Distributed, Parallel and Dynamic Graph Algorithms

Yasamin Nazari

VU Amsterdam

Dutch Optimization Seminar May 2023

Computational Models

 Theoretical models inspired by big data and modern computing systems:

- Distributed models (computation over networks)
- Massively parallel computation
- Dynamic models (changing input)
- Fault tolerance (infrastructure)

Distributed Models

Distributed Models

- Motivated e.g. by routing and broadcast on networks
- Examples: LOCAL, CONGEST, Congested Clique,...
- LOCAL model
 - Given a graph G=(V,E), in each round each node sends a message to its neighbors.
 - Goal: minimize number of rounds communication.

Massively Parallel Computation (MPC)

- Abstraction of modern platforms e.g. MapReduce, Spark, Hadoop
- MPC Model:
 - Input is distributed over a set of machines.
 - Each machine memory/communication: strictly sublinear in input size.
- Connections to both classical parallel models (PRAM) and distributed models

Fault-tolerance

Fault-tolerant graph algorithms

- Valid solution after up to f (edge or vertex) faults

Dynamic Graphs

Updates to input:

(edge insertions, deletions)

Dynamic Graphs

- Updates to input:

(edge insertions, deletions)

Dynamic Graphs

- Updates to input:

(edge insertions, deletions)

Dynamic Graphs

Updates to input:
(edge insertions, deletions)

• Goal

- Fast queries
- Small update time

Dynamic Graphs

Updates to input:
(edge insertions, deletions)

• Goal

- Fast queries
- Small update time

Partially or fully dynamic

- Insert-only (incremental), delete-only (decremental)

- Previous:
 - Models

• Next:

- Distane Computation and Structures

Distances in Graphs

- Distance computation: Given a graph G= (V, E), compute (approx) distances between a set of sources and destinations.
 - Sequential: Dijkstra's (single source)

Distances in Graphs

- Distance computation: Given a graph G= (V, E), compute (approx) distances between a set of sources and destinations.
 - Sequential: Dijkstra's (single source)
 - Distributed: BFS/Bellman-Ford
 - Slow if diameter is large

Distances in Graphs

- Distance computation: Given a graph G= (V, E), compute (approx) distances between a set of sources and destinations.
 - Sequential: Dijkstra's (single source)
 - Distributed: BFS/Bellman-Ford
 - Slow if diameter is large
 - Dynamic:
 - Slow to recompute from scratch

Distance Structures

- Approximate distance sparsification
 - Spanners
 - Emulators
 - Distance sketches/oracles
- Hopsets
 - Shortcut edges reducing number of hops in shortest paths

Spanners/ Emulators

Spanners: sparse subgraphs that approximately preserve distances

Emulators: no need to be a subgraph

[Althöfer et al.,93]: Every undirected graph has a (2k-1) -spanner of size $O(n^{1+1/k})$ for all $k \ge 2$.

[Althöfer et al.,93]: Every undirected graph has a (2k-1) -spanner of size $O(n^{1+1/k})$ for all $k \ge 2$.

Optimal (conditional on Erdős girth conjecture)

Greedy

Process edges in non-decreasing order of weight:

- Add edge (u,v) if there is no path of length $\leq k.w(u,v)$ so far

Existentially optimal!

Greedy

Process edges in non-decreasing order of weight:

- Add edge (u,v) if there is no path of length $\leq k.w(u,v)$ so far

Existentially optimal!

Sparsity: No cycles of length less than k

Spanner Algorithms

Clustering based

- [BS07] distributed/parallel and later dynamic
- More efficient than greedy
- Subsequent sampling and growing clusters

Applications

Massively Parallel Distances

- Fast approximate APSP via spanners [BDGMN, SPAA 21]
- Incremental (insert-only) shortest paths
 - Polylog approx and amortized update time [FNP, STOC 23] via emulators
- Fully-dynamic model
 - Emulators + algebraic data structures [BFN, FOCS 22]
- Fault tolerant emulators
 - Motivated by routing in overlay networks [BDN, ITCS 22; BDN, ITCS 23]

• Previous:

- Spanners and emulators

• Next:

- Parallel shortest paths via hopsets

Motivation: Bellman-Ford

- Single-source shortest path via Bellman-Ford:
 - Nodes update their distance estimate from the source s by

$$\tilde{d}(v,s) = \min_{u \in N(v)} \tilde{d}(u,s) + w(u,v)$$

- Each iteration single distributed/parallel round.
 - How many iterations do we need?

Motivation: Bellman-Ford

- Single-source shortest path via Bellman-Ford:
 - Nodes update their distance estimate from the source s by

$$\tilde{d}(v,s) = \min_{u \in N(v)} \tilde{d}(u,s) + w(u,v)$$

- Each iteration single distributed/parallel round.
 - How many iterations do we need?
 - h iterations to compute $d_G^{(h)}(s,v)$ for all $v \in V$ (shortest distance using *h*-hop paths only).

Motivation: Bellman-Ford

Bellman-Ford from single source *s* :

- h iterations to compute $d_G^{(h)}(s,v)$ for all $v \in V$
- Requires O(diam) iterations
 - diam is maximum number of hops in the shortest paths. Could be as large as $\Omega(n)$.

Hopsets

- Given G = (V, E, w), $a(\beta, \epsilon)$ -hopset H is a set of edges, s.t. between every pair of nodes u, v: $d_G(u, v) \leq d_{G \cup H}^{(\beta)}(u, v) \leq (1 + \epsilon)d_G(u, v)$
 - Intuition: adding shortcut edges for reducing the diameter.

Hopsets: Parallel Shortest paths

- **Distributed/parallel SSSP** Given a (β, ϵ) -hopset H for G, approximate distances take β rounds.
 - Run Bellman-Ford for β rounds to obtain $(1 + \epsilon)$ -approx distances ($\beta \ll \text{ diam e.g. polylogarithmic}$).

Hopsets: Parallel Shortest paths

- **Distributed/parallel SSSP** Given a (β, ϵ) -hopset H for G, approximate distances take β rounds.
 - Run Bellman-Ford for β rounds to obtain $(1+\epsilon)$ -approx distances ($\beta \ll {\rm diam}$ e.g. polylogarithmic).
- Dynamic (delete-only) SSSP
 - $h\text{-hop-bounded}\,(1+\epsilon)\text{-single source distances in }O(h)$ amortized time [ES98, B11].
 - Less immediate: (β, ϵ) -hopset for $(1 + \epsilon)$ -SSSP in $O(\beta)$ amortized time.

Goal: Fast construction of sparse hopset with small hopbound.

Existential bounds

- Upper bound [EN19-HP19]: any undirected graph has a (β,ϵ) -hopset of size $\tilde{O}(n^{1+1/k})$ with $\beta = O(1/\epsilon)^k$
- Lower bound [ABP19]: Cannot have both linear size and polylogarithmic hopbound

Hopset Algorithms

Algorithm structure of [Coh00, HKN14, EN16, EN19]

General structure:

- Covering graph with low overlapping clusters with known centers
- Add edges (weight corresponding to dist of endpoints)
 - From each center to all nodes in the cluster
 - Inter-cluster edges between some centers

Hopset Structure

- Set of clusters with centers
- Edges (weighted by distance) are added inside each cluster

Hopset Structure

- Set of clusters with centers
- Edges (weighted by distance) are added inside each cluster
- Inter-cluster edges between centers

Intuition

Clustering property:

- Path segments are either covered by edges inside clusters or
- Inter-cluster edges shortcut the segments not covered.

Dynamic

- Nodes keep on changing clusters
- Even in delete-only settings there are insertions

Dynamic

- Nodes keep on changing clusters
- Even in delete-only settings there are insertions
- Distributed/parallel
 - Low congestion cluster growing

Dynamic

- Nodes keep on changing clusters
- Even in delete-only settings there are insertions
- Distributed/parallel
 - Low congestion cluster growing
- General challenge
 - Distances (for weights) for distances
 - Chicken and egg problem?

Algorithmic idea

- First in PRAM [Coh00], distributed [EN16, EN19], dynamic [ŁN22]
- Assume (β, ϵ) -hopset edges are added up to distance R. We can look at 2β hops for distances up to 2R.

Hopset Applications

- Parallel and distributed shortest paths
 - $(1 + \epsilon)$ -SSSP in polylog rounds via hopsets with polylog hopbound
 - Fast computation of distance sketches supporting constant round approx all pair queries [DN19]
- Dynamic (delete-only) shortest paths
 - $(1 + \epsilon)$ -SSSP in $n^{o(1)}$ amortized update time [HKN16, Che19, ŁN22]
 - O(k) -APSP in $ilde{O}(n^{1/k})$ amortized update time [ŁN22]

• Previous:

- Hopsets and applications

• Next:

- Fully dynamic approximate distances

Ideal Guarantees

Limitations of previous work

- Support only deletions or only insertions
- Amortized guarantees

Ideal Guarantees

Limitations of previous work

- Support only deletions or only insertions
- Amortized guarantees
- Power of adversary
 - Assume adversary is oblivious to random choices

Ideal Guarantees

Limitations of previous work

- Support only deletions or only insertions
- Amortized guarantees
- Power of adversary
 - Assume adversary is oblivious to random choices

Goal: Fully-dynamic deterministic algorithms with optimal worstcase running time.

Goal: Fully-dynamic algorithms that have worst-case guarantees are deterministic.

Theorem [BNF, FOCS 22]:

Fully-dynamic deterministic $(1 + \epsilon)$ -approximate single-source and *st*-distances with conditionally optimal worst-case bounds in unweighted undirected graphs.

Approx.	Туре	Update Time
$1 + \epsilon$	single pair	$O(n^{1.407})$
$1 + \epsilon$	single source	$O(n^{1.529})$
$1 + \epsilon$	k sources	$O(n^{1.529} + kn^{1+o(1)})$
$1+\epsilon$	all pairs	$O(n^{2+o(1)})$

Conditional optimality: Based on an OMV-based hardness assumption by [BNS, FOCS 19]

- Technical idea: combination of two type of fully-dynamic data structures
 - Combinatorial structures (sparse emulators)
 - Algebraic data structures

- Technical idea: combination of two type of fully-dynamic data structures
 - Combinatorial structures (sparse emulators)
 - Algebraic data structures
- Speed up:
 - Static distance queries on a sparse graph
 - Faster bounded distance using algebraic structures

Algebraic Data Structures

Graph distances via matrix inverse

Adjacency matrix A $A_{i,j}^k :=$ walks from i to j of length k $(I - A \cdot X)^{-1} = \sum_{k=1}^{n-1} A^k X^k$

Algebraic data structures

- Matrix inverse used for distances previously [San05, BN19]
- Faster algorithm based on properties of our emulators

Sparse Emulators

Emulators: Given a graph G = (V, E), an (α, β) -emulator is a sparse graph H such that:

$$\forall u, v \in V : d_G(u, v) \le d_H(u, v) \le \alpha d_G(u, v) + \beta$$

Sparse Emulators

Simple $(1 + \epsilon, 4)$ -emulator of size $O(n^{4/3})$:

- Low degree $\leq n^{1/3}$ nodes: all incident edges
- High degree > $n^{1/3}$ nodes: an edge corresponding to one neighbor in a hitting set ${\bf S}$
- Weighted edges between nodes in S bounded by $O(1/\epsilon)$

Hitting set

- Hitting set:
 - If randomness allowed: fixed set of sampled nodes

Hitting set

• Hitting set:

- If randomness allowed: fixed set of sampled nodes
- Deterministic challenge: set of sources change, but slowly

Deterministic Hitting sets

Deterministic low recourse approximate hitting set

- Edge update: one node added or deleted
- When size doubles recompute (done slowly for worst-case bound)

- Maintain a $(1+\epsilon,4)$ -Emulator
- Distance queries:
 - Bounded distances using algebraic data structures (dealing with the constant additive term)
 - Static shortest path on the sparse emulator
 - $(1 + \epsilon)$ -distance based on minimum of two estimates

• Previous:

 Distance structures and theoretical applications

• Next:

- Model connections and future directions

Unification

• Graph tools apply to different models

Unification

- Graph tools apply to different models
- Ideas transfer between models

• Previous:

- Model connections

• Next:

- Future directions

Dynamic Algorithms and Optimization

- Recent breakthrough in near linear time max flow
 - Uses adaptive decremental shortest path distance oracle

Dynamic Algorithms and Optimization

- Recent breakthrough in near linear time max flow
 - Uses adaptive decremental shortest path distance oracle
- Static approximation algorithms for cuts/flows and clustering problems
 - Iterative algorithms may utilize dynamic subroutines

Dynamic Algorithms and Optimization

- Recent breakthrough in near linear time max flow
 - Uses adaptive decremental shortest path distance oracle
- Static approximation algorithms for cuts/flows and clustering problems
 - Iterative algorithms may utilize dynamic subroutines
- Dynamic approximation algorithms
 - Connection to low-recourse online algorithms

Clustering/Cut Problems

Graph Clustering

- Computationally more challenging than metrics

Dynamic distance computation

- Graph clustering algorithms requires repeated distance estimation
- Approximation algorithms for clustering/cuts
 - Rounding based on LP solution as distances

Distributed Optimization

- Distributed combinatorial optimization and approximation algorithms
 - General linear programs/convex programs are challenging
 - Only special linear/convex programs can be solved (e.g. positive LPs , Local LPs, ...)
- Combining tools from different models?
 - LOCAL/CONGEST: network decompositions
 - Other models:
 - Algebraic tools, interior point methods

Conclusion

- Take away
 - Well-structured algorithmic tools will be adaptable to model changes

Conclusion

• Take away

 Well-structured algorithmic tools will be adaptable to model changes

Future directions

- Distributed optimization with application in network design
- Further application of dynamic algorithms in faster combinatorial optimization algorithms

Conclusion

• Take away

 Well-structured algorithmic tools will be adaptable to model changes

Future directions

- Distributed optimization with application in network design
- Further application of dynamic algorithms in faster combinatorial optimization algorithms

