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DC Optimization



Preliminaries

Let L ∈ (0,∞] and µ ∈ [0,∞) and let f : Rn → (−∞,∞] be a

closed proper convex function.

• The function f is called L-smooth if for any x1, x2 ∈ Rn,

∥g1 − g2∥ ≤ L∥x1 − x2∥ ∀g1 ∈ ∂f (x1), g2 ∈ ∂f (x2).

• The function f is called µ-strongly convex function if the

function x 7→ f (x)− µ
2∥x∥2 is convex.

We denote the set of L-smooth and µ-strongly convex function by

Fµ,L(Rn).
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DC Optimization

min f (x) (DCO)

s.t. x ∈ K

where f : Rn → [−∞,∞] is a difference of convex (DC) function,

f = f1 − f2,

and f1, f2 are convex functions.

• K ⊆ Rn is a closed convex set.

• The function f is closed.

• The functions f1 ∈ Fµ1,L1(Rn), f2 ∈ Fµ2,L2(Rn) for some

µ1, µ2 ∈ [0,∞) and L1, L2 ∈ (0,∞].

• f ⋆ > −∞ is a lower bound of (DCO).
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Some classes of DC functions

The class of DC functions is quite large:

• Continuous piece-wise linear functions.

• Twice continuously differentiable functions on any convex

subset of Rn.

Moreover,

• Every continuous function on a convex compact set can be

approximated by a DC function with a given accuracy.
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Difference of Convex Algorithm (DCA)

Algorithm 1 Unconstrained DCA

Pick x1 ∈ Rn, N ∈ N, and ϵ > 0.

For k = 1, 2, . . . ,N perform the following steps:

1. Choose gk
1 ∈ ∂f1(x

k) and gk
2 ∈ ∂f2(x

k). If ∥gk
1 − gk

2 ∥ ≤ ϵ ,

then stop.

2. Choose

xk+1 ∈ argminx∈Rn f1(x)−
(

f2(x
k) + ⟨gk

2 , x − xk⟩
)
.
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One iteration of DCA

min
x∈R

f (x) := 1
4x4 − 2

3x3 − 1
2x2 + 2x , x1 = 3.

x

f (x)

x1
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One iteration of DCA

min
x∈R

f (x) := 1
4x4 − 2

3x3 − 1
2x2 + 2x , x1 = 3.

f (x) =
(
1
4x4 − 2

3x3 + 2x2
)︸ ︷︷ ︸

f1

−
(
1
2x2 − 2x + 2x2

)︸ ︷︷ ︸
f2

x

f1(x)

x

f2(x)
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One iteration of DCA

min
x∈R

u(x) :=
(
1
4x4 − 2

3x3 + 2x2
)︸ ︷︷ ︸

f1

− (16.5 + 13(x − 3))︸ ︷︷ ︸
f2(x1)+f ′2 (x

1)(x−x1)

x

f2(x)

x1
x

x1x2

u(x)

f (x)
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One iteration of DCA

min
x∈R

f (x) := 1
4x4 − 2

3x3 − 1
2x2 + 2x

x

f (x)

x1x2

• DCA generates x2 = 2.5. 7



Convergence rate result in the literature

Theorem (Thi, Dinh)

Assume that the following conditions hold:

i) Either f1 or f2 is differentiable with locally Lipschitz derivative on all
stationary points (DCO).

ii) µ1 + µ2 > 0.

iii) {xk} is bounded.

iv) The  Lojasiewicz gradient inequality for all stationary points.

Then we have the linear convergence rate for a suitable  Lojasiewicz
exponent.

H. A. Le Thi, T. P. Dinh. Convergence analysis of difference-of-convex
algorithm with subanalytic data. Journal of Optimization Theory and
Applications 179, 103–126 (2018)
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Performance Estimation (PEP)



Performance Estimation Problem

max

(
min

1≤k≤N+1

∥∥∥gk
1 − gk

2

∥∥∥2)
f1 ∈ Fµ1,L1(R

n), f2 ∈ Fµ2,L2(R
n)

f1(x)− f2(x) ≥ f ⋆ ∀x ∈ Rn

f1(x
1)− f2(x

1)− f ⋆ ≤ ∆

gN+1
1 , gN+1

2 , xN+1, . . . , x2 are generated by DCA w.r.t. f1, f2, x1

x1 ∈ Rn,

• Decision variables: f1, f2 and xk , gk
1 , gk

2 (k ∈ {1, ...,N + 1}).
• Fixed parameters: ∆, µ1, L1, µ2, L2,N
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L-smooth and µ-strongly Convex Interpolation Problem

Consider a finite index set I , and given triple
{
(xk , gk , f k)

}
k∈I

where

xk ∈ Rn, gk ∈ Rn and f k ∈ R.

?∃ f ∈ Fµ,L(Rn): f (xk) = f k , and gk ∈ ∂f (xk), ∀k ∈ I .

If yes, we say
{
(xk , gk , f k)

}
k∈I

is Fµ,L(Rn)-interpolable.
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L-smooth and µ-strongly Interpolation

Theorem (Taylor, Hendrickx, and Glineur (2017))

The following statements are equivalent:

1.
{
(xi , gi , f i )

}
i∈I is Fµ,L(Rn)-interpolable;

2. ∀i , j ∈ I :

1

2(1− µ
L
)

(
1

L

∥∥∥g i − g j
∥∥∥2

+ µ
∥∥∥x i − x j

∥∥∥2

− 2µ

L

〈
g j − g i , x j − x i

〉)
≤

f i − f j −
〈
g j , x i − x j

〉
.

A.B. Taylor, J.M. Hendrickx, and F. Glineur. Smooth strongly convex

interpolation and exact worst-case performance of first-order methods.

Mathematical Programming 161.1-2, 307–345 (2017)
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Reformulation of PEP

max

(
min

1≤k≤N+1

∥∥∥gk
1 − gk

2

∥∥∥2)
s.t. 1

2(1−µ1
L1

)

(
1
L1

∥∥∥g i
1 − g j

1

∥∥∥2 + µ1

∥∥x i − x j
∥∥2 − 2µ1

L1

〈
g j
1 − g i

1, x j − x i
〉)

≤ f i
1 − f j

1 −
〈

g j
1, x i − x j

〉
i , j ∈ {1, . . . ,N + 1}

1

2(1−µ2
L2

)

(
1
L2

∥∥∥g i
2 − g j

2

∥∥∥2 + µ2

∥∥x i − x j
∥∥2 − 2µ2

L2

〈
g j
2 − g i

2, x j − x i
〉)

≤ f i
2 − f j

2 −
〈

g j
2, x i − x j

〉
i , j ∈ {1, . . . ,N + 1}

gk+1
1 = gk

2 k ∈ {1, . . . ,N}
f k
1 − f k

2 ≥ f ⋆ k ∈ {1, . . . ,N + 1}
f 1
1 − f 1

2 − f ⋆ ≤ ∆.
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Covergence rate of DCA



Performance estimation technique

• The last problem may be rewritten as a semidefinite

programming problem (SDP) by replacing all inner products

by the entries of an unknown Gram matrix.

• We employ weak duality to bound the optimal value of the

last problem by constructing a dual feasible solution of SDP.

• The dual feasible solution is constructed empirically by doing

numerical experiments with fixed values of the parameters

∆,N, µ1, L1, µ2, L2.

• The analytical expressions of the dual multipliers and optimal

value are guessed and the guess is verified analytically.
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Convergence rate of of unconstrained DCA

Theorem

Let f1 ∈ Fµ1,L1(Rn) and f2 ∈ Fµ2,L2(Rn). If L1 or L2 is finite,

then after N iterations of DCA, one has:

i) If L1 = ∞, L2 < ∞, then

min
1≤k≤N+1

∥∥∥gk
1 − gk

2

∥∥∥ ≤

√(
2L2

2

L2 + µ1

)
f (x1)− f ⋆

N
.

ii) If L2 = ∞, L1 < ∞, then

min
1≤k≤N+1

∥∥∥gk
1 − gk

2

∥∥∥ ≤

√(
2L2

1

L1 + µ2

)
f (x1)− f ⋆

N
.
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Convergence rate

Theorem

Suppose that f1 ∈ Fµ1,L1(Rn) and f2 ∈ Fµ2,L2(Rn). If L1 or L2 is

finite, then after N iterations of DCA, one has:

iii) If L1 = L2 = L, then

min
1≤k≤N+1

∥∥∥gk
1 − gk

2

∥∥∥ ≤

√
L

(
f (x1)− f ⋆

N

)
.

iv) If L1, L2 < ∞, and µ1 = µ2 = 0 then

min
1≤k≤N+1

∥∥∥gk
1 − gk

2

∥∥∥ ≤

√(
2L1L2

L1 + L2

)(
f (x1)− f ⋆

N

)
.
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Lower bound

• As the theorem shows, the worst case convergence rate of

DCA is of O( 1√
N
).

• There exists a DC function f and initial point x1 that DCA

performs at least N iterations for obtaining the accuracy of
1√
N

.
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Constrained DC Optimization

min f (x) = f1(x)− f2(x)

s.t. x ∈ K .

T (xk+1) := f1(x
k)− f1(x

k+1)−
〈

gk
2 , xk − xk+1

〉
.

• T (xk+1) ≥ 0.

• T (xk+1) = 0 implies that xk is a critical point of (DCO).
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Constrained DCA (CDCA)

Algorithm 2 CDCA

Pick x1 ∈ K , N ∈ N, and ϵ > 0.

For k = 1, 2, . . . ,N perform the following steps:

1. Choose gk
2 ∈ ∂f2(x

k) and

xk+1 ∈ argminx∈K f1(x)− f2(x
k)−

〈
gk
2 , x − xk

〉
.

2. If f1(x
k)− f1(x

k+1)−
〈
gk
2 , xk − xk+1

〉
≤ ϵ, then stop.
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Convergence rate of Constrained DCA

Using performance estimation as before, we can prove the

following.

Theorem

Let f1 ∈ Fµ1,L1(Rn) and f2 ∈ Fµ2,L2(Rn) and let K be a closed

convex set. Then, after N ≥ 2 iterations of CDCA, one has:

min
1≤k≤N

f1(x
k)− f1(x

k+1)−
〈

gk
2 , xk − xk+1

〉
≤

L2

(L2 + µ1)N − µ1

(
f (x1)− f ⋆

)
.
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Conclusion



Future work

• Convergence of the DCA on more restricted classes of DC

problems, e.g. f is a polynomial function, ((extended) trust

region problems in constraint case).

• Undominated DC decompositions to obtain the sharpest

possible results.

• Understanding the class of DC functions defined by

Fµ1,L1 −Fµ2,L2 since some of our results only hold for this

class with at least one of L1 or L2 finite.

H. Abbaszadehpeivasti, E. de Klerk, and M. Zamani. On the rate

of convergence of the Difference-of-Convex Algorithm (DCA).

arXiv preprint arXiv:2109.13566 (2021)
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