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Community detection

+ Creating large-scale maps with meta nodes
+ Understanding community vs aggregate features

+ ldentitying topological/ spectral properties




Community detection

Many different models

Best for data with

+ Hierarchical clustering underlying heirarchy

+ Minimum cut clustering Fixed # of clusters

+ Girvan Newman algorithm Runtime O(m2n)

+ Modularity maximization gy sy
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+ Correlation clustering




Correlation clustering

Model:
»Cluster similar nodes together, separate dissimilar nodes
No pre-fixed # of clusters, complete unweighted graph
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Correlation clustering

Original objective for Correlation Clustering =
minimize # of edges in disagreement

Edge (1,v) in disagreement w.r.t C if
+ (+) with u, v different clusters or
+ (=) with u, v same cluster




{, Correlation clustering

p small = global obj €2 p large = local/fair obj
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{1 = original cc

{- = Min max norm




Previous work

For {;-norm (original) objective:
»Introduced by [Bansal, Blum, Chawla '04]

>Linear time Pivot algorithm gives 3-apx
[Ailon, Charikar, Newman JACMOS8] [Chierichetti, Dalvi, Kumar KDD14]

» APX-hard

[Charikar, Guruswami, Wirth JCSS05]

» Many other active threads of research!
[Ahmadi, Khuller, Saha IPCO19][Veldt ICML22] [Cohen-Addad, Lee, Li, Newman FOCS23]



Previous work

For general {,-norm objectives:
> 5-approximation algorithm; NP-hara

[Puleo, Milenkovic ICML16], [Charikar, Gupta, Schwartz IPCO17], [Kalhan, Makarychev, Zhou ICML19]
» Techniques round solution to a convex program




Previous work

Pivot algorithm

- Randomly choose a pivot (unclustered vertex)
- Make new cluster with pivot and all its
unclustered positive neighbors

>Linear time Pivot algorithm gives 3-apx
[Ailon, Charikar, Newman JACMOS8] [Chierichetti, Dalvi, Kumar KDD14]
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Trouble with the convex program

{,-norm correlation clustering algs solve a convex program

Solving metric
constrained LPs on
large networks is slow!

Not very amenable to Solution specific to one
online settings fixed {,-norm

Work on solving CC LPs fast only scales to graphs
with few thousand vertices!

[Ruggles et al. '20], [Sonthalia & Gilbert '20], [Veldt '22]
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Trouble with the convex program

{,-norm correlation clustering algs solve a convex program

Solution specific to one

fixed {,-norm
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Trouble with the convex program

OPT for one {,-norm can be
really bad for others!

Cost for £1 norm is O(n2),
really big cost!

OPT for (-
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Trouble with the convex program

OPT for one {,-norm can be Does there exist a “pretty good”

really bad for others! solution for all £,-norms?

Cost for f{1 normis O(n)
Cost for {1 norm is O(n2),

really big cost!
O _ o
Friends

OPT for (- OPT for ¢
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Trouble with the convex program

{,-norm correlation clustering algs solve a convex program

Solving metric
constrained LPs on
large networks is slow!

Not very amenable to Solution specific to one
online/ streaming settings fixed {,-norm
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Our combinatorial approach

Initial constant was 40
Heidrich, Irmai, Andres built off us, improve to 4!

“Fast Combinatorial Algorithms for
Min Max Correlation Clustering”

ICML23 (1) Develop faster O(1)-apx alg for min max objective;

S near-linear time on networks with small positive degree
“One Partition Approximating All

?,-norm Objectives in Correlation

Clustering” (2) Find simultaneously O(1)-apx clustering for all {,-norm objs

In sub

Not possible for k-center & k-median

(3) Algorithms in the online setting [ Alamdari & Shmoys WAOA17]

In progress
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4+ Introduction (the model, orior work, our results) @?
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Today

4 The CO rre\ation metric (constructing a “guess” for the fraction solution, an inherent asymmetry) @9 @
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Previous techniques

Integer convex program | Convex program relaxation

Not (generally) practical to solve j Can be solved efficiently

X0 = 0 then u, v same cluster

x.o= 1 then u, v different clusters

min | [y]] | min | [y]]
Y= Y xyt+ ¥ (I-x) YueV | yw= Y x4+ Y (I-x) VueV
vEN' veEN,, i. VEN; VEN,
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Previous techniques

Convex program relaxation

Can be solved efficiently

Step 1: Solve convex program
Step 2: "Round” fractional
solution to integral one
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Previous techniques

Input: semi-metric x on V

letr=1/5
While there is some unclustered vertex
Find “"densest” cluster with center ¢* and radius r

Create cluster C around c¢* with radius 2r

Convex program for £, correlation clustering
p
Return clusters

min [[y||,
Rounding algorithm
y(u) — Z Ay + Z_(l _xuv) vueV by Kalhan, *
VEN, veN, | Makarychev, Zhou _
X, <X, +X,, Yu,v,wevV LP solution Clustering

0<x, <1 Vu,veVv
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Correlation metric

Correlation metric for (..:

. o o . o p
(1) satisfies triangle inequality Z[ Y+ Y _dw)] <o 3 youy
(2) has Z d,, + Z (1 -d,) < O0() - max y(w) SV e e (=
VENT VEN wev
Input correlation metric dy, an apx for xu.
min | y||
Rounding algorithm
y(u) — Z Ay + Z (1 _xuv) VueV by Kalhan, *
veN, Ve, x Makarychev, Zhou _
x, <x. +x, Yu,v,weV LP S=iution Clustering

0<x,<1 Vu,v eV
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Correlation metric

>N, ~ = (+) neighbors of u, N,— = (-) neighbors of u
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Correlation metric

>N, ~ = (+) neighbors of u, N,— = (-) neighbors of u
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Correlation metric

>N~ = (+) neighbors of u, N,— = (=) neighbors of u

Intuition: if # and v have large mixed nbhds

relative to | N,~ U N~ |, want them in different clusters
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Correlation metric

Very coarse approximation for probability
Pivot separates u,v

NS QNS |+ N, NS
) | N} UN; |

Correlation metric=d,, = 1

Pivot algorithm
- Randomly choose a pivot (unclustered vertex)
- New cluster with pivot + all its unclustered + neighbors

Intuition: if # and v have large mixed nbhds

relative to | N,* U N,* |, want them in different clusters
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Correlation metric

Correlation metric=d,, = 1

Works as is for - norm

objective

NiNST NG N 1+IN; 0N |

N UN;F | NF U N

Rounding algorithm
by Kalhan,

—

Clustering

Makarychev, Zhou

Correlation
metric
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+ Proof sketch for the €w-norm &% ¢ &%
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Correlation metric for £

_INSON |+ N, NN

dMV
| Nf U N |

Want to show for {.: ) d4,+ ) (1-d,) <O(1)- maxy(w)

weV
VEN, VEN,

Easy to bound positive edges for f.. objective!

, Zduvﬁ Z IN"AN |+ |N, NN N 2 |

N+t UNHT {
/ vEN veN.NC(u) | NV V | veN.NC(u)
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Correlation metric for £

_INSON |+ N, NN

dMV
| Nf U N |

Want to show for {.: ) d4,+ ) (1-d,) <O(1)- maxy(w)

weV
VEN, VEN,

Recall y(u) = # disagreements incident to u Easy to bound positive edges for {. objective!

Zduvs Z ‘N;an_H"NJan‘_l_ 2 i

+ +
vEN veN.NC(u) N UN, | veNTNC(u)
1
< Y Z (IN; AN, |+ N, NNT|) + y(u)
u
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Correlation metric for £

_INSON |+ N, NN

dMV
| Nf U N |

Want to show for {.: ) d4,+ ) (1-d,) <O(1)- maxy(w)

weV
VEN, VEN,

Recall y(u) = # disagreements incident to u Easy to bound positive edges for {. objective!

Zduvs Z ‘N;an_H"NJan‘_l_ 2 i

+ 1) N+
vEN veN.NC(u) N UN, | veNTNC(u)

1

< Y Z (IN; AN, |+ N, NNT|) + y(u)
“ T veNtNC(u)

— 1

< 2, 0@ +ym) +yw

“ T veNnC(u)

U < 2y(u) + maxy(z) < 3:-OPT.
<
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Correlation metric for £

_INSON |+ N, NN

dl/tV
| Nf U N |

Want to show for {.: ) d4,+ ) (1-d,) <O(1)- maxy(w)

weV
VEN, VEN,

Easy to bound positive edges for f.. objective!
) d, <3-OPT.

vEN,
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Correlation metric for £

_INSON |+ N, NN

dl/ﬂ/
[NF UNS|

Want to show for [.: ) d,+ ) (1-d,) < O(1)- max y(w)

VEN' VEN, wev
Bound on negative edges
Y d-dy= Y (-dy)+ Y (1-d,)
VEN, veN, NC(u) veN, NC(u)
[N NN | v
=yw+ ), =

veNoncam T N O N

Every win | N, n Ny*| incident to an
edge in disagreement, charge to

carefully chosen v*(w) in C(w)
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+ AdJUStlﬂg the Correlatlon metric (regular graphs are easy, dealing with negative edges ) (/\; Q/\)
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Adjusted correlation metric

uy

- INS NS+ [N NN

| Nf U N |

— Simultaneous approximation for

{1- and {~-norm objectives

For regular graphs, correlation metric O(1)-apxs {1-norm
+ Proof via dual fitting!

+ Problem is when graph is far from regular

Must adjust correlation metric for non-regular
graphs for general {,-norms

dw=2/3foralluvin{2,...n}, so

fractional cost w.r.td is O(n2)
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Adjusted correlation metric

NS AN+ IN; NN}
) | N UN; |

Correlation metric=d,, = 1

For all £, norms

Adjusted
correlation metric

+ If negative edge (u,v) has d,, >0.7,

Rounding algorithm
by Kalhan, »

Clustering

update dy, < 1

Makarychev, Zhou

10
+ Foruwith [N, n{v:d, A <0.7}|>—A,
update dy, < 1 3
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4 COﬂC‘USiOﬂS (mainly vibes) éf\?
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Summary

{,-norm correlation clustering algs solve a convex program

Solving metric
constrained LPs on
large networks is slow!

Not very amenable to Solution specific to one
online settings fixed {,-norm

33



Combinatorial techniques can
resolve these issues
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A = max (+) degree of any vertex
® = matrix multiplication exponent Sometimes called universality property

Result 1: O(1)-apx alg with run-time O(min{ n-A2-log n, n@}). Near-linear forfgsparse graphs.
Result 2: 3 an alg producing a clustering that is O(1)-apx for all {,-norms, simultaneously.

Result 3: (nprogress, probably true) Given a random e—fraction of the network, 3 a semi-online algorithm

that for any {,-norm objective produces a O(log n)-competitive algorithm.

Correlation clustering has interesting

combinatorial structure that can be exploited
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What's next?

> £aln progress: Extend to a semi-online setting

S Factor depends on p. For p=c, the algorithm is O(log n)-competitive

- /YHot conjecture: Exists a combinatorial alg simultaneously 4-
approximating all {,-norms running in O(n®)time

» ' Broader Qs:

1. Combinatorial algorithms by designing "approximate LP solution”

2. Further study on the all-norms objective
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Thank you!
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