracle: "Does a lex. leader in 「-orbit exist, respecting initial fixings?":
- Finding the complete set of fixings for lex. leaders in the $\Gamma$-orbit:

$$
\begin{gathered}
\mathcal{O}(f(n, \Gamma)) . \\
\mathcal{O}(n \cdot f(n, \Gamma)) .
\end{gathered}
$$

Oracle for $\Gamma \leq\langle(1, \ldots, n)\rangle$ :

1. Proposition: If the set of fixings is complete for $x \succeq \gamma(x)$ for each individual $\gamma \in \Gamma$, then:

Feasible vector exists for all $x \succeq \gamma(x)$

Lex-leader exists in $\Gamma$-orbit.
2. Compute complete set of fixings for $x \succeq \gamma(x)$ for each individual $\gamma \in \Gamma: \mathcal{O}(n \cdot \operatorname{ord}(\Gamma))$

## Proof of proposition

## Proposition (Feasibility statement for monotone cycles)

Let $\Gamma \leq\langle(1, \ldots, n)\rangle$, and $F \subseteq\{0,1\}^{n}$ a set of binary solution vectors with variable fixings. If the set of fixings is complete for $x \succeq \gamma(x)$ for each $\gamma \in \Gamma$, then:

$$
\forall \gamma \in \Gamma \exists x \in F: x \succeq \gamma(x) \Longleftrightarrow \exists x \in F \forall \gamma \in \Gamma: x \succeq \gamma(x) .
$$

## Proof idea.

$\Leftarrow$ : Trivial.
$\Rightarrow$ : If $|F|=1$, then no unfixed entries. Trivial.

## Proof of proposition

## Proposition (Feasibility statement for monotone cycles)

Let $\Gamma \leq\langle(1, \ldots, n)\rangle$, and $F \subseteq\{0,1\}^{n}$ a set of binary solution vectors with variable fixings. If the set of fixings is complete for $x \succeq \gamma(x)$ for each $\gamma \in \Gamma$, then:

$$
\forall \gamma \in \Gamma \exists x \in F: x \succeq \gamma(x) \Longleftrightarrow \exists x \in F \forall \gamma \in \Gamma: x \succeq \gamma(x) .
$$

## Proof idea.

$\Rightarrow$ : If $|F|>1$, then unfixed entries exist.
Construct $\tilde{x} \in F$ with $\tilde{x}_{i}= \begin{cases}1, & \text { if } i \text { is a 1-fixing or the first unfixed entry, } \\ 0, & \text { if } i \text { is a 0-fixing or not the first unfixed entry. }\end{cases}$
Claim: $\tilde{x} \in F$ is a certificate.

## A stronger result

## Proposition (Last slide)

For $\Gamma \leq\langle(1, \ldots, n)\rangle$, the complete set of fixings for lexicographic leaders in the $\Gamma$-orbit can be determined in $\mathcal{O}\left(n^{3}\right)$ time.

## Proposition (Stronger result)

- $\Gamma \leq\left\langle\zeta_{1} \circ \zeta_{2} \circ \cdots \circ \zeta_{k}\right\rangle$ with maximal cycle length $m$,
- each subcycle $\zeta_{i}(i \in\{1, \ldots, k\})$ has exactly one descend point (monotone), and
- for $i, j \in\{1, \ldots, k\}$ with $i<j$ the entries of $\zeta_{i}$ are smaller than the entries of $\zeta_{j}$ (ordered).

The complete set of fixings for lexicographic leaders in the $\Gamma$-orbit can be determined in $\mathcal{O}\left(n^{2} m\right)$ time.

## Computational study

## Practical concerns

- Generators do not need to be monotone and ordered: For example: $(1,10)(2,5,4)(3,11,8,7,6,9)$.
- Symmetry groups could have more than one generator:


## Practical concerns

- Generators do not need to be monotone and ordered:

For example: $(1,10)(2,5,4)(3,11,8,7,6,9)$.

- Preprocessing step (Relabeling): Relabel variable indices

$$
(1,10)(2,5,4)(3,11,8,7,6,9) \rightsquigarrow(1,2)(3,4,5)(6,7,8,9,10,11)
$$

- Symmetry groups could have more than one generator:


## Practical concerns

- Generators do not need to be monotone and ordered:

For example: $(1,10)(2,5,4)(3,11,8,7,6,9)$.

- Preprocessing step (Relabeling): Relabel variable indices

$$
(1,10)(2,5,4)(3,11,8,7,6,9) \rightsquigarrow(1,2)(3,4,5)(6,7,8,9,10,11)
$$

- Symmetry groups could have more than one generator:
- Add more symmetry handling constraints for various subgroups.


## Computational setup

Implemented as SCIP plugin.

- SCIP: "Solving Constraint Integer Programs" (Academic solver);
- Compatible symmetry handling techniques;
- For monotone and ordered generators:
- Strong variant: Complete: $\mathcal{O}\left(n^{2} m\right)$;
- Weak variant: Complete for all individual permutations: $\mathcal{O}(n m)$.
- For arbitrary cyclic groups $\Gamma$ (No guarantees):
- Strong variant: $\mathcal{O}\left(n^{2} \operatorname{ord}(\Gamma)\right)$;
- Weak variant: $\mathcal{O}(n \operatorname{ord}(\Gamma))$.



## Computational results: Test instances

- Verify that flower snark graphs are not 3-edge-colorable;
- MIPLIB2010 + MIPLIB2017 instances.


Flower snark $J_{5}$

## Computational results: Configuration

Options:

- nosym: No symmetry handling;
- gen: Propagate $x \succeq \tilde{\gamma}(x)$ for a generator $\tilde{\gamma}$ (SCIP default choice), $\mathcal{O}(n)$;
- group: Propagate $x \succeq \gamma(x)$ for all cyclic subgroup members $\gamma \in\langle\tilde{\gamma}\rangle, \mathcal{O}\left(n^{2} \operatorname{ord}(\langle\tilde{\gamma}\rangle)\right)$;
- nopeek: Propagate $x \succeq \gamma(x)$ for all cyclic subgroup members $\gamma \in\langle\tilde{\gamma}\rangle, \mathcal{O}(n m)^{\dagger}$;
- peek: Strong variant, $\mathcal{O}\left(n^{2} m\right)^{\dagger}$.

Relabeling:

- original: Respect original variable relabeling;
- max, min: Largest/Smallest cycles go first;
- respect: Sort by first entry of cycle in original relabeling.
$\dagger$ : $m$ is maximal cycle length of generator $\tilde{\gamma}$. Assuming $\tilde{\gamma}$ is monotone and ordered generator.


## Edge 3-coloring flower snark instances

- Family of graphs $J_{n}$ with graph automorphism having cyclic subgroup;
- 5 runs per instance and setting, with different random seed;
- Instances are infeasible.


Flower snark J/5

## Edge 3-coloring flower snark instances

- Family of graphs $J_{n}$ with graph automorphism having cyclic subgroup;
- 5 runs per instance and setting, with different random seed;
- Instances are infeasible.

Conclusions:


Flower snark $\mathrm{J}_{5}$

- Results are very sensitive to chosen relabeling;
- On average, the weak and strong method are at least 5\% faster than group;
- Strong method (peek) is costs significant time, but is effective.

For parameters $n \in\{3,5,7, \ldots, 49\}$

| relabeling | nosym |  | gen |  | group |  | nopeek |  | peek |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | time(s) | S |
| original | 730.78 | 54 | 172.35 | 88 | 187.56 | 87 | 169.79 | 93 | 153.23 | 97 |
| max | - |  | 407.02 | 65 | 312.93 | 70 | 278.00 | 77 | 270.19 | 78 |
| min | - |  | 97.99 | 102 | 131.58 | 95 | 127.48 | 92 | 119.67 | 95 |
| respect | - |  | 184.44 | 88 | 173.41 | 86 | 174.32 | 88 | 178.46 | 87 |
| aggregated | 730.78 | 54 | 189.90 | 343 | 191.75 | 338 | 180.33 | 350 | 172.84 | 357 |
| relative to group | +281.1\% |  | -1.0\% |  | - |  | -5.6\% |  | -9.9\% |  |

For parameters $n \in\{27,29, \ldots, 49\}$ (Not solvable by nosym)

| relabeling | nosym |  | gen |  | group |  | nopeek |  | peek |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | time(s) | S |
| original | 7200.00 | 0 | 1266.33 | 33 | 1526.99 | 32 | 1269.40 | 38 | 1056.42 | 42 |
| max | - |  | 4752.76 | 10 | 3501.50 | 15 | 2884.53 | 22 | 2734.31 | 23 |
| min | - |  | 531.09 | 47 | 912.18 | 40 | 889.73 | 37 | 797.14 | 40 |
| respect | - |  | 1480.93 | 33 | 1444.56 | 31 | 1452.88 | 33 | 1509.23 | 32 |
| aggregated | 7200.00 | 0 | 1478.12 | 123 | 1630.32 | 118 | 1475.85 | 130 | 1366.37 | 137 |
| relative to group | +341.6\% |  | -9.4\% |  | - |  | -9.5\% |  | -16.2\% |  |

Time limit 7200s; Using shifted geometric mean (+10s)
25 Symmetry handling in binary programs through propagation

## Benchmark instances MIPLIB2010, MIPLIB2017

MIPLIB2010 + MIPLIB2017:

- 1427 instances;
- 35 nontrivial instances with cyclic symmetry structure;
- 11 solvable by some method in 7200s.


## Benchmark instances MIPLIB2010, MIPLIB2017

MIPLIB2010 + MIPLIB2017:

- 1427 instances;
- 35 nontrivial instances with cyclic symmetry structure;
- 11 solvable by some method in 7200s.

Conclusions:

- Results are very sensitive to chosen relabeling;
- Variation between different instances is huge;
- nopeek and peek are slower than group.
- Without instances that are solved fastest by nosym, the weak and strong methods are at least 4\% faster than group.


## All relevant instances

| relabeling | nosym |  | gen |  | group |  | nopeek |  | peek |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | time(s) | S |
| original | 1853.78 | 42 | 491.69 | 50 | 407.76 | 50 | 449.34 | 48 | 506.23 | 48 |
| max | - |  | 1061.29 | 47 | 812.31 | 48 | 771.56 | 48 | 796.69 | 49 |
| min | - |  | 901.65 | 48 | 612.10 | 50 | 837.48 | 47 | 657.29 | 49 |
| respect | - |  | 970.19 | 47 | 743.01 | 49 | 639.20 | 50 | 723.93 | 49 |
| aggregated | 1853.78 | 42 | 822.47 | 192 | 623.37 | 197 | 656.66 | 193 | 662.01 | 195 |
| relative to group | +197.4\% |  | +31.9\% |  | - |  | +5.3\% |  | +6.2\% |  |

Without instances solved fastest by nosym (neos-3004026-krka, neos-920392, and supportcase29)

| relabeling | nosym |  | gen |  | group |  | nopeek |  | peek |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | time(s) | S |
| original | 3917.80 | 27 | 501.57 | 35 | 393.39 | 35 | 337.55 | 35 | 338.57 | 35 |
| max | - |  | 1193.75 | 33 | 668.57 | 35 | 694.06 | 35 | 698.20 | 35 |
| min | - |  | 1062.99 | 33 | 719.87 | 35 | 710.16 | 35 | 706.24 | 35 |
| respect | - |  | 1226.05 | 33 | 761.70 | 35 | 678.57 | 35 | 715.09 | 35 |
| aggregated | 3917.80 | 27 | 940.64 | 134 | 616.62 | 140 | 580.20 | 140 | 588.38 | 140 |
| relative to group | +535.4\% |  | +52.5\% |  | - |  | -5.9\% |  | -4.6\% |  |

Time limit 7200s; Using shifted geometric mean (+10s)

## Overview of the results

Handling symmetries in (binary) integer linear programs by propagation:

- Complete set of fixings of $x \succeq \gamma(x)$ for a permutation $\gamma$ on $\{1, \ldots, n\} ; \quad \mathcal{O}(n)$
- Complete set of fixings of $x \succeq \gamma(x)$ for all $\gamma$ on $\{1, \ldots, n\}$ in a set $S ; \quad \mathcal{O}(n|S|)$
- Complete set of fixings of lexicographic leaders in cyclic 「-orbit, with 「 generated by a monotone and ordered permutation with maximal subcycle length $m . \mathcal{O}\left(n^{2} m\right)$
- Arbitrary cyclic groups Г: No guarantee of completeness:
- Stronger version: $\mathcal{O}\left(n^{2} \operatorname{ord}(\Gamma)\right)$; Weaker version: $\mathcal{O}(n \operatorname{ord}(\Gamma))$.

Computational results:

- Effectiveness is measurable in various instances:
- Flower snark 3-edge-coloring;
- MIPLIB instances.


## Thank you!

## References

László Babai and Eugene M Luks.
Canonical labeling of graphs.
In Proceedings of the fifteenth annual ACM symposium on Theory of computing, pages 171-183, 1983.

Eugene Luks and Amitabha Roy.
The complexity of symmetry-breaking formulas.
Annals of Mathematics and Artificial Intelligence, 41, 082002.
( François Margot.
Symmetric ILP: Coloring and small integers.
Discrete Optimization, 4(1):40-62, 2007.

