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Symmetries in binary programs

Minimize c>x
Subject to Ax ≤ b

x ∈ {0,1}n

Definition
A permutation γ on {1, . . . ,n} is a symmetry for the program if for all x ∈ {0,1}n holds
c>x = c>γ(x) and Ax ≤ b ⇐⇒ Aγ(x) ≤ b, where γ(x) := (xγ−1(1), · · · , xγ−1(n)).

I The symmetries of a program define a group.
I In this presentation: Γ is a symmetry group of the program.
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Symmetry in Branch-and-Bound

Rotational symmetry
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Previous work on symmetry handling in MILP

I Symmetry breaking inequalities [Friedman, 2007], [Kaibel and Loos, 2010], [Liberti, 2010],
[Kaibel et al., 2011], [Liberti, 2013], [Hojny and Pfetsch, 2018], [Hojny, 2020], [Hojny et al., 2021+];

I Branching [Ostrowski et al., 2007], [Ostrowski et al., 2015];

I Propagation [Margot, 2002], [Margot, 2003], [Ostrowski et al., 2007], [Bendotti et al., 2021].
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Solution approach

I Given: A problem symmetry group Γ of the program;
I Restrict region: Symmetrical solutions have (at least) a single representative;
I Enforce: by propagation.

Feasible region

Restriction
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Symmetry handling using lexicographic order

Definition (Lexicographic order)
x, y ∈ {0,1}n;
I x � y if there is a j ∈ {1, . . . ,n} with xi = yi for all i < j, and xj > yj;
I x � y if x � y or x = y.


1
0
1
1
...

 �


1
0
1
0
...


Definition (Lexicographic leader in orbit)
Let x ∈ {0,1}n.
If x � γ(x) for all γ ∈ Γ, then x is the lexicographic leader in its Γ-orbit {γ(x) : γ ∈ Γ}.
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Propagation
Common in CP/CSP/SAT/MINLP solvers.

“Reduce (sub)problem size by logical deduction, restricting variable bounds.”

I Problem variables x ∈ {0,1}n;
I Set C of constraints;
I I0, I1 ⊆ {1, . . . ,n}: Variable indices fixed to 0 and 1.

C(I0, I1) :=

{
x ∈ {0,1}n : x satisfy constraints of C,

xi = 0 for all i ∈ I0,

xi = 1 for all i ∈ I1

}

Goal of propagation: Find Î0, Î1 ⊇ I0, I1 such that C(I0, I1) = C (̂I0, Î1).
Complete: When Î0, Î1 are inclusionwise maximal.
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Solution approach

I Given: A problem symmetry group Γ of the program;
I Restrict region: Symmetrical solutions have (at least) a single representative:

I Constraint for lexicographic leaders in Γ-orbit:

x � γ(x) for all γ ∈ Γ.

I Enforce: by propagation.

Feasible region

Restriction
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Simpler case: Propagation for a single permutation
Compute complete set of fixings of x � γ(x) for a single permutation γ.

Example
γ = (1,2,5)(3,4); Initial fixings: x1 = 1, x3 = 0, x5 = 1.

x =


x1 = 1
x2 = _
x3 = 0
x4 = _
x5 = 1

 �


x5 = 1
x1 = 1
x4 = _
x3 = 0
x2 = _

 = γ(x)
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Simpler case: Propagation for a single permutation

Lemma
For γ permuting {1, . . . ,n}, the complete set of �xings of x � γ(x) can be found inO(n) time.

Proof.
Compare xi and γ(x)i, starting at i = 1, for increasing i up to n.
9 possible situations of (xi, γ(x)i):
I (0, _) or (_,1);
I (0,0) or (1,1);
I (1,0);
I (0,1);
I (1, _), (_,0) or (_, _).

[x|γ(x)] =



...
...

Equal
...

...
←0 _

...
...

???
...

...


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Propagation for a set of permutations

Lemma (Previous result)
For γ permuting {1, . . . ,n}, the complete set of �xings of constraint x � γ(x) can be found
in O(n) time.

Input: A set S of permutations on {1, . . . ,n}.

Corollary (Naive propagation loop)
The complete set of �xings for each (individual) constraint x � γ(x) for all γ ∈ S can be
found in O(n2|S|) time.

Can do better.  O(n|S|)
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Solution approach

I Given: A problem symmetry group Γ of the program;
I Restrict region: Symmetrical solutions have (at least) a single representative:

I Constraint for lexicographic leaders in Γ-orbit:

x � γ(x) for all γ ∈ Γ.

I Enforce: by propagation.

Feasible region

Restriction
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Meta-algorithm: Find the complete set of fixings
Algorithm: Complete propagation algorithm for lexicographic leaders of Γ-orbit.
Input: Symmetry group Γ, and an initial set of fixings.

1 if There are no lexicographic leaders in the Γ-orbit respecting the �xings then
2 return Infeasible;
3 foreach Entry i with xi un�xed do
4 if There are no lexicographic leaders y in the Γ-orbit respecting the �xing and yi = 1 then
5 Fix xi to 0.
6 if There are no lexicographic leaders y in the Γ-orbit respecting the �xing and yi = 0 then
7 Fix xi to 1.

8 return Feasible, and complete set of fixings;

I Oracle for lines 1, 4, 6: “Does a lexicographic leader exists respecting fixings?”
I Meta-algorithm takes O(n · f (Γ,n)) time, where f (Γ,n) is the oracle complexity.
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Meta-algorithm: Find the complete set of fixings
Meta-algorithm takes O(n · f (Γ,n)) time, where f (Γ,n) is the oracle complexity.

“Does a lexicographic leader in the Γ-orbit exist that respects initial fixings?”

I Special case: If all variables are fixed at 0 or 1, testing this is coNP-complete:

Theorem (Babai and Luks (1983), Luks and Roy (2002))
“The problem of testing whether a 0/1 string X is the lexicographic leader in its Γ-orbit is
coNP-complete.”

I Restriction to classes of groups Γ.
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Special case: A cyclic group with monotone representation

“Does a lexicographic leader in the Γ-orbit exist that respects initial fixings?”

Special case: Γ ≤ 〈(1,2, . . . ,n)〉. (monotone cycle)

Proposition (Feasibility statement for monotone cycles)
Let Γ ≤ 〈(1, . . . ,n)〉, a set of variable �xings, and F ⊆ {0,1}n the set of all binary vectors
respecting the variable �xings.

If the set of �xings is complete for x � γ(x) for each γ ∈ Γ, then:

For all γ ∈ Γ there exists an x ∈ F with x � γ(x)

⇐⇒
There exists an x ∈ F with x � γ(x) for all γ ∈ Γ.

(Feasible vector exists for all x � γ(x))
⇐⇒

(Lex-leader exists in Γ-orbit.)
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Collecting results

I Oracle: “Does a lex. leader in Γ-orbit exist, respecting initial fixings?”: O(f (n, Γ)).
I Finding the complete set of fixings for lex. leaders in the Γ-orbit: O(n · f (n, Γ)).

Oracle for Γ ≤ 〈(1, . . . ,n)〉:
1. Proposition: If the set of fixings is complete for

x � γ(x) for each individual γ ∈ Γ, then:

Feasible vector exists for all x � γ(x)

⇐⇒
Lex-leader exists in Γ-orbit.

2. Compute complete set of fixings for x � γ(x) for
each individual γ ∈ Γ: O(n · ord(Γ))


; f (n, Γ) = O(n ord(Γ))

= O(n2)
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Proof of proposition

Proposition (Feasibility statement for monotone cycles)
Let Γ ≤ 〈(1, . . . ,n)〉, and F ⊆ {0,1}n a set of binary solution vectors with variable �xings.
If the set of �xings is complete for x � γ(x) for each γ ∈ Γ, then:

∀γ ∈ Γ ∃x ∈ F : x � γ(x) ⇐⇒ ∃x ∈ F ∀γ ∈ Γ : x � γ(x).

Proof idea.
⇐: Trivial.
⇒: If |F| = 1, then no unfixed entries. Trivial.
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Proof of proposition

Proposition (Feasibility statement for monotone cycles)
Let Γ ≤ 〈(1, . . . ,n)〉, and F ⊆ {0,1}n a set of binary solution vectors with variable �xings.
If the set of �xings is complete for x � γ(x) for each γ ∈ Γ, then:

∀γ ∈ Γ ∃x ∈ F : x � γ(x) ⇐⇒ ∃x ∈ F ∀γ ∈ Γ : x � γ(x).

Proof idea.
⇒: If |F| > 1, then unfixed entries exist.

Construct x̃ ∈ F with x̃i =

{
1, if i is a 1-fixing or the first unfixed entry,
0, if i is a 0-fixing or not the first unfixed entry.

Claim: x̃ ∈ F is a certificate.
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A stronger result

Proposition (Last slide)
For Γ ≤ 〈(1, . . . ,n)〉, the complete set of �xings for lexicographic leaders in the Γ-orbit can
be determined in O(n3) time.

Proposition (Stronger result)
I Γ ≤ 〈ζ1 ◦ ζ2 ◦ · · · ◦ ζk〉 with maximal cycle length m,
I each subcycle ζi (i ∈ {1, . . . , k}) has exactly one descend point (monotone), and
I for i, j ∈ {1, . . . , k} with i < j the entries of ζi are smaller than the entries of ζj (ordered).

The complete set of �xings for lexicographic leaders in the Γ-orbit can be determined in
O(n2m) time.



19 Symmetry handling in binary programs through propagation

Computational study
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Practical concerns
I Generators do not need to be monotone and ordered:

For example: (1,10)(2,5,4)(3,11,8,7,6,9).

I Preprocessing step (Relabeling): Relabel variable indices

(1,10)(2,5,4)(3,11,8,7,6,9) (1,2)(3,4,5)(6,7,8,9,10,11)

I Symmetry groups could have more than one generator:

I Add more symmetry handling constraints for various subgroups.
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Computational setup
Implemented as SCIP plugin.
I SCIP: “Solving Constraint Integer Programs” (Academic solver);
I Compatible symmetry handling techniques;
I For monotone and ordered generators:

I Strong variant: Complete: O(n2m);
I Weak variant: Complete for all individual permutations: O(nm).

I For arbitrary cyclic groups Γ (No guarantees):
I Strong variant: O(n2 ord(Γ));
I Weak variant: O(n ord(Γ)).



22 Symmetry handling in binary programs through propagation

Computational results: Test instances

I Verify that flower snark graphs are not 3-edge-colorable;
I MIPLIB2010 + MIPLIB2017 instances.

Flower snark J5
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Computational results: Configuration
Options:
I nosym: No symmetry handling;
I gen: Propagate x � γ̃(x) for a generator γ̃ (SCIP default choice), O(n);
I group: Propagate x � γ(x) for all cyclic subgroup members γ ∈ 〈γ̃〉, O(n2 ord(〈γ̃〉));
I nopeek: Propagate x � γ(x) for all cyclic subgroup members γ ∈ 〈γ̃〉, O(nm) †;
I peek: Strong variant, O(n2m) †.

Relabeling:
I original: Respect original variable relabeling;
I max, min: Largest/Smallest cycles go first;
I respect: Sort by first entry of cycle in original relabeling.

†: m is maximal cycle length of generator γ̃. Assuming γ̃ is monotone and ordered generator.
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Edge 3-coloring flower snark instances

Flower snark J5

I Family of graphs Jn with graph automorphism having cyclic subgroup;
I 5 runs per instance and setting, with different random seed;
I Instances are infeasible.

Conclusions:
I Results are very sensitive to chosen relabeling;
I On average, the weak and strong method are at least 5% faster than group;
I Strong method (peek) is costs significant time, but is effective.
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For parameters n ∈ {3, 5, 7, . . . , 49}
nosym gen group nopeek peek

relabeling time(s) S time(s) S time(s) S time(s) S time(s) S

original 730.78 54 172.35 88 187.56 87 169.79 93 153.23 97
max – 407.02 65 312.93 70 278.00 77 270.19 78
min – 97.99 102 131.58 95 127.48 92 119.67 95
respect – 184.44 88 173.41 86 174.32 88 178.46 87

aggregated 730.78 54 189.90 343 191.75 338 180.33 350 172.84 357
relative to group +281.1% -1.0% – -5.6% -9.9%

For parameters n ∈ {27, 29, . . . , 49} (Not solvable by nosym)
nosym gen group nopeek peek

relabeling time(s) S time(s) S time(s) S time(s) S time(s) S

original 7200.00 0 1266.33 33 1526.99 32 1269.40 38 1056.42 42
max – 4752.76 10 3501.50 15 2884.53 22 2734.31 23
min – 531.09 47 912.18 40 889.73 37 797.14 40
respect – 1480.93 33 1444.56 31 1452.88 33 1509.23 32

aggregated 7200.00 0 1478.12 123 1630.32 118 1475.85 130 1366.37 137
relative to group +341.6% -9.4% – -9.5% -16.2%

Time limit 7200s; Using shifted geometric mean (+10s)
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Benchmark instances MIPLIB2010, MIPLIB2017
MIPLIB2010 + MIPLIB2017:
I 1427 instances;
I 35 nontrivial instances with cyclic symmetry structure;
I 11 solvable by some method in 7200s.

Conclusions:
I Results are very sensitive to chosen relabeling;
I Variation between different instances is huge;
I nopeek and peek are slower than group.
I Without instances that are solved fastest by nosym, the weak and strong methods

are at least 4% faster than group.
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All relevant instances
nosym gen group nopeek peek

relabeling time(s) S time(s) S time(s) S time(s) S time(s) S

original 1853.78 42 491.69 50 407.76 50 449.34 48 506.23 48
max – 1061.29 47 812.31 48 771.56 48 796.69 49
min – 901.65 48 612.10 50 837.48 47 657.29 49
respect – 970.19 47 743.01 49 639.20 50 723.93 49

aggregated 1853.78 42 822.47 192 623.37 197 656.66 193 662.01 195
relative to group +197.4% +31.9% – +5.3% +6.2%

Without instances solved fastest by nosym (neos-3004026-krka, neos-920392, and supportcase29)
nosym gen group nopeek peek

relabeling time(s) S time(s) S time(s) S time(s) S time(s) S

original 3917.80 27 501.57 35 393.39 35 337.55 35 338.57 35
max – 1193.75 33 668.57 35 694.06 35 698.20 35
min – 1062.99 33 719.87 35 710.16 35 706.24 35
respect – 1226.05 33 761.70 35 678.57 35 715.09 35

aggregated 3917.80 27 940.64 134 616.62 140 580.20 140 588.38 140
relative to group +535.4% +52.5% – -5.9% -4.6%

Time limit 7200s; Using shifted geometric mean (+10s)
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Overview of the results
Handling symmetries in (binary) integer linear programs by propagation:
I Complete set of fixings of x � γ(x) for a permutation γ on {1, . . . ,n}; O(n)

I Complete set of fixings of x � γ(x) for all γ on {1, . . . ,n} in a set S; O(n|S|)
I Complete set of fixings of lexicographic leaders in cyclic Γ-orbit, with Γ generated

by a monotone and ordered permutation with maximal subcycle length m. O(n2m)

I Arbitrary cyclic groups Γ: No guarantee of completeness:
I Stronger version: O(n2 ord(Γ)); Weaker version: O(n ord(Γ)).

Computational results:
I Effectiveness is measurable in various instances:

I Flower snark 3-edge-coloring;
I MIPLIB instances.
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Thank you!
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