

Symmetry handling in binary programs through propagation

Jasper van Doornmalen Christopher Hojny

Eindhoven University of Technology, Department of Mathematics and Computer Science, Combinatorial Optimization

Symmetries in binary programs

Minimize $c^{\top}x$ Subject to $Ax \le b$ $x \in \{0, 1\}^n$

Definition

A permutation γ on $\{1, ..., n\}$ is a symmetry for the program if for all $x \in \{0, 1\}^n$ holds $c^{\top}x = c^{\top}\gamma(x)$ and $Ax \leq b \iff A\gamma(x) \leq b$, where $\gamma(x) := (x_{\gamma^{-1}(1)}, \cdots, x_{\gamma^{-1}(n)})$.

- The symmetries of a program define a group.
- In this presentation: Γ is a symmetry group of the program.
- 2 Symmetry handling in binary programs through propagation

Symmetry in Branch-and-Bound

Symmetry in Branch-and-Bound

Previous work on symmetry handling in MILP

Symmetry breaking inequalities [Friedman, 2007], [Kaibel and Loos, 2010], [Liberti, 2010], [Kaibel et al., 2011], [Liberti, 2013], [Hojny and Pfetsch, 2018], [Hojny, 2020], [Hojny et al., 2021+];

Branching [Ostrowski et al., 2007], [Ostrowski et al., 2015];

Propagation [Margot, 2002], [Margot, 2003], [Ostrowski et al., 2007], [Bendotti et al., 2021].

Solution approach

- Given: A problem symmetry group Γ of the program;
- ▶ Restrict region: Symmetrical solutions have (at least) a single representative;
- ► Enforce: by *propagation*.

Symmetry handling using lexicographic order

Definition (Lexicographic order)

 $x, y \in \{0, 1\}^n;$

• $x \succ y$ if there is a $j \in \{1, ..., n\}$ with $x_i = y_i$ for all i < j, and $x_j > y_j$;

•
$$x \succeq y$$
 if $x \succ y$ or $x = y$.

$$\left| \begin{array}{c} & \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \\ \vdots \end{array} \right|$$

Definition (Lexicographic leader in orbit)

Let $x \in \{0, 1\}^n$. If $x \succeq \gamma(x)$ for all $\gamma \in \Gamma$, then x is the lexicographic leader in its Γ -orbit $\{\gamma(x) : \gamma \in \Gamma\}$.

Propagation

Common in CP/CSP/SAT/MINLP solvers.

"Reduce (sub)problem size by logical deduction, restricting variable bounds."

- Problem variables $x \in \{0, 1\}^n$;
- ► Set C of constraints;
- $I_0, I_1 \subseteq \{1, \ldots, n\}$: Variable indices fixed to 0 and 1.

 $\mathcal{C}(I_0, I_1) := \begin{cases} x \in \{0, 1\}^n : x \text{ satisfy constraints of } \mathcal{C}, & x_i = 0 \text{ for all } i \in I_0, \\ x_i = 1 \text{ for all } i \in I_1 \end{cases}$

Goal of propagation: Find $\hat{I}_0, \hat{I}_1 \supseteq I_0, I_1$ such that $C(I_0, I_1) = C(\hat{I}_0, \hat{I}_1)$. **Complete:** When \hat{I}_0, \hat{I}_1 are inclusionwise maximal.

Solution approach

- Given: A problem symmetry group Γ of the program;
- ▶ Restrict region: Symmetrical solutions have (at least) a single representative:
 - Constraint for lexicographic leaders in Γ-orbit:

 $x \succeq \gamma(x)$ for all $\gamma \in \Gamma$.

Enforce: by propagation.

Compute complete set of fixings of $x \succeq \gamma(x)$ for a single permutation γ .

Example

$$\gamma = (1, 2, 5)(3, 4)$$
; Initial fixings: $x_1 = 1, x_3 = 0, x_5 = 1$.

$$\kappa = \begin{bmatrix} x_1 = & 1 \\ x_2 = & \\ x_3 = & 0 \\ x_4 = & \\ x_5 = & 1 \end{bmatrix} \succeq \begin{bmatrix} x_5 = & 1 \\ x_1 = & 1 \\ x_4 = & \\ x_3 = & 0 \\ x_2 = & \end{bmatrix} = \gamma(x)$$

9 Symmetry handling in binary programs through propagation

Compute complete set of fixings of $x \succeq \gamma(x)$ for a single permutation γ .

Example

$$\gamma = (1, 2, 5)(3, 4)$$
; Initial fixings: $x_1 = 1, x_3 = 0, x_5 = 1$.

$$x = \begin{bmatrix} x_1 = 1 \\ x_2 = 1 \\ x_3 = 0 \\ x_4 = \\ x_5 = 1 \end{bmatrix} \succeq \begin{bmatrix} x_5 = 1 \\ x_1 = 1 \\ x_4 = \\ x_3 = 0 \\ x_2 = 1 \end{bmatrix} = \gamma(x)$$

9 Symmetry handling in binary programs through propagation

Compute complete set of fixings of $x \succeq \gamma(x)$ for a single permutation γ .

Example

$$\gamma = (1, 2, 5)(3, 4)$$
; Initial fixings: $x_1 = 1, x_3 = 0, x_5 = 1$.

$$x = \begin{bmatrix} x_1 = 1 \\ x_2 = 1 \\ x_3 = 0 \\ x_4 = 0 \\ x_5 = 1 \end{bmatrix} \succeq \begin{bmatrix} x_5 = 1 \\ x_1 = 1 \\ x_4 = 0 \\ x_3 = 0 \\ x_2 = 1 \end{bmatrix} = \gamma(x)$$

9 Symmetry handling in binary programs through propagation

Lemma

For γ permuting $\{1, \ldots, n\}$, the complete set of fixings of $x \succeq \gamma(x)$ can be found in $\mathcal{O}(n)$ time.

Proof.

Compare x_i and $\gamma(x)_i$, starting at i = 1, for increasing i up to n. 9 possible situations of $(x_i, \gamma(x)_i)$:

- ► (0, _) or (_, 1);
- ▶ (0,0) or (1,1);
- ► (1,0);
- ► (0, 1);
- ► (1,_), (_,0) or (_,_).

Lemma

For γ permuting $\{1, \ldots, n\}$, the complete set of fixings of $x \succeq \gamma(x)$ can be found in $\mathcal{O}(n)$ time.

Proof.

Compare x_i and $\gamma(x)_i$, starting at i = 1, for increasing i up to n. 9 possible situations of $(x_i, \gamma(x)_i)$:

- ► (0, _) or (_, 1);
- ▶ (0,0) or (1,1);
- ► (1,0);
- ► (0, 1);
- ► (1,_), (_,0) or (_,_).

Lemma

For γ permuting $\{1, \ldots, n\}$, the complete set of fixings of $x \succeq \gamma(x)$ can be found in $\mathcal{O}(n)$ time.

Proof.

Compare x_i and $\gamma(x)_i$, starting at i = 1, for increasing i up to n. 9 possible situations of $(x_i, \gamma(x)_i)$:

- ► (0, _) or (_, 1);
- ▶ (0,0) or (1,1);
- ► (1,0);
- ► (0, 1);

► (1,_), (_,0) or (_,_). Can make (1,0). Test for (0,0) and (1,1)

Lemma

For γ permuting $\{1, \ldots, n\}$, the complete set of fixings of $x \succeq \gamma(x)$ can be found in $\mathcal{O}(n)$ time.

Proof.

Compare x_i and $\gamma(x)_i$, starting at i = 1, for increasing i up to n. 9 possible situations of $(x_i, \gamma(x)_i)$:

- ► (0, _) or (_, 1);
- ▶ (0,0) or (1,1);
- ► (1,0);
- ► (0, 1);

► (1,_), (_,0) or (_,_). Can make (1,0). Test for (0,0) and (1,1)

Lemma

For γ permuting $\{1, \ldots, n\}$, the complete set of fixings of $x \succeq \gamma(x)$ can be found in $\mathcal{O}(n)$ time.

Proof.

Compare x_i and $\gamma(x)_i$, starting at i = 1, for increasing i up to n. 9 possible situations of $(x_i, \gamma(x)_i)$:

- ► (0, _) or (_, 1);
- ▶ (0,0) or (1,1);
- ► (1,0);
- ► (0, 1);

► (1,_), (_,0) or (_,_). Can make (1,0). Test for (0,0) and (1,1)

Propagation for a set of permutations

Lemma (Previous result)

For γ permuting $\{1, ..., n\}$, the complete set of fixings of constraint $x \succeq \gamma(x)$ can be found in $\mathcal{O}(n)$ time.

Input: A set *S* of permutations on {1,...,*n*}.

Corollary (Naive propagation loop)

The complete set of fixings for each (individual) constraint $x \succeq \gamma(x)$ for all $\gamma \in S$ can be found in $\mathcal{O}(n^2|S|)$ time.

Can do better. $\rightsquigarrow \mathcal{O}(n|S|)$

Solution approach

- Given: A problem symmetry group Γ of the program;
- ▶ Restrict region: Symmetrical solutions have (at least) a single representative:
 - Constraint for lexicographic leaders in Γ-orbit:

 $x \succeq \gamma(x)$ for all $\gamma \in \Gamma$.

Enforce: by propagation.

Meta-algorithm: Find the complete set of fixings

Algorithm: Complete propagation algorithm for lexicographic leaders of Γ -orbit. **Input:** Symmetry group Γ , and an initial set of fixings.

- **1** if There are no lexicographic leaders in the Γ -orbit respecting the fixings then
- 2 **return** INFEASIBLE;
- **3 foreach** Entry i with x_i unfixed **do**
- **if** There are no lexicographic leaders y in the Γ -orbit respecting the fixing and $y_i = 1$ **then 5** Fix x_i to 0.
- **if** There are no lexicographic leaders y in the Γ -orbit respecting the fixing and $y_i = 0$ **then** 7 Fix x_i to 1.
- 8 return FEASIBLE, and complete set of fixings;

Meta-algorithm: Find the complete set of fixings

Algorithm: Complete propagation algorithm for lexicographic leaders of Γ -orbit. **Input:** Symmetry group Γ , and an initial set of fixings.

- **1** if There are no lexicographic leaders in the Γ -orbit respecting the fixings then
- 2 **return** INFEASIBLE;
- **3 foreach** Entry i with x_i unfixed **do**
- 4 **if** There are no lexicographic leaders y in the Γ-orbit respecting the fixing and $y_i = 1$ **then** 5 Fix x_i to 0.
- **if** There are no lexicographic leaders y in the Γ -orbit respecting the fixing and $y_i = 0$ **then** 7 Fix x_i to 1.
- 8 return FEASIBLE, and complete set of fixings;
- Oracle for lines 1, 4, 6: "Does a lexicographic leader exists respecting fixings?"
- Meta-algorithm takes $\mathcal{O}(n \cdot f(\Gamma, n))$ time, where $f(\Gamma, n)$ is the oracle complexity.
- 13 Symmetry handling in binary programs through propagation

Meta-algorithm: Find the complete set of fixings

Meta-algorithm takes $\mathcal{O}(n \cdot f(\Gamma, n))$ time, where $f(\Gamma, n)$ is the oracle complexity.

"Does a lexicographic leader in the **Г**-orbit exist that respects initial fixings?"

Special case: If all variables are fixed at 0 or 1, testing this is coNP-complete:

Theorem (Babai and Luks (1983), Luks and Roy (2002))

"The problem of testing whether a 0/1 string X is the lexicographic leader in its Γ-orbit is coNP-complete."

Restriction to classes of groups Γ.

Special case: A cyclic group with monotone representation

"Does a lexicographic leader in the **Г**-orbit exist that respects initial fixings?"

Special case: $\Gamma \leq \langle (1, 2, ..., n) \rangle$. (monotone cycle)

Special case: A cyclic group with monotone representation

"Does a lexicographic leader in the **Г**-orbit exist that respects initial fixings?"

Special case: $\Gamma \leq \langle (1, 2, ..., n) \rangle$. (monotone cycle)

Proposition (Feasibility statement for monotone cycles)

Let $\Gamma \leq \langle (1, ..., n) \rangle$, a set of variable fixings, and $F \subseteq \{0, 1\}^n$ the set of all binary vectors respecting the variable fixings.

If the set of fixings is complete for $x \succeq \gamma(x)$ for each $\gamma \in \Gamma$, then:

For all $\gamma \in \Gamma$ there exists an $x \in F$ with $x \succeq \gamma(x)$ (Feasible vector exists for all $x \succeq \gamma(x)$)

There exists an $x \in F$ with $x \succeq \gamma(x)$ for all $\gamma \in \Gamma$.

 \Leftrightarrow

↔ (Lex-leader exists in Γ-orbit.)

Collecting results

- Oracle: "Does a lex. leader in Γ-orbit exist, respecting initial fixings?":
- Finding the complete set of fixings for lex. leaders in the Γ -orbit: Oracle for $\Gamma \leq \langle (1, ..., n) \rangle$:
 - 1. Proposition: If the set of fixings is complete for $x \succeq \gamma(x)$ for each individual $\gamma \in \Gamma$, then:

Feasible vector exists for all $x \succeq \gamma(x)$

Lex-leader exists in **F**-orbit.

2. Compute complete set of fixings for $x \succeq \gamma(x)$ for each individual $\gamma \in \Gamma$: $\mathcal{O}(n \cdot \operatorname{ord}(\Gamma))$

 $\sim f(n, \Gamma) = \mathcal{O}(n \operatorname{ord}(\Gamma))$ = $\mathcal{O}(n^2)$

 $\mathcal{O}(f(n, \Gamma)).$

 $\mathcal{O}(n \cdot f(n, \Gamma)).$

Proof of proposition

Proposition (Feasibility statement for monotone cycles)

Let $\Gamma \leq \langle (1, ..., n) \rangle$, and $F \subseteq \{0, 1\}^n$ a set of binary solution vectors with variable fixings. If the set of fixings is complete for $x \succeq \gamma(x)$ for each $\gamma \in \Gamma$, then:

 $\forall \gamma \in \mathsf{\Gamma} \exists x \in \mathsf{F} : x \succeq \gamma(x) \iff \exists x \in \mathsf{F} \forall \gamma \in \mathsf{\Gamma} : x \succeq \gamma(x).$

Proof idea.

⇐: Trivial. ⇒: If |F| = 1, then no unfixed entries. Trivial.

Proof of proposition

Proposition (Feasibility statement for monotone cycles)

Let $\Gamma \leq \langle (1, ..., n) \rangle$, and $F \subseteq \{0, 1\}^n$ a set of binary solution vectors with variable fixings. If the set of fixings is complete for $x \succeq \gamma(x)$ for each $\gamma \in \Gamma$, then:

 $\forall \gamma \in \mathsf{\Gamma} \exists x \in \mathsf{F} : x \succeq \gamma(x) \iff \exists x \in \mathsf{F} \forall \gamma \in \mathsf{\Gamma} : x \succeq \gamma(x).$

Proof idea.

 $\Rightarrow: \text{ If } |F| > 1, \text{ then unfixed entries exist.}$ Construct $\tilde{x} \in F$ with $\tilde{x}_i = \begin{cases} 1, & \text{ if } i \text{ is a 1-fixing or the first unfixed entry,} \\ 0, & \text{ if } i \text{ is a 0-fixing or not the first unfixed entry.} \end{cases}$ Claim: $\tilde{x} \in F$ is a certificate.

A stronger result

Proposition (Last slide)

For $\Gamma \leq \langle (1, ..., n) \rangle$, the complete set of fixings for lexicographic leaders in the Γ -orbit can be determined in $\mathcal{O}(n^3)$ time.

Proposition (Stronger result)

- $\Gamma \leq \langle \zeta_1 \circ \zeta_2 \circ \cdots \circ \zeta_k \rangle$ with maximal cycle length *m*,
- each subcycle ζ_i ($i \in \{1, ..., k\}$) has exactly one descend point (monotone), and

► for $i, j \in \{1, ..., k\}$ with i < j the entries of ζ_i are smaller than the entries of ζ_j (ordered). The complete set of fixings for lexicographic leaders in the Γ -orbit can be determined in $\mathcal{O}(n^2m)$ time.

Computational study

Practical concerns

Generators do not need to be monotone and ordered: For example: (1,10)(2,5,4)(3,11,8,7,6,9).

Symmetry groups could have more than one generator:

Practical concerns

- Generators do not need to be monotone and ordered: For example: (1,10)(2,5,4)(3,11,8,7,6,9).
 - Preprocessing step (*Relabeling*): Relabel variable indices

 $(1,10)(2,5,4)(3,11,8,7,6,9) \rightsquigarrow (1,2)(3,4,5)(6,7,8,9,10,11)$

Symmetry groups could have more than one generator:

Practical concerns

- Generators do not need to be monotone and ordered: For example: (1,10)(2,5,4)(3,11,8,7,6,9).
 - Preprocessing step (*Relabeling*): Relabel variable indices

 $(1,10)(2,5,4)(3,11,8,7,6,9) \rightsquigarrow (1,2)(3,4,5)(6,7,8,9,10,11)$

- Symmetry groups could have more than one generator:
 - Add more symmetry handling constraints for various subgroups.

Computational setup

Implemented as SCIP plugin.

- SCIP: "Solving Constraint Integer Programs" (Academic solver);
- Compatible symmetry handling techniques;
- ► For monotone and ordered generators:
 - Strong variant: Complete: $\mathcal{O}(n^2m)$;
 - ▶ Weak variant: Complete for all individual permutations: O(nm).
- For arbitrary cyclic groups Γ (No guarantees):
 - Strong variant: $\mathcal{O}(n^2 \operatorname{ord}(\Gamma))$;
 - Weak variant: $\mathcal{O}(n \operatorname{ord}(\Gamma))$.

Computational results: Test instances

- Verify that flower snark graphs are not 3-edge-colorable;
- MIPLIB2010 + MIPLIB2017 instances.

Flower snark J₅

Computational results: Configuration

Options:

- nosym: No symmetry handling;
- gen: Propagate $x \succeq \tilde{\gamma}(x)$ for a generator $\tilde{\gamma}$ (SCIP default choice), $\mathcal{O}(n)$;
- group: Propagate $x \succeq \gamma(x)$ for all cyclic subgroup members $\gamma \in \langle \tilde{\gamma} \rangle$, $\mathcal{O}(n^2 \operatorname{ord}(\langle \tilde{\gamma} \rangle))$;
- nopeek: Propagate $x \succeq \gamma(x)$ for all cyclic subgroup members $\gamma \in \langle \tilde{\gamma} \rangle$, $\mathcal{O}(nm)^{\dagger}$;
- ▶ peek: Strong variant, $\mathcal{O}(n^2m)^{\dagger}$.

Relabeling:

- original: Respect original variable relabeling;
- max, min: Largest/Smallest cycles go first;
- respect: Sort by first entry of cycle in original relabeling.

†: *m* is maximal cycle length of generator $\tilde{\gamma}$. Assuming $\tilde{\gamma}$ is monotone and ordered generator.

Edge 3-coloring flower snark instances

- ► Family of graphs *J_n* with graph automorphism having cyclic subgroup;
- ▶ 5 runs per instance and setting, with different random seed;
- ► Instances are infeasible.

Flower snark J₅

Edge 3-coloring flower snark instances

- ► Family of graphs *J_n* with graph automorphism having cyclic subgroup;
- ▶ 5 runs per instance and setting, with different random seed;
- ► Instances are infeasible.

Flower snark /5

Conclusions:

- Results are very sensitive to chosen relabeling;
- On average, the weak and strong method are at least 5% faster than group;
- Strong method (peek) is costs significant time, but is effective.

For parameters $n \in \{3, 5, 7, \dots, 49\}$

	nosym		gen		group		nopeek		peek	
relabeling	time(s)	S	time(s)	S	time(s)	S	time(s)	S	time(s)	S
original max min respect	730.78 - - -	54	172.35 407.02 97.99 184.44	88 65 102 88	187.56 312.93 131.58 173.41	87 70 95 86	169.79 278.00 127.48 174.32	93 77 92 88	153.23 270.19 119.67 178.46	97 78 95 87
aggregated relative to group	730.78 +281.1%	54	189.90 -1.0%	343	191.75 -	338	180.33 -5.6%	350	<mark>172.84</mark> -9.9%	357

For parameters $n \in \{27, 29, \dots, 49\}$ (Not solvable by nosym)

	nosym		gen		grou	р	nopeek		peek	
relabeling	time(s)	S	time(s)	S	time(s)	S	time(s)	S	time(s)	S
original max min	7200.00 - -	0	1266.33 4752.76 531.09	33 10 47	1526.99 3501.50 912.18	32 15 40	1269.40 2884.53 889.73	38 22 37	1056.42 2734.31 797.14	42 23 40
respect	-		1480.93	33	1444.56	31	1452.88	33	1509.23	32
aggregated relative to group	7200.00 +341.6%	0	1478.12 -9.4%	123	1630.32 -	118	1475.85 -9.5%	130	<mark>1366.37</mark> -16.2%	137

Time limit 7200s; Using shifted geometric mean (+10s)

Benchmark instances MIPLIB2010, MIPLIB2017

MIPLIB2010 + MIPLIB2017:

- ► 1427 instances;
- ► 35 nontrivial instances with cyclic symmetry structure;
- ► 11 solvable by some method in 7200s.

Benchmark instances MIPLIB2010, MIPLIB2017

MIPLIB2010 + MIPLIB2017:

- ► 1427 instances;
- 35 nontrivial instances with cyclic symmetry structure;
- ► 11 solvable by some method in 7200s.

Conclusions:

- Results are very sensitive to chosen relabeling;
- Variation between different instances is huge;
- nopeek and peek are slower than group.
- Without instances that are solved fastest by nosym, the weak and strong methods are at least 4% faster than group.

All relevant instances

	nosym	ı	gen		group		nopeek		peek	
relabeling	time(s)	S	time(s)	S	time(s)	S	time(s)	S	time(s)	S
original max min respect	1853.78 - - -	42	491.69 1061.29 901.65 970.19	50 47 48 47	407.76 812.31 612.10 743.01	50 48 50 49	449.34 771.56 837.48 639.20	48 48 47 50	506.23 796.69 657.29 723.93	48 49 49 49
aggregated relative to group	1853.78 +197.4%	42	822.47 +31.9%	192	<mark>623.37</mark> -	197	656.66 +5.3%	193	662.01 +6.2%	195

Without instances solved fastest by nosym (neos-3004026-krka, neos-920392, and supportcase29)

	nosym		gen		group		nopeek		peek	
relabeling	time(s)	S	time(s)	S	time(s)	S	time(s)	S	time(s)	S
original max min respect	3917.80 - - -	27	501.57 1193.75 1062.99 1226.05	35 33 33 33	393.39 668.57 719.87 761.70	35 35 35 35	337.55 694.06 710.16 678.57	35 35 35 35	338.57 698.20 706.24 715.09	35 35 35 35
aggregated relative to group	3917.80 +535.4%	27	940.64 +52.5%	134	616.62 -	140	<mark>580.20</mark> -5.9%	140	588.38 -4.6%	140

Time limit 7200s; Using shifted geometric mean (+10s)

Overview of the results

Handling symmetries in (binary) integer linear programs by propagation:

- Complete set of fixings of $x \succeq \gamma(x)$ for a permutation γ on $\{1, \ldots, n\}$;
- Complete set of fixings of $x \succeq \gamma(x)$ for all γ on $\{1, \ldots, n\}$ in a set *S*;
- Complete set of fixings of lexicographic leaders in cyclic Γ-orbit, with Γ generated by a monotone and ordered permutation with maximal subcycle length m. $O(n^2m)$

 $\mathcal{O}(n)$

 $\mathcal{O}(n|S|)$

- Arbitrary cyclic groups Γ: No guarantee of completeness:
 - Stronger version: $\mathcal{O}(n^2 \operatorname{ord}(\Gamma))$; Weaker version: $\mathcal{O}(n \operatorname{ord}(\Gamma))$.

Computational results:

- Effectiveness is measurable in various instances:
 - Flower snark 3-edge-coloring;
 - MIPLIB instances.

Thank you!

References

- László Babai and Eugene M Luks.
 Canonical labeling of graphs.
 In Proceedings of the fifteenth annual ACM symposium on Theory of computing, pages 171–183, 1983.
- Eugene Luks and Amitabha Roy. The complexity of symmetry-breaking formulas. Annals of Mathematics and Artificial Intelligence, 41, 08 2002.
- François Margot. Symmetric ILP: Coloring and small integers. Discrete Optimization, 4(1):40–62, 2007.