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Computational Models

● Theoretical models inspired by big data and modern 
computing systems:

– Distributed models (computation over networks)

– Massively parallel computation

– Dynamic models (changing input)

– Fault tolerance (infrastructure)
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Distributed Models

● Distributed Models

● Motivated e.g. by routing and broadcast on networks

● Examples: LOCAL, CONGEST, Congested Clique,...

● LOCAL model

– Given a graph G=(V,E), in each round each node sends a 
message to its neighbors.

– Goal: minimize number of rounds communication.
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Massively Parallel Computation 
(MPC)

● Abstraction of modern platforms e.g. MapReduce, Spark, 
Hadoop

● MPC Model: 

– Input is distributed over a set of machines. 

– Each machine memory/communication: strictly sublinear in 
input size.

● Connections to both classical parallel models (PRAM) and 
distributed models
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Fault-tolerance

● Fault-tolerant graph algorithms

– Valid solution after up to f (edge or vertex) faults
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Dynamic Model

● Dynamic Graphs
– Updates to input:

(edge insertions, deletions)
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Dynamic Model

● Dynamic Graphs
– Updates to input:

(edge insertions, deletions)

● Goal

– Fast queries

– Small update time

● Partially or fully dynamic

– Insert-only (incremental), delete-only (decremental) 
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● Previous:
– Models

● Next:
– Distane Computation and Structures



12

Distances in Graphs

● Distance computation: Given a graph G=(V,E), compute (approx) 
distances between a set of sources and destinations.

– Sequential: Dijkstra’s (single source)
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Distances in Graphs

● Distance computation: Given a graph G=(V,E), compute (approx) 
distances between a set of sources and destinations.

– Sequential: Dijkstra’s (single source)

– Distributed: BFS/Bellman-Ford

● Slow if diameter is large

– Dynamic:

● Slow to recompute 

from scratch
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Distance Structures

● Approximate distance sparsification

– Spanners

– Emulators

– Distance sketches/oracles
● Hopsets

– Shortcut edges reducing number of hops in shortest 
paths
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Spanners/ Emulators

Spanners: sparse subgraphs that approximately 
preserve distances

Emulators: no need to be a subgraph

3-SpannerG
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Spanners

3-SpannerG

[Althöfer et al.,93]: Every undirected graph has a       
                -spanner of size                 for all         .
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Spanners

3-SpannerG

[Althöfer et al.,93]: Every undirected graph has a       
                -spanner of size                 for all         .

Optimal (conditional on Erdős girth conjecture)
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Spanners

Greedy 

Process edges in non-decreasing order of weight:

● Add edge            if there is no path of length                       so far

Existentially optimal!
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Spanner Algorithms

Clustering based 

– [BS07] distributed/parallel and later dynamic

– More efficient than greedy

– Subsequent sampling and growing clusters

Clustering based 

– [BS07] distributed/parallel and later dynamic

– More efficient than greedy

– Subsequent sampling and growing clusters



22

Applications

● Massively Parallel Distances

– Fast approximate APSP via spanners [BDGMN, SPAA 21]

● Incremental (insert-only) shortest paths 

– Polylog approx and amortized update time [FNP, STOC 23] via 
emulators

● Fully-dynamic model

– Emulators + algebraic data structures [BFN, FOCS 22]

● Fault tolerant emulators

– Motivated by routing in overlay networks [BDN, ITCS 22; BDN, 
ITCS 23]
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● Previous:
– Spanners and emulators

● Next:
– Parallel shortest paths via hopsets
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Motivation: Bellman-Ford

● Single-source shortest path via Bellman-Ford:

– Nodes update their distance estimate from the source s by

● Each iteration single distributed/parallel round.

– How many iterations do we need?



25

Motivation: Bellman-Ford

● Single-source shortest path via Bellman-Ford:

– Nodes update their distance estimate from the source s by

● Each iteration single distributed/parallel round.

– How many iterations do we need?

–    iterations to compute                  for all            (shortest 
distance using h-hop paths only).
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Motivation: Bellman-Ford

Bellman-Ford from single source   :

–     iterations to compute                 for all

– Requires               iterations          
●          is maximum number of hops in the shortest paths. 

Could be as large as         .
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Hopsets

● Given                    , a        -hopset     is a set of 
edges, s.t. between every pair of nodes       :

– Intuition: adding shortcut edges for reducing the 
diameter.
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Hopsets: Parallel Shortest paths

● Distributed/parallel SSSP  Given a         -hopset H for 
G, approximate distances take     rounds.

– Run Bellman-Ford for     rounds to obtain             -approx 
distances (                   e.g. polylogarithmic).
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Hopsets: Parallel Shortest paths

● Distributed/parallel SSSP  Given a         -hopset H for 
G, approximate distances take     rounds.

– Run Bellman-Ford for     rounds to obtain             -approx 
distances (                   e.g. polylogarithmic).

● Dynamic (delete-only) SSSP

– h-hop-bounded            -single source distances in                  
amortized time  [ES98, B11].

– Less immediate:           -hopset for            -SSSP in           
amortized time.     
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Hopsets

Goal: Fast construction of sparse hopset with small hopbound.

Existential bounds

– Upper bound [EN19-HP19]: any undirected graph has a         
        -hopset of size                    with             

– Lower bound [ABP19]: Cannot have both linear size and 
polylogarithmic hopbound
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Hopset Algorithms

Algorithm structure of [Coh00, HKN14, EN16, EN19]

General structure:
– Covering graph with low overlapping clusters with known 

centers

– Add edges (weight corresponding to dist of endpoints) 
● From each center to all nodes in the cluster
● Inter-cluster edges between some centers
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Hopset Structure

– Set of clusters with centers 

– Edges (weighted by distance) are added inside each cluster
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Hopset Structure

– Set of clusters with centers

– Edges (weighted by distance) are added inside each cluster

– Inter-cluster edges between centers
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Intuition

Clustering property:

– Path segments are either covered by edges inside clusters or

– Inter-cluster edges shortcut the segments not covered.  

...
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Computational challenges

● Dynamic

– Nodes keep on changing clusters

– Even in delete-only settings there are insertions
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Computational challenges

● Dynamic

– Nodes keep on changing clusters

– Even in delete-only settings there are insertions
● Distributed/parallel

– Low congestion cluster growing
● General challenge

– Distances (for weights) for distances

– Chicken and egg problem?
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Computational challenges

Algorithmic idea

– First in PRAM [Coh00], distributed [EN16, EN19], dynamic [ŁN22]

– Assume           -hopset edges are added up to distance R. We can 
look at       hops for distances up to 2R.

R R
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Hopset Applications

● Parallel and distributed shortest paths

–            -SSSP in polylog rounds via hopsets with polylog 
hopbound

– Fast computation of distance sketches supporting constant 
round approx all pair queries [DN19]

● Dynamic (delete-only) shortest paths

–            -SSSP in          amortized update time [HKN16, Che19, 
ŁN22]

–           -APSP in                amortized update time [ŁN22]
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● Previous:
– Hopsets and applications

● Next:
– Fully dynamic approximate distances
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Ideal Guarantees

● Limitations of previous work

– Support only deletions or only insertions

– Amortized guarantees
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Ideal Guarantees

● Limitations of previous work

– Support only deletions or only insertions

– Amortized guarantees

– Power of adversary
● Assume adversary is oblivious to random choices

Goal: Fully-dynamic deterministic algorithms with optimal worst-
case running time. 
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Deterministic Fully-Dynamic Distances

Goal: Fully-dynamic algorithms that have worst-case guarantees 

are deterministic. 

Theorem [BNF, FOCS 22]:

Fully-dynamic deterministic              -approximate single-source 
and st-distances with conditionally optimal worst-case bounds in 
unweighted undirected graphs.
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Deterministic Fully-Dynamic Distances

Conditional optimality: Based on an OMV-based hardness 
assumption by [BNS, FOCS 19]
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Deterministic Fully-Dynamic Distances

● Technical idea: combination of two type of fully-dynamic 
data structures

– Combinatorial structures (sparse emulators)

– Algebraic data structures
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Deterministic Fully-Dynamic Distances

● Technical idea: combination of two type of fully-dynamic 
data structures

– Combinatorial structures (sparse emulators)

– Algebraic data structures

● Speed up:

– Static distance queries on a sparse graph

– Faster bounded distance using algebraic structures
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Algebraic Data Structures

Graph distances via matrix inverse

Adjacency matrix 

            := walks from i to j of length k

● Algebraic data structures

– Matrix inverse used for distances previously [San05, BN19]

– Faster algorithm based on properties of our emulators
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Sparse Emulators

Emulators: Given a graph G V E=( , ), an            -emulator is a sparse 
graph H such that:

H  = 30( , )-
emulator

G
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Sparse Emulators

Simple               -emulator of size             :

– Low degree              nodes: all incident edges 

– High degree              nodes: an edge corresponding to one 
neighbor in a hitting set S

– Weighted edges between nodes in S bounded by

...
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Hitting set

● Hitting set:

– If randomness allowed: fixed set of sampled nodes
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Hitting set

● Hitting set:

– If randomness allowed: fixed set of sampled nodes

– Deterministic challenge: set of sources change, but slowly
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Deterministic Hitting sets

Deterministic low recourse approximate hitting set

– Edge update: one node added or deleted

– When size doubles recompute (done slowly for worst-case bound)
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Deterministic Fully-Dynamic Distances

● Maintain a     -Emulator

● Distance queries: 

– Bounded distances using algebraic data structures (dealing with 
the constant additive term)

– Static shortest path on the sparse emulator

–             -distance based on minimum of two estimates

 Algebraic DS 
Distance 
Estimates

Algebraic DS

Sparse 
Emulator

Deterministic
 Hitting Set
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● Previous:
– Distance structures and theoretical 

applications

● Next:
– Model connections and future directions
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Unification

● Graph tools apply to different models

Dynamic
    [LN22, BFN22, FNP23, DFNV22]

 Fault tolerance
[BND22, BND23]

 Massively Parallel
[DN19, BDGMN21]

Parallel (PRAM)Streaming

Distributed
  [DN17,N19]

 Fault tolerance
[BND22, BND23]
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Unification

● Graph tools apply to different models

● Ideas transfer between models

Dynamic
    [LN22, BFN22, FNP23, DFNV22]

 Fault tolerance
[BND22, BND23]

 Massively Parallel
[DN19, BDGMN21]

Parallel (PRAM)Streaming

Distributed
  [DN17,N19]

 Fault tolerance
[BND22, BND23]

 [LN22, DFNV22]

[GSZ11]
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● Previous:
– Model connections

● Next:
– Future directions
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Dynamic Algorithms and Optimization

● Recent breakthrough in near linear time max flow

– Uses adaptive decremental shortest path distance oracle
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Dynamic Algorithms and Optimization

● Recent breakthrough in near linear time max flow

– Uses adaptive decremental shortest path distance oracle

● Static approximation algorithms for cuts/flows and 
clustering problems

– Iterative algorithms may utilize dynamic subroutines
● Dynamic approximation algorithms

– Connection to low-recourse online algorithms
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Clustering/Cut Problems

● Graph Clustering

– Computationally more challenging than metrics

● Dynamic distance computation

– Graph clustering algorithms requires repeated distance 
estimation

– Approximation algorithms for clustering/cuts
● Rounding based on LP solution as distances
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Distributed Optimization

● Distributed combinatorial optimization and 
approximation algorithms 

– General linear programs/convex programs are challenging

– Only special linear/convex programs can be solved (e.g. positive 
LPs , Local LPs, ...)

● Combining tools from different models?

– LOCAL/CONGEST: network decompositions

– Other models: 

● Algebraic tools, interior point methods
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Conclusion

● Take away

– Well-structured algorithmic tools will be adaptable to model 
changes
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Conclusion

● Take away 

– Well-structured algorithmic tools will be adaptable to model 
changes

● Future directions

– Distributed optimization with application in network design

– Further application of dynamic algorithms in faster 
combinatorial optimization algorithms

Thank you! Questions?
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