
Distributed, Parallel and Dynamic

Graph Algorithms

Yasamin Nazari

VU Amsterdam

Dutch Optimization Seminar
May 2023

2

Computational Models

● Theoretical models inspired by big data and modern
computing systems:

– Distributed models (computation over networks)

– Massively parallel computation

– Dynamic models (changing input)

– Fault tolerance (infrastructure)

3

Distributed Models

● Distributed Models

● Motivated e.g. by routing and broadcast on networks

● Examples: LOCAL, CONGEST, Congested Clique,...

● LOCAL model

– Given a graph G=(V,E), in each round each node sends a
message to its neighbors.

– Goal: minimize number of rounds communication.

4

Massively Parallel Computation
(MPC)

● Abstraction of modern platforms e.g. MapReduce, Spark,
Hadoop

● MPC Model:

– Input is distributed over a set of machines.

– Each machine memory/communication: strictly sublinear in
input size.

● Connections to both classical parallel models (PRAM) and
distributed models

5

Fault-tolerance

● Fault-tolerant graph algorithms

– Valid solution after up to f (edge or vertex) faults

6

Dynamic Model

● Dynamic Graphs
– Updates to input:

(edge insertions, deletions)

7

Dynamic Model

● Dynamic Graphs
– Updates to input:

(edge insertions, deletions)

8

Dynamic Model

● Dynamic Graphs
– Updates to input:

(edge insertions, deletions)

9

Dynamic Model

● Dynamic Graphs
– Updates to input:

(edge insertions, deletions)

● Goal

– Fast queries

– Small update time

10

Dynamic Model

● Dynamic Graphs
– Updates to input:

(edge insertions, deletions)

● Goal

– Fast queries

– Small update time

● Partially or fully dynamic

– Insert-only (incremental), delete-only (decremental)

11

● Previous:
– Models

● Next:
– Distane Computation and Structures

12

Distances in Graphs

● Distance computation: Given a graph G=(V,E), compute (approx)
distances between a set of sources and destinations.

– Sequential: Dijkstra’s (single source)

13

Distances in Graphs

● Distance computation: Given a graph G=(V,E), compute (approx)
distances between a set of sources and destinations.

– Sequential: Dijkstra’s (single source)

– Distributed: BFS/Bellman-Ford

● Slow if diameter is large

14

Distances in Graphs

● Distance computation: Given a graph G=(V,E), compute (approx)
distances between a set of sources and destinations.

– Sequential: Dijkstra’s (single source)

– Distributed: BFS/Bellman-Ford

● Slow if diameter is large

– Dynamic:

● Slow to recompute

from scratch

15

Distance Structures

● Approximate distance sparsification

– Spanners

– Emulators

– Distance sketches/oracles
● Hopsets

– Shortcut edges reducing number of hops in shortest
paths

16

Spanners/ Emulators

Spanners: sparse subgraphs that approximately
preserve distances

Emulators: no need to be a subgraph

3-SpannerG

17

Spanners

3-SpannerG

[Althöfer et al.,93]: Every undirected graph has a
 -spanner of size for all .

18

Spanners

3-SpannerG

[Althöfer et al.,93]: Every undirected graph has a
 -spanner of size for all .

Optimal (conditional on Erdős girth conjecture)

19

Spanners

Greedy

Process edges in non-decreasing order of weight:

● Add edge if there is no path of length so far

Existentially optimal!

Greedy

Process edges in non-decreasing order of weight:

● Add edge if there is no path of length so far

Existentially optimal!

20

Spanners

Greedy

Process edges in non-decreasing order of weight:

● Add edge if there is no path of length so far

Existentially optimal!

Sparsity: No cycles of length less than

Greedy

Process edges in non-decreasing order of weight:

● Add edge if there is no path of length so far

Existentially optimal!

Sparsity: No cycles of length less than

21

Spanner Algorithms

Clustering based

– [BS07] distributed/parallel and later dynamic

– More efficient than greedy

– Subsequent sampling and growing clusters

Clustering based

– [BS07] distributed/parallel and later dynamic

– More efficient than greedy

– Subsequent sampling and growing clusters

22

Applications

● Massively Parallel Distances

– Fast approximate APSP via spanners [BDGMN, SPAA 21]

● Incremental (insert-only) shortest paths

– Polylog approx and amortized update time [FNP, STOC 23] via
emulators

● Fully-dynamic model

– Emulators + algebraic data structures [BFN, FOCS 22]

● Fault tolerant emulators

– Motivated by routing in overlay networks [BDN, ITCS 22; BDN,
ITCS 23]

23

● Previous:
– Spanners and emulators

● Next:
– Parallel shortest paths via hopsets

24

Motivation: Bellman-Ford

● Single-source shortest path via Bellman-Ford:

– Nodes update their distance estimate from the source s by

● Each iteration single distributed/parallel round.

– How many iterations do we need?

25

Motivation: Bellman-Ford

● Single-source shortest path via Bellman-Ford:

– Nodes update their distance estimate from the source s by

● Each iteration single distributed/parallel round.

– How many iterations do we need?

– iterations to compute for all (shortest
distance using h-hop paths only).

26

Motivation: Bellman-Ford

Bellman-Ford from single source :

– iterations to compute for all

– Requires iterations
● is maximum number of hops in the shortest paths.

Could be as large as .

1111
1

1
1

1

8

8

8
8

8

27

Hopsets

● Given , a -hopset is a set of
edges, s.t. between every pair of nodes :

– Intuition: adding shortcut edges for reducing the
diameter.

G

(3,0)-Hopset

4

64

2

2

28

Hopsets: Parallel Shortest paths

● Distributed/parallel SSSP Given a -hopset H for
G, approximate distances take rounds.

– Run Bellman-Ford for rounds to obtain -approx
distances (e.g. polylogarithmic).

29

Hopsets: Parallel Shortest paths

● Distributed/parallel SSSP Given a -hopset H for
G, approximate distances take rounds.

– Run Bellman-Ford for rounds to obtain -approx
distances (e.g. polylogarithmic).

● Dynamic (delete-only) SSSP

– h-hop-bounded -single source distances in
amortized time [ES98, B11].

– Less immediate: -hopset for -SSSP in
amortized time.

30

Hopsets

Goal: Fast construction of sparse hopset with small hopbound.

Existential bounds

– Upper bound [EN19-HP19]: any undirected graph has a
 -hopset of size with

– Lower bound [ABP19]: Cannot have both linear size and
polylogarithmic hopbound

31

Hopset Algorithms

Algorithm structure of [Coh00, HKN14, EN16, EN19]

General structure:
– Covering graph with low overlapping clusters with known

centers

– Add edges (weight corresponding to dist of endpoints)
● From each center to all nodes in the cluster
● Inter-cluster edges between some centers

32

Hopset Structure

– Set of clusters with centers

– Edges (weighted by distance) are added inside each cluster

33

Hopset Structure

– Set of clusters with centers

– Edges (weighted by distance) are added inside each cluster

– Inter-cluster edges between centers

34

Intuition

Clustering property:

– Path segments are either covered by edges inside clusters or

– Inter-cluster edges shortcut the segments not covered.

...

35

Computational challenges

● Dynamic

– Nodes keep on changing clusters

– Even in delete-only settings there are insertions

36

Computational challenges

● Dynamic

– Nodes keep on changing clusters

– Even in delete-only settings there are insertions
● Distributed/parallel

– Low congestion cluster growing

37

Computational challenges

● Dynamic

– Nodes keep on changing clusters

– Even in delete-only settings there are insertions
● Distributed/parallel

– Low congestion cluster growing
● General challenge

– Distances (for weights) for distances

– Chicken and egg problem?

38

Computational challenges

Algorithmic idea

– First in PRAM [Coh00], distributed [EN16, EN19], dynamic [ŁN22]

– Assume -hopset edges are added up to distance R. We can
look at hops for distances up to 2R.

R R

39

Hopset Applications

● Parallel and distributed shortest paths

– -SSSP in polylog rounds via hopsets with polylog
hopbound

– Fast computation of distance sketches supporting constant
round approx all pair queries [DN19]

● Dynamic (delete-only) shortest paths

– -SSSP in amortized update time [HKN16, Che19,
ŁN22]

– -APSP in amortized update time [ŁN22]

40

● Previous:
– Hopsets and applications

● Next:
– Fully dynamic approximate distances

41

Ideal Guarantees

● Limitations of previous work

– Support only deletions or only insertions

– Amortized guarantees

42

Ideal Guarantees

● Limitations of previous work

– Support only deletions or only insertions

– Amortized guarantees

– Power of adversary
● Assume adversary is oblivious to random choices

43

Ideal Guarantees

● Limitations of previous work

– Support only deletions or only insertions

– Amortized guarantees

– Power of adversary
● Assume adversary is oblivious to random choices

Goal: Fully-dynamic deterministic algorithms with optimal worst-
case running time.

44

Deterministic Fully-Dynamic Distances

Goal: Fully-dynamic algorithms that have worst-case guarantees

are deterministic.

Theorem [BNF, FOCS 22]:

Fully-dynamic deterministic -approximate single-source
and st-distances with conditionally optimal worst-case bounds in
unweighted undirected graphs.

45

Deterministic Fully-Dynamic Distances

Conditional optimality: Based on an OMV-based hardness
assumption by [BNS, FOCS 19]

46

Deterministic Fully-Dynamic Distances

● Technical idea: combination of two type of fully-dynamic
data structures

– Combinatorial structures (sparse emulators)

– Algebraic data structures

47

Deterministic Fully-Dynamic Distances

● Technical idea: combination of two type of fully-dynamic
data structures

– Combinatorial structures (sparse emulators)

– Algebraic data structures

● Speed up:

– Static distance queries on a sparse graph

– Faster bounded distance using algebraic structures

48

Algebraic Data Structures

Graph distances via matrix inverse

Adjacency matrix

 := walks from i to j of length k

● Algebraic data structures

– Matrix inverse used for distances previously [San05, BN19]

– Faster algorithm based on properties of our emulators

49

Sparse Emulators

Emulators: Given a graph G V E=(,), an -emulator is a sparse
graph H such that:

H = 30(,)-
emulator

G

50

Sparse Emulators

Simple -emulator of size :

– Low degree nodes: all incident edges

– High degree nodes: an edge corresponding to one
neighbor in a hitting set S

– Weighted edges between nodes in S bounded by

...

51

Hitting set

● Hitting set:

– If randomness allowed: fixed set of sampled nodes

52

Hitting set

● Hitting set:

– If randomness allowed: fixed set of sampled nodes

– Deterministic challenge: set of sources change, but slowly

53

Deterministic Hitting sets

Deterministic low recourse approximate hitting set

– Edge update: one node added or deleted

– When size doubles recompute (done slowly for worst-case bound)

54

Deterministic Fully-Dynamic Distances

● Maintain a -Emulator

● Distance queries:

– Bounded distances using algebraic data structures (dealing with
the constant additive term)

– Static shortest path on the sparse emulator

– -distance based on minimum of two estimates

 Algebraic DS
Distance
Estimates

Algebraic DS

Sparse
Emulator

Deterministic
 Hitting Set

55

● Previous:
– Distance structures and theoretical

applications

● Next:
– Model connections and future directions

56

Unification

● Graph tools apply to different models

Dynamic
 [LN22, BFN22, FNP23, DFNV22]

 Fault tolerance
[BND22, BND23]

 Massively Parallel
[DN19, BDGMN21]

Parallel (PRAM)Streaming

Distributed
 [DN17,N19]

 Fault tolerance
[BND22, BND23]

57

Unification

● Graph tools apply to different models

● Ideas transfer between models

Dynamic
 [LN22, BFN22, FNP23, DFNV22]

 Fault tolerance
[BND22, BND23]

 Massively Parallel
[DN19, BDGMN21]

Parallel (PRAM)Streaming

Distributed
 [DN17,N19]

 Fault tolerance
[BND22, BND23]

 [LN22, DFNV22]

[GSZ11]

[N
19

]

 [LN22]

 [FN
P23][D

N
1
9
,
B

D
G

M
N

2
1
]

[DN19, BDGMN21]

58

● Previous:
– Model connections

● Next:
– Future directions

59

Dynamic Algorithms and Optimization

● Recent breakthrough in near linear time max flow

– Uses adaptive decremental shortest path distance oracle

60

Dynamic Algorithms and Optimization

● Recent breakthrough in near linear time max flow

– Uses adaptive decremental shortest path distance oracle

● Static approximation algorithms for cuts/flows and
clustering problems

– Iterative algorithms may utilize dynamic subroutines

61

Dynamic Algorithms and Optimization

● Recent breakthrough in near linear time max flow

– Uses adaptive decremental shortest path distance oracle

● Static approximation algorithms for cuts/flows and
clustering problems

– Iterative algorithms may utilize dynamic subroutines
● Dynamic approximation algorithms

– Connection to low-recourse online algorithms

62

Clustering/Cut Problems

● Graph Clustering

– Computationally more challenging than metrics

● Dynamic distance computation

– Graph clustering algorithms requires repeated distance
estimation

– Approximation algorithms for clustering/cuts
● Rounding based on LP solution as distances

63

Distributed Optimization

● Distributed combinatorial optimization and
approximation algorithms

– General linear programs/convex programs are challenging

– Only special linear/convex programs can be solved (e.g. positive
LPs , Local LPs, ...)

● Combining tools from different models?

– LOCAL/CONGEST: network decompositions

– Other models:

● Algebraic tools, interior point methods

64

Conclusion

● Take away

– Well-structured algorithmic tools will be adaptable to model
changes

65

Conclusion

● Take away

– Well-structured algorithmic tools will be adaptable to model
changes

● Future directions

– Distributed optimization with application in network design

– Further application of dynamic algorithms in faster
combinatorial optimization algorithms

66

Conclusion

● Take away

– Well-structured algorithmic tools will be adaptable to model
changes

● Future directions

– Distributed optimization with application in network design

– Further application of dynamic algorithms in faster
combinatorial optimization algorithms

Thank you! Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66

