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Symmetries in binary programs

Minimize ¢ x
SubjecttoAx < b
x e {0,1}"

Definition
A permutation vy on {1,...,n} is a symmetry for the program if for all x € {0, 1}" holds
c'x=c"y(x)and Ax < b <= Ay(x) < b, where y(x) == (X,-11)," = » Xy-1(m))-

» The symmetries of a program define a group.
» In this presentation: I is a symmetry group of the program.
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Symmetry in Branch-and-Bound
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Previous work on symmetry handling in MILP

» Symmetry breaking inequalities [Friedman, 2007], [Kaibel and Loos, 2010], [Liberti, 2010],
[Kaibel et al., 2011], [Liberti, 2013], [Hojny and Pfetsch, 2018], [Hojny, 2020], [Hojny et al., 2021+];

> Branching [Ostrowski et al., 2007], [Ostrowski et al., 2015];

» Propagation [Margot, 2002], [Margot, 2003], [Ostrowski et al., 2007], [Bendotti et al., 2021].
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Solution approach
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> Given: A problem symmetry group I of the program;
> Restrict region: Symmetrical solutions have (at least) a single representative;
» Enforce: by propagation.
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Symmetry handling using lexicographic order

Definition (Lexicographic order) 1 1
0 0

x,y € {0,1}"; 1 |1
» x> yifthereisaje {1,...,n} withx; = y; for alli < j, and x; > y;; 1 0

> x-yifx=yorx=y.

Definition (Lexicographic leader in orbit)

Letx € {0,1}".
If x = ~(x) for all v € T, then x is the lexicographic leader in its I-orbit {~v(x) : v € I'}.
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Propagation
Common in CP/CSP/SAT/MINLP solvers.
“Reduce (sub)problem size by logical deduction, restricting variable bounds.”

» Problem variables x € {0, 1}";
> Set C of constraints;
> Io,I; C{1,...,n}: Variable indices fixed to 0 and 1.

. . x; = 0foralliely,
C(lp,I}) = <{x € {0,1}" : x satisfy constraints of C, .
(o, 1) { {0.1} y x; =1foralliel

Goal of propagation: Find Io,I; D Io, I such that C(Ip, I) = C(Io, I1).
Complete: When Io, I, are inclusionwise maximal.
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Solution approach

8

> Given: A problem symmetry group I of the program;
> Restrict region: Symmetrical solutions have (at least) a single representative:
» Constraint for lexicographic leaders in I-orbit:

x = ~(x)forallyeT.

» Enforce: by propagation.
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Simpler case: Propagation for a single permutation

Compute complete set of fixings of x = +(x) for a single permutation ~.

~v=(1,2,5)(3,4); Initial fixings: x; =1, x3 =0, x5 = 1.

x1= 1 X5 = 1

X2 = _ X = 1
X=|x3= 0| = [xa= _| =~(X)

Xq4 = x3= 0

Xs = 1 X2 = _
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Simpler case: Propagation for a single permutation

Compute complete set of fixings of x = +(x) for a single permutation ~.

~v=(1,2,5)(3,4); Initial fixings: x; =1, x3 =0, x5 = 1.

x1= 1 X5 = 1

X = 1 X1= 1
X=|x3= 0| = [xa= _| =~(X)

X4 = x3= 0

X5 = 1 X = 1

9 Symmetry handling in binary programs through propagation TU/e



Simpler case: Propagation for a single permutation

Compute complete set of fixings of x = +(x) for a single permutation ~.

~v=(1,2,5)(3,4); Initial fixings: x; =1, x3 =0, x5 = 1.

x1= 1 X5 = 1

X = 1 X1= 1
X=|x3= 0| = [xa= 0| =~(x)

xa= 0 x3= 0

X5 = 1 X = 1
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Simpler case: Propagation for a single permutation

Lemma

For v permuting {1, ..., n}, the complete set of fixings of x = ~v(x) can be found in O(n) time.

Proof.
Compare x; and v(x);, starting at/ = 1, for increasing i up to n.
9 possible situations of (xj, v(x);):

» (0, )or(_,1);
0,0) or (1,1);
1,0);
0,1)
1,.),(,,0)or(_,_). 0

(x| (x)]

’

e
>
> (
> (
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Simpler case: Propagation for a single permutation

Lemma

For v permuting {1, ..., n}, the complete set of fixings of x = ~v(x) can be found in O(n) time.
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Propagation for a set of permutations

Lemma (Previous result)

For v permuting {1, ..., n}, the complete set of fixings of constraint x = ~v(x) can be found
in O(n) time.

Input: A set S of permutations on {1,...,n}.

Corollary (Naive propagation loop)

The complete set of fixings for each (individual) constraint x = ~(x) for all v € S can be
found in O(n?|S|) time.

Can do better. ~~ O(n|S|)
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Solution approach

> Given: A problem symmetry group I of the program;
> Restrict region: Symmetrical solutions have (at least) a single representative:
» Constraint for lexicographic leaders in I-orbit:

x = ~(x)forallyeT.

» Enforce: by propagation.
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Meta-algorithm: Find the complete set of fixings

13
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Algorithm: Complete propagation algorithm for lexicographic leaders of I'-orbit.
Input: Symmetry group I, and an initial set of fixings.

if There are no lexicographic leaders in the I-orbit respecting the fixings then
L return INFEASIBLE;

foreach Entry i with x; unfixed do
if There are no lexicographic leaders y in the T-orbit respecting the fixing and y; = 1 then

L Fix x; to 0.
if There are no lexicographic leaders y in the T-orbit respecting the fixing and y; = 0 then
t Fix x; to 1.

return FEASIBLE, and complete set of fixings;
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Meta-algorithm: Find the complete set of fixings

Algorithm: Complete propagation algorithm for lexicographic leaders of I'-orbit.
Input: Symmetry group I, and an initial set of fixings.

1 if There are no lexicographic leaders in the I-orbit respecting the fixings then
2 L return INFEASIBLE;

3 foreach Entry i with x; unfixed do
4 if There are no lexicographic leaders y in the T-orbit respecting the fixing and y; = 1 then

5 L Fix x; to 0.
6 if There are no lexicographic leaders y in the T-orbit respecting the fixing and y; = 0 then
7 t Fix x; to 1.

8 return FEASIBLE, and complete set of fixings;

> Oracle for lines 1, 4, 6: “Does a lexicographic leader exists respecting fixings?”
> Meta-algorithm takes O(n - f(I', n)) time, where f(I', n) is the oracle complexity.
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Meta-algorithm: Find the complete set of fixings
Meta-algorithm takes O(n - f(I',n)) time, where f(T, n) is the oracle complexity.
“Does a lexicographic leader in the -orbit exist that respects initial fixings?”
> Special case: If all variables are fixed at 0 or 1, testing this is coNP-complete:

Theorem (Babai and Luks (1983), Luks and Roy (2002))

“The problem of testing whether a 0/1 string X is the lexicographic leader in its T-orbit is
coNP-complete.”

> Restriction to classes of groups I'.
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Special case: A cyclic group with monotone representation

“Does a lexicographic leader in the -orbit exist that respects initial fixings?”

Special case: I < ((1,2,...,n)). (monotone cycle)
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Special case: A cyclic group with monotone representation

“Does a lexicographic leader in the -orbit exist that respects initial fixings?”
Special case: I < {((1,2,...,n)). (monotone cycle)

Proposition (Feasibility statement for monotone cycles)

LetT < {(1,...,n)), aset of variable fixings, and F C {0, 1}" the set of all binary vectors
respecting the variable fixings.

If the set of fixings is complete for x = ~(x) for each v €T, then:

For all v € T there exists an x € F with x = ~(x)  (Feasible vector exists for all x = ~(x))
= =
There exists an x € F with x = ~(x) forall vy € T. (Lex-leader exists in T-orbit.)
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Collecting results

> Oracle: “Does a lex. leader in I'-orbit exist, respecting initial fixings?": O(f(n,T)).
> Finding the complete set of fixings for lex. leaders in the I'-orbit: O(n-f(n,In)).

Oracle forT < {((1,...,n)):

1. Proposition: If the set of fixings is complete for
x = v(x) for each individual v € T, then:

Feasible vector exists for all x = ~v(x)
=
Lex-leader exists in [-orbit.

2. Compute complete set of fixings for x = ~(x) for
each individual v € T: O(n - ord(T"))
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Proof of proposition

Proposition (Feasibility statement for monotone cycles)

LetT < {((1,...,n)), and F C {0,1}" a set of binary solution vectors with variable fixings.
If the set of fixings is complete for x = ~(x) for each v €T, then:

Vyel X eF:x=v(X) < I eFVyel x=~yx).

Proof idea.

«: Trivial.
= If |F| = 1, then no unfixed entries. Trivial.
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Proof of proposition

Proposition (Feasibility statement for monotone cycles)

LetT < {((1,...,n)), and F C {0,1}" a set of binary solution vectors with variable fixings.
If the set of fixings is complete for x = ~(x) for each v €T, then:

Vyel X eF:x=v(X) < I eFVyel x=~yx).

Proof idea.

= If |[F| > 1, then unfixed entries exist.

1, ifiisa 1-fixing or the first unfixed entry,

0, ifiis a O-fixing or not the first unfixed entry.

Claim: X € F is a certificate. O

Construct X € F with X; = {
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A stronger result

Proposition (Last slide)

ForT < {((1,...,n)), the complete set of fixings for lexicographic leaders in the T-orbit can
be determined in O(n3) time.

Proposition (Stronger result)

> [ < (¢ olo--- o) with maximal cycle length m,
» each subcycle (; (i € {1,...,k}) has exactly one descend point (monotone), and
» fori,je{1,... .k} withi < jthe entries of (; are smaller than the entries of (; (ordered).

The complete set of fixings for lexicographic leaders in the T-orbit can be determined in
O(n*m) time.
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Computational study
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Practical concerns

» Generators do not need to be monotone and ordered:
For example: (1,10)(2,5,4)(3,11,8,7,6,9).

» Symmetry groups could have more than one generator:
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Practical concerns
» Generators do not need to be monotone and ordered:

For example: (1,10)(2,5,4)(3,11,8,7,6,9).
> Preprocessing step (Relabeling): Relabel variable indices

(1,10)(2,5,4)(3,11,8,7,6,9) ~» (1,2)(3,4,5)(6,7,8,9,10,11)

» Symmetry groups could have more than one generator:

20  Symmetry handling in binary programs through propagation TU/e



Practical concerns

» Generators do not need to be monotone and ordered:
For example: (1,10)(2,5,4)(3,11,8,7,6,9).
> Preprocessing step (Relabeling): Relabel variable indices

(1,10)(2,5,4)(3,11,8,7,6,9) ~» (1,2)(3,4,5)(6,7,8,9,10,11)

» Symmetry groups could have more than one generator:
» Add more symmetry handling constraints for various subgroups.
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Computational setup

Implemented as SCIP plugin.
» SCIP: “Solving Constraint Integer Programs” (Academic solver);
» Compatible symmetry handling techniques;
» For monotone and ordered generators:

> Strong variant: Complete: O(n’m);

» Weak variant: Complete for all individual permutations: O(nm).
> For arbitrary cyclic groups I' (No guarantees):

» Strong variant: O(n?ord(T"));

» Weak variant: O(nord(T)).
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Computational results: Test instances

> Verify that flower snark graphs are not 3-edge-colorable;
» MIPLIB2010 + MIPLIB2017 instances.

Flower snark /s
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Computational results: Configuration

Options:
» nosym: No symmetry handling;
> gen: Propagate x = 7(x) for a generator 4 (SCIP default choice), O(n);
» group: Propagate x = ~(x) for all cyclic subgroup members v € (3), O(n? ord((7)));
» nopeek: Propagate x = ~(x) for all cyclic subgroup members v € (3), O(nm) 1;
» peek: Strong variant, O(n’m) .
Relabeling:
> original: Respect original variable relabeling;
> max, min: Largest/Smallest cycles go first;
> respect: Sort by first entry of cycle in original relabeling.

t: m is maximal cycle length of generator 4. Assuming 4 is monotone and ordered generator.
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Edge 3-coloring flower snark instances

» Family of graphs J, with graph automorphism having cyclic subgroup;
» 5 runs per instance and setting, with different random seed;
> Instances are infeasible.

Flower snark /s
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Edge 3-coloring flower snark instances

» Family of graphs J, with graph automorphism having cyclic subgroup;
» 5 runs per instance and setting, with different random seed;
> Instances are infeasible.

Conclusions: Flower snark Js
> Results are very sensitive to chosen relabeling;
> On average, the weak and strong method are at least 5% faster than group;
> Strong method (peek) is costs significant time, but is effective.
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For parameters n € {3,5,7,...,49}

nosym gen group nopeek peek

relabeling time(s) S time(s) S time(s) S time(s) S time(s) S
original 730.78 54 17235 88 187.56 87 169.79 93 153.23 97
max - 407.02 65 312.93 70  278.00 77  270.19 78
min - 97.99 102 131.58 95 127.48 92  119.67 95
respect - 184.44 88 173.4 86 174.32 88 178.46 87
aggregated 730.78 54 189.90 343 191.75 338 180.33 350 172.84 357
relative to group  +281.1% -1.0% - -5.6% -9.9%

For parameters n € {27,29,...,49} (Not solvable by nosym)

nosym gen group nopeek peek

relabeling time(s) S time(s) S time(s) S time(s) S time(s) S
original 7200.00 0 1266.33 33  1526.99 32 1269.40 38 1056.42 42
max - 4752.76 10 3501.50 15 2884.53 22 273431 23
min - 531.09 47 912.18 40 889.73 37 797.14 40
respect - 1480.93 33 1444.56 31 1452.88 33  1509.23 32
aggregated 7200.00 0 1478.12 123 1630.32 118 147585 130 1366.37 137
relative to group ~ +341.6% -9.4% - -9.5% -16.2%

Time limit 7200s; Using shifted geometric mean (+10s)
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Benchmark instances MIPLIB2010, MIPLIB2017

MIPLIB2010 + MIPLIB2017:
> 1427 instances;
» 35 nontrivial instances with cyclic symmetry structure;
> 11 solvable by some method in 7200s.
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Benchmark instances MIPLIB2010, MIPLIB2017

MIPLIB2010 + MIPLIB2017:
> 1427 instances;
» 35 nontrivial instances with cyclic symmetry structure;
> 11 solvable by some method in 7200s.

Conclusions:
> Results are very sensitive to chosen relabeling;
> Variation between different instances is huge;
» nopeek and peek are slower than group.

» Without instances that are solved fastest by nosym, the weak and strong methods
are at least 4% faster than group.
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All relevant instances

nosym gen group nopeek peek

relabeling time(s) S time(s) S time(s) S time(s) S time(s) S
original 1853.78 42 491.69 50 407.76 50 449.34 48 506.23 48
max - 1061.29 47 81231 48  771.56 48  796.69 49
min - 901.65 48 612.10 50 837.48 47  657.29 49
respect - 970.19 47  743.01 49  639.20 50 723.93 49
aggregated 1853.78 42 82247 192 62337 197 656.66 193 662.01 195
relative to group  +197.4% +31.9% - +5.3% +6.2%

Without instances solved fastest by nosym (neos-3004026-krka, neos-920392, and supportcase29)

nosym gen group nopeek peek

relabeling time(s) S time(s) S time(s) S time(s) S time(s) S
original 3917.80 27 501.57 35 393.39 35 337.55 35 338.57 35
max - 1193.75 33  668.57 35 694.06 35  698.20 35
min - 1062.99 33  719.87 35 710.16 35 706.24 35
respect - 1226.05 33 761.70 35 678.57 35 715.09 35
aggregated 3917.80 27 940.64 134 616.62 140 580.20 140 588.38 140
relative to group  +535.4% +52.5% - -5.9% -4.6%

Time limit 7200s; Using shifted geometric mean (+10s)
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Overview of the results

Handling symmetries in (binary) integer linear programs by propagation:
» Complete set of fixings of x > ~(x) for a permutation yon {1,...,n}; O(n)
» Complete set of fixings of x = ~v(x) forallyon {1,...,n} inasets; O(n|S])
» Complete set of fixings of lexicographic leaders in cyclic -orbit, with I generated

by a monotone and ordered permutation with maximal subcycle length m. O(n’m)
> Arbitrary cyclic groups I': No guarantee of completeness:
» Stronger version: O(n*ord(I)); Weaker version: O(nord(l)).
Computational results:

» Effectiveness is measurable in various instances:

» Flower snark 3-edge-coloring;
» MIPLIB instances.
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