EINDHOVEN
UNIVERSITY OF
TECHNOLOGY

Symmetry handling in binary programs through propagation

Jasper van Doornmalen Christopher Hojny

Eindhoven University of Technology, Department of Mathematics and Computer Science, Combinatorial Optimization

Symmetries in binary programs

Minimize ¢ x
SubjecttoAx < b
x e {0,1}"

Definition
A permutation vy on {1,...,n} is a symmetry for the program if for all x € {0, 1}" holds
c'x=c"y(x)and Ax < b <= Ay(x) < b, where y(x) == (X,-11)," = » Xy-1(m))-

» The symmetries of a program define a group.
» In this presentation: I is a symmetry group of the program.

2 Symmetry handling in binary programs through propagation TU/e

Symmetry in Branch-and-Bound

3 Symmetry handling in binary programs through propagation TU/e

Symmetry in Branch-and-Bound

oo~

3

A
- L
~

3 Symmetry handling in binary programs through propagation TU/e

Previous work on symmetry handling in MILP

» Symmetry breaking inequalities [Friedman, 2007], [Kaibel and Loos, 2010], [Liberti, 2010],
[Kaibel et al., 2011], [Liberti, 2013], [Hojny and Pfetsch, 2018], [Hojny, 2020], [Hojny et al., 2021+];

> Branching [Ostrowski et al., 2007], [Ostrowski et al., 2015];

» Propagation [Margot, 2002], [Margot, 2003], [Ostrowski et al., 2007], [Bendotti et al., 2021].

4 Symmetry handling in binary programs through propagation TU/e

Solution approach

5

> Given: A problem symmetry group I of the program;
> Restrict region: Symmetrical solutions have (at least) a single representative;
» Enforce: by propagation.

Symmetry handling in binary programs through propagation

Symmetry handling using lexicographic order

Definition (Lexicographic order) 1 1
0 0

x,y € {0,1}"; 1 |1
» x> yifthereisaje {1,...,n} withx; = y; for alli < j, and x; > y;; 1 0

> x-yifx=yorx=y.

Definition (Lexicographic leader in orbit)

Letx € {0,1}".
If x = ~(x) for all v € T, then x is the lexicographic leader in its I-orbit {~v(x) : v € I'}.

6 Symmetry handling in binary programs through propagation TU/e

Propagation
Common in CP/CSP/SAT/MINLP solvers.
“Reduce (sub)problem size by logical deduction, restricting variable bounds.”

» Problem variables x € {0, 1}";
> Set C of constraints;
> Io,I; C{1,...,n}: Variable indices fixed to 0 and 1.

. . x; = 0foralliely,
C(lp,I}) = <{x € {0,1}" : x satisfy constraints of C, .
(o, 1) { {0.1} y x; =1foralliel

Goal of propagation: Find Io,I; D Io, I such that C(Ip, I) = C(Io, I1).
Complete: When Io, I, are inclusionwise maximal.

7 Symmetry handling in binary programs through propagation TU/e

Solution approach

8

> Given: A problem symmetry group I of the program;
> Restrict region: Symmetrical solutions have (at least) a single representative:
» Constraint for lexicographic leaders in I-orbit:

x = ~(x)forallyeT.

» Enforce: by propagation.

Symmetry handling in binary programs through propagation

Simpler case: Propagation for a single permutation

Compute complete set of fixings of x = +(x) for a single permutation ~.

~v=(1,2,5)(3,4); Initial fixings: x; =1, x3 =0, x5 = 1.

x1= 1 X5 = 1

X2 = _ X = 1
X=|x3= 0| = [xa= _| =~(X)

Xq4 = x3= 0

Xs = 1 X2 = _

9 Symmetry handling in binary programs through propagation TU/e

Simpler case: Propagation for a single permutation

Compute complete set of fixings of x = +(x) for a single permutation ~.

~v=(1,2,5)(3,4); Initial fixings: x; =1, x3 =0, x5 = 1.

x1= 1 X5 = 1

X = 1 X1= 1
X=|x3= 0| = [xa= _| =~(X)

X4 = x3= 0

X5 = 1 X = 1

9 Symmetry handling in binary programs through propagation TU/e

Simpler case: Propagation for a single permutation

Compute complete set of fixings of x = +(x) for a single permutation ~.

~v=(1,2,5)(3,4); Initial fixings: x; =1, x3 =0, x5 = 1.

x1= 1 X5 = 1

X = 1 X1= 1
X=|x3= 0| = [xa= 0| =~(x)

xa= 0 x3= 0

X5 = 1 X = 1

9 Symmetry handling in binary programs through propagation TU/e

Simpler case: Propagation for a single permutation

Lemma

For v permuting {1, ..., n}, the complete set of fixings of x = ~v(x) can be found in O(n) time.

Proof.
Compare x; and v(x);, starting at/ = 1, for increasing i up to n.
9 possible situations of (xj, v(x);):

» (0,)or(_,1);
0,0) or (1,1);
1,0);
0,1)
1,.),(,,0)or(_,_). 0

(x| (x)]

’

e
>
> (
> (

10 Symmetry handling in binary programs through propagation

Equal

0 k—

7?7

TU/e

Simpler case: Propagation for a single permutation

Lemma

For v permuting {1, ..., n}, the complete set of fixings of x = ~v(x) can be found in O(n) time.

Proof.
Compare x; and v(x);, starting at/ = 1, for increasing i up to n.
9 possible situations of (xj, v(x);):

» (0,)or(_,1);
0,0) or (1,1);
1,0);
0,1)
1,.),(,,0)or(_,_). 0

(x| (x)]

’

e
>
> (
> (

10 Symmetry handling in binary programs through propagation

Equal

0 0 k-

7?7

TU/e

Simpler case: Propagation for a single permutation

Lemma

For v permuting {1, ..., n}, the complete set of fixings of x = ~v(x) can be found in O(n) time.

Proof.
Compare x; and v(x);, starting at/ = 1, for increasing i up to n.
9 possible situations of (xj, v(x);):

» (0,)or(_,1);
0,0) or (1,1);
1,0);
0,1)
1,.), (L,0) or (_,_). Can make (1,0). Test for (0,0) and (1,1)[]

(x| (x)]

’

e
>
> (
> (

10 Symmetry handling in binary programs through propagation

Equal

7?7

TU/e

Simpler case: Propagation for a single permutation

Lemma

For v permuting {1, ..., n}, the complete set of fixings of x = ~v(x) can be found in O(n) time.

Proof.
Compare x; and v(x);, starting at/ = 1, for increasing i up to n.
9 possible situations of (xj, v(x);):

» (0,)or(_,1);
0,0) or (1,1);
1,0);
0,1)
1,.), (L,0) or (_,_). Can make (1,0). Test for (0,0) and (1,1)[]

(x| (x)]

’

e
>
> (
> (

10 Symmetry handling in binary programs through propagation

Equal

1 0 K

7?7

Simpler case: Propagation for a single permutation

Lemma

For v permuting {1, ..., n}, the complete set of fixings of x = ~v(x) can be found in O(n) time.

Proof.
Compare x; and v(x);, starting at/ = 1, for increasing i up to n.
9 possible situations of (xj, v(x);):

» (0,)or(_,1);
0,0) or (1,1);
1,0);
0,1)
1,.), (L,0) or (_,_). Can make (1,0). Test for (0,0) and (1,1)[]

(x| (x)]

’

e
>
> (
> (

10 Symmetry handling in binary programs through propagation

Equal

0 0 kK

7?7

Propagation for a set of permutations

Lemma (Previous result)

For v permuting {1, ..., n}, the complete set of fixings of constraint x = ~v(x) can be found
in O(n) time.

Input: A set S of permutations on {1,...,n}.

Corollary (Naive propagation loop)

The complete set of fixings for each (individual) constraint x = ~(x) for all v € S can be
found in O(n?|S|) time.

Can do better. ~~ O(n|S|)

11 Symmetry handling in binary programs through propagation TU/e

Solution approach

> Given: A problem symmetry group I of the program;
> Restrict region: Symmetrical solutions have (at least) a single representative:
» Constraint for lexicographic leaders in I-orbit:

x = ~(x)forallyeT.

» Enforce: by propagation.

12 Symmetry handling in binary programs through propagation

Meta-algorithm: Find the complete set of fixings

13

1
2

3
4

5

6
7

8

Algorithm: Complete propagation algorithm for lexicographic leaders of I'-orbit.
Input: Symmetry group I, and an initial set of fixings.

if There are no lexicographic leaders in the I-orbit respecting the fixings then
L return INFEASIBLE;

foreach Entry i with x; unfixed do
if There are no lexicographic leaders y in the T-orbit respecting the fixing and y; = 1 then

L Fix x; to 0.
if There are no lexicographic leaders y in the T-orbit respecting the fixing and y; = 0 then
t Fix x; to 1.

return FEASIBLE, and complete set of fixings;

Symmetry handling in binary programs through propagation

TU/e

Meta-algorithm: Find the complete set of fixings

Algorithm: Complete propagation algorithm for lexicographic leaders of I'-orbit.
Input: Symmetry group I, and an initial set of fixings.

1 if There are no lexicographic leaders in the I-orbit respecting the fixings then
2 L return INFEASIBLE;

3 foreach Entry i with x; unfixed do
4 if There are no lexicographic leaders y in the T-orbit respecting the fixing and y; = 1 then

5 L Fix x; to 0.
6 if There are no lexicographic leaders y in the T-orbit respecting the fixing and y; = 0 then
7 t Fix x; to 1.

8 return FEASIBLE, and complete set of fixings;

> Oracle for lines 1, 4, 6: “Does a lexicographic leader exists respecting fixings?”
> Meta-algorithm takes O(n - f(I', n)) time, where f(I', n) is the oracle complexity.

13 Symmetry handling in binary programs through propagation TU/e

Meta-algorithm: Find the complete set of fixings
Meta-algorithm takes O(n - f(I',n)) time, where f(T, n) is the oracle complexity.
“Does a lexicographic leader in the -orbit exist that respects initial fixings?”
> Special case: If all variables are fixed at 0 or 1, testing this is coNP-complete:

Theorem (Babai and Luks (1983), Luks and Roy (2002))

“The problem of testing whether a 0/1 string X is the lexicographic leader in its T-orbit is
coNP-complete.”

> Restriction to classes of groups I'.

14 Symmetry handling in binary programs through propagation TU/e

Special case: A cyclic group with monotone representation

“Does a lexicographic leader in the -orbit exist that respects initial fixings?”

Special case: I < ((1,2,...,n)). (monotone cycle)

15 Symmetry handling in binary programs through propagation TU/e

Special case: A cyclic group with monotone representation

“Does a lexicographic leader in the -orbit exist that respects initial fixings?”
Special case: I < {((1,2,...,n)). (monotone cycle)

Proposition (Feasibility statement for monotone cycles)

LetT < {(1,...,n)), aset of variable fixings, and F C {0, 1}" the set of all binary vectors
respecting the variable fixings.

If the set of fixings is complete for x = ~(x) for each v €T, then:

For all v € T there exists an x € F with x = ~(x) (Feasible vector exists for all x = ~(x))
= =
There exists an x € F with x = ~(x) forall vy € T. (Lex-leader exists in T-orbit.)

15 Symmetry handling in binary programs through propagation TU/e

Collecting results

> Oracle: “Does a lex. leader in I'-orbit exist, respecting initial fixings?": O(f(n,T)).
> Finding the complete set of fixings for lex. leaders in the I'-orbit: O(n-f(n,In)).

Oracle forT < {((1,...,n)):

1. Proposition: If the set of fixings is complete for
x = v(x) for each individual v € T, then:

Feasible vector exists for all x = ~v(x)
=
Lex-leader exists in [-orbit.

2. Compute complete set of fixings for x = ~(x) for
each individual v € T: O(n - ord(T"))

16 Symmetry handling in binary programs through propagation

~ f(n,T) = O(nord(l))
= O(n?)

TU/e

Proof of proposition

Proposition (Feasibility statement for monotone cycles)

LetT < {((1,...,n)), and F C {0,1}" a set of binary solution vectors with variable fixings.
If the set of fixings is complete for x = ~(x) for each v €T, then:

Vyel X eF:x=v(X) < I eFVyel x=~yx).

Proof idea.

«: Trivial.
= If |F| = 1, then no unfixed entries. Trivial.

17 Symmetry handling in binary programs through propagation TU/e

Proof of proposition

Proposition (Feasibility statement for monotone cycles)

LetT < {((1,...,n)), and F C {0,1}" a set of binary solution vectors with variable fixings.
If the set of fixings is complete for x = ~(x) for each v €T, then:

Vyel X eF:x=v(X) < I eFVyel x=~yx).

Proof idea.

= If |[F| > 1, then unfixed entries exist.

1, ifiisa 1-fixing or the first unfixed entry,

0, ifiis a O-fixing or not the first unfixed entry.

Claim: X € F is a certificate. O

Construct X € F with X; = {

17 Symmetry handling in binary programs through propagation TU/e

A stronger result

Proposition (Last slide)

ForT < {((1,...,n)), the complete set of fixings for lexicographic leaders in the T-orbit can
be determined in O(n3) time.

Proposition (Stronger result)

> [< (¢ olo--- o) with maximal cycle length m,
» each subcycle (; (i € {1,...,k}) has exactly one descend point (monotone), and
» fori,je{1,... .k} withi < jthe entries of (; are smaller than the entries of (; (ordered).

The complete set of fixings for lexicographic leaders in the T-orbit can be determined in
O(n*m) time.

18 Symmetry handling in binary programs through propagation TU/e

Computational study

19 Symmetry handling in binary programs through propagation TU/e

Practical concerns

» Generators do not need to be monotone and ordered:
For example: (1,10)(2,5,4)(3,11,8,7,6,9).

» Symmetry groups could have more than one generator:

20 Symmetry handling in binary programs through propagation TU/e

Practical concerns
» Generators do not need to be monotone and ordered:

For example: (1,10)(2,5,4)(3,11,8,7,6,9).
> Preprocessing step (Relabeling): Relabel variable indices

(1,10)(2,5,4)(3,11,8,7,6,9) ~» (1,2)(3,4,5)(6,7,8,9,10,11)

» Symmetry groups could have more than one generator:

20 Symmetry handling in binary programs through propagation TU/e

Practical concerns

» Generators do not need to be monotone and ordered:
For example: (1,10)(2,5,4)(3,11,8,7,6,9).
> Preprocessing step (Relabeling): Relabel variable indices

(1,10)(2,5,4)(3,11,8,7,6,9) ~» (1,2)(3,4,5)(6,7,8,9,10,11)

» Symmetry groups could have more than one generator:
» Add more symmetry handling constraints for various subgroups.

20 Symmetry handling in binary programs through propagation TU/e

Computational setup

Implemented as SCIP plugin.
» SCIP: “Solving Constraint Integer Programs” (Academic solver);
» Compatible symmetry handling techniques;
» For monotone and ordered generators:

> Strong variant: Complete: O(n’m);

» Weak variant: Complete for all individual permutations: O(nm).
> For arbitrary cyclic groups I' (No guarantees):

» Strong variant: O(n?ord(T"));

» Weak variant: O(nord(T)).

21 Symmetry handling in binary programs through propagation

TU/e

Computational results: Test instances

> Verify that flower snark graphs are not 3-edge-colorable;
» MIPLIB2010 + MIPLIB2017 instances.

Flower snark /s

22 Symmetry handling in binary programs through propagation TU/e

Computational results: Configuration

Options:
» nosym: No symmetry handling;
> gen: Propagate x = 7(x) for a generator 4 (SCIP default choice), O(n);
» group: Propagate x = ~(x) for all cyclic subgroup members v € (3), O(n? ord((7)));
» nopeek: Propagate x = ~(x) for all cyclic subgroup members v € (3), O(nm) 1;
» peek: Strong variant, O(n’m) .
Relabeling:
> original: Respect original variable relabeling;
> max, min: Largest/Smallest cycles go first;
> respect: Sort by first entry of cycle in original relabeling.

t: m is maximal cycle length of generator 4. Assuming 4 is monotone and ordered generator.

23 Symmetry handling in binary programs through propagation TU/e

Edge 3-coloring flower snark instances

» Family of graphs J, with graph automorphism having cyclic subgroup;
» 5 runs per instance and setting, with different random seed;
> Instances are infeasible.

Flower snark /s

24 Symmetry handling in binary programs through propagation TU/e

Edge 3-coloring flower snark instances

» Family of graphs J, with graph automorphism having cyclic subgroup;
» 5 runs per instance and setting, with different random seed;
> Instances are infeasible.

Conclusions: Flower snark Js
> Results are very sensitive to chosen relabeling;
> On average, the weak and strong method are at least 5% faster than group;
> Strong method (peek) is costs significant time, but is effective.

24 Symmetry handling in binary programs through propagation TU/e

For parameters n € {3,5,7,...,49}

nosym gen group nopeek peek

relabeling time(s) S time(s) S time(s) S time(s) S time(s) S
original 730.78 54 17235 88 187.56 87 169.79 93 153.23 97
max - 407.02 65 312.93 70 278.00 77 270.19 78
min - 97.99 102 131.58 95 127.48 92 119.67 95
respect - 184.44 88 173.4 86 174.32 88 178.46 87
aggregated 730.78 54 189.90 343 191.75 338 180.33 350 172.84 357
relative to group +281.1% -1.0% - -5.6% -9.9%

For parameters n € {27,29,...,49} (Not solvable by nosym)

nosym gen group nopeek peek

relabeling time(s) S time(s) S time(s) S time(s) S time(s) S
original 7200.00 0 1266.33 33 1526.99 32 1269.40 38 1056.42 42
max - 4752.76 10 3501.50 15 2884.53 22 273431 23
min - 531.09 47 912.18 40 889.73 37 797.14 40
respect - 1480.93 33 1444.56 31 1452.88 33 1509.23 32
aggregated 7200.00 0 1478.12 123 1630.32 118 147585 130 1366.37 137
relative to group ~ +341.6% -9.4% - -9.5% -16.2%

Time limit 7200s; Using shifted geometric mean (+10s)

25 Symmetry handling in binary programs through propagation TU/e

Benchmark instances MIPLIB2010, MIPLIB2017

MIPLIB2010 + MIPLIB2017:
> 1427 instances;
» 35 nontrivial instances with cyclic symmetry structure;
> 11 solvable by some method in 7200s.

26 Symmetry handling in binary programs through propagation TU/e

Benchmark instances MIPLIB2010, MIPLIB2017

MIPLIB2010 + MIPLIB2017:
> 1427 instances;
» 35 nontrivial instances with cyclic symmetry structure;
> 11 solvable by some method in 7200s.

Conclusions:
> Results are very sensitive to chosen relabeling;
> Variation between different instances is huge;
» nopeek and peek are slower than group.

» Without instances that are solved fastest by nosym, the weak and strong methods
are at least 4% faster than group.

26 Symmetry handling in binary programs through propagation TU/e

All relevant instances

nosym gen group nopeek peek

relabeling time(s) S time(s) S time(s) S time(s) S time(s) S
original 1853.78 42 491.69 50 407.76 50 449.34 48 506.23 48
max - 1061.29 47 81231 48 771.56 48 796.69 49
min - 901.65 48 612.10 50 837.48 47 657.29 49
respect - 970.19 47 743.01 49 639.20 50 723.93 49
aggregated 1853.78 42 82247 192 62337 197 656.66 193 662.01 195
relative to group +197.4% +31.9% - +5.3% +6.2%

Without instances solved fastest by nosym (neos-3004026-krka, neos-920392, and supportcase29)

nosym gen group nopeek peek

relabeling time(s) S time(s) S time(s) S time(s) S time(s) S
original 3917.80 27 501.57 35 393.39 35 337.55 35 338.57 35
max - 1193.75 33 668.57 35 694.06 35 698.20 35
min - 1062.99 33 719.87 35 710.16 35 706.24 35
respect - 1226.05 33 761.70 35 678.57 35 715.09 35
aggregated 3917.80 27 940.64 134 616.62 140 580.20 140 588.38 140
relative to group +535.4% +52.5% - -5.9% -4.6%

Time limit 7200s; Using shifted geometric mean (+10s)

27 Symmetry handling in binary programs through propagation TU/e

Overview of the results

Handling symmetries in (binary) integer linear programs by propagation:
» Complete set of fixings of x > ~(x) for a permutation yon {1,...,n}; O(n)
» Complete set of fixings of x = ~v(x) forallyon {1,...,n} inasets; O(n|S])
» Complete set of fixings of lexicographic leaders in cyclic -orbit, with I generated

by a monotone and ordered permutation with maximal subcycle length m. O(n’m)
> Arbitrary cyclic groups I': No guarantee of completeness:
» Stronger version: O(n*ord(I)); Weaker version: O(nord(l)).
Computational results:

» Effectiveness is measurable in various instances:

» Flower snark 3-edge-coloring;
» MIPLIB instances.

28 Symmetry handling in binary programs through propagation TU/e

ILELLECIL

29 Symmetry handling in binary programs through propagation TU/e

References

[4 L&szI6 Babai and Eugene M Luks.
Canonical labeling of graphs.
In Proceedings of the fifteenth annual ACM symposium on Theory of computing, pages
171-183, 1983.

[d Eugene Luks and Amitabha Roy.
The complexity of symmetry-breaking formulas.
Annals of Mathematics and Artificial Intelligence, 41, 08 2002.

[4 Francois Margot.
Symmetric ILP: Coloring and small integers.
Discrete Optimization, 4(1):40-62, 2007.

30 Symmetry handling in binary programs through propagation TU/e

	Symmetries in binary programs
	Propagation algorithms
	Computational results

