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Community detection

✦ Creating large-scale maps with meta nodes


✦ Understanding community vs aggregate features


✦ Identifying topological/ spectral properties
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Community detection
Many different models


✦ Hierarchical clustering


✦ Minimum cut clustering


✦ Girvan Newman algorithm


✦ Modularity maximization


✦

Fixed # of clusters

Runtime O(m2n)

Doesn’t find small clusters

Best for data with 
underlying heirarchy 
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Community detection
Many different models


✦ Hierarchical clustering


✦ Minimum cut clustering


✦ Girvan Newman algorithm


✦ Modularity maximization


✦ Correlation clustering

Fixed # of clusters

Runtime O(m2n)

Doesn’t find small clusters

Best for data with 
underlying heirarchy 



5

Model: 

‣Cluster similar nodes together, separate dissimilar nodes

‣No pre-fixed # of clusters, complete unweighted graph

‣yC(u) = # edges in disagreement incident to u w.r.t C


✦labeled — with u, v same cluster


‣ Goal: find clustering C minimizing ||yC||1 = ∑u yC(u)

Correlation clustering
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Model: 

‣Cluster similar nodes together, separate dissimilar nodes

‣No pre-fixed # of clusters, complete unweighted graph

‣Edge (u,v) in disagreement w.r.t C if


✦ (+) with u, v different clusters or

✦ (—) with u, v same cluster


‣  = # disagreements w.r.t. C incident to vi


‣ Goal: find 
yC

i
argminC ∑

i

yC
i = | |yC | |1

Correlation clustering

Original objective for Correlation Clustering = 

minimize # of edges in disagreement

+ + +

—
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Model: 

‣Cluster similar nodes together, separate dissimilar nodes

‣No pre-fixed # of clusters, complete unweighted graph

‣Edge (u,v) in disagreement w.r.t C if


✦ (+) with u, v different clusters or

✦ (—) with u, v same cluster


‣  = # disagreements w.r.t. C incident to vi


‣ Goal: find  
yC

i
argminC | |yC | |p

ℓp Correlation clustering

ℓ1 = original cc 
ℓ∞ = min max norm

p small = global obj    ↔   p large = local/fair  obj

p≥1

+ + +

1
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Previous work

For ℓ1-norm (original) objective: 

‣Introduced by [Bansal, Blum, Chawla ’04]

‣Linear time Pivot algorithm gives 3-apx 

   [Ailon, Charikar, Newman JACM08] [Chierichetti, Dalvi, Kumar KDD14]


‣APX-hard 
    [Charikar, Guruswami, Wirth JCSS05]

‣ Many other active threads of research! 

[Ahmadi, Khuller, Saha IPCO19] [Veldt ICML22] [Cohen-Addad, Lee, Li, Newman FOCS23] 
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For general ℓp-norm objectives: 

‣ 5-approximation algorithm; NP-hard 

    [Puleo, Milenkovic ICML16], [Charikar, Gupta, Schwartz IPCO17], [Kalhan, Makarychev, Zhou ICML19]


‣ Techniques round solution to a convex program
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For general ℓp-norm objectives: 

‣ 5-approximation algorithm; NP-hard 

    [Puleo, Milenkovic ICML16], [Charikar, Gupta, Schwartz IPCO17], [Kalhan, Makarychev, Zhou ICML19]


‣ Techniques round solution to a convex program

Previous work

For ℓ1-norm (original) objective: 

‣Introduced by [Bansal, Blum, Chawla ’04]

‣Linear time Pivot algorithm gives 3-apx 

   [Ailon, Charikar, Newman JACM08] [Chierichetti, Dalvi, Kumar KDD14]


‣APX-hard 
    [Charikar, Guruswami, Wirth JCSS05]

‣ Many other active threads of research! 

[Ahmadi, Khuller, Saha IPCO19] [Veldt ICML22] [Cohen-Addad, Lee, Li, Newman FOCS23] 
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Pivot 1

Pivo
t 2

 

Pivo
t 3

Pivot 4
Pivot algorithm


-  Randomly choose a pivot (unclustered vertex)

-  Make new cluster with pivot and all its 
unclustered positive neighbors  



Work on solving CC LPs fast only scales to graphs 
with few thousand vertices! 


[Ruggles et al. ’20], [Sonthalia & Gilbert ’20], [Veldt ’22]
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Trouble with the convex program

ℓp-norm correlation clustering algs solve a convex program

Solution specific to one 
fixed ℓp-norm


Solving metric 
constrained LPs on 

large networks is slow!

Not very amenable to 
online settings


All-norms objective = simultaneously optimize all ℓp-norms 

Introduced by [Azar, Epstein, Richter, Woeginger ’04] 


Universal algorithms produce a solution good for many objs

In, e.g., Steiner tree, TSP,  clustering
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Trouble with the convex program

ℓp-norm correlation clustering algs solve a convex program

Solution specific to one 
fixed ℓp-norm


Solving metric 
constrained LPs on 

large networks is slow!

Not very amenable to 
online settings


All-norms objective = simultaneously optimize all ℓp-norms 

Introduced by [Azar, Epstein, Richter, Woeginger ’04] 


Universal algorithms produce a solution good for many objs

In, e.g., Steiner tree, TSP,  clustering
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Friends

Friends

Friends

OPT for one ℓp-norm can be 
really bad for others!

Trouble with the convex program

OPT for ℓ∞ 1

32 n/2+1… n/2 …n——
—

—

—

—
—

+ + ++ +

Cost for ℓ1 norm is θ(n2), 
really big cost!
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2

3

1

5

4Friends

Friends

Friends

Friends

OPT for one ℓp-norm can be 
really bad for others!

Does there exist a “pretty good” 
solution for all ℓp-norms?

Trouble with the convex program

Cost for ℓ1 norm is θ(n)

——
—

—

1

432 … n

OPT for ℓ1

—

—

+ + ++

OPT for ℓ∞ 1

32 n/2+1… n/2 …n——
—

—

—

—
—

+ + ++ +

Cost for ℓ1 norm is θ(n2), 
really big cost!
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Solution specific to one 
fixed ℓp-norm


Solving metric 
constrained LPs on 

large networks is slow!

Not very amenable to 
online/ streaming settings


Trouble with the convex program

ℓp-norm correlation clustering algs solve a convex program
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(1)  Develop faster O(1)-apx alg for min max objective; 

↪ near-linear time on networks with small positive degree


(2)  Find simultaneously O(1)-apx clustering for all ℓp-norm objs


(3) Algorithms in the online setting

“Fast Combinatorial Algorithms for  
Min Max Correlation Clustering” 

ICML23

“One Partition Approximating All 
ℓp-norm Objectives in Correlation 

Clustering”

In sub

Our combinatorial approach

In progress

Not possible for k-center & k-median 
[Alamdari & Shmoys WAOA17]

Initial constant was 40

Heidrich, Irmai, Andres built off us,  improve to 4!
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Today

✦ Introduction (the model, prior work, our results)  


✦ The correlation metric (constructing a “guess” for the fraction solution, an inherent asymmetry)


✦ Proof sketch for the ℓ∞-norm 


✦ Adjusting the correlation metric (regular graphs are easy, dealing with negative edges )


✦ Conclusions (mainly vibes)

🔥

🔥 🔥

🔥 🔥 🔥

🔥🔥

🔥
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y(u) = ∑
v∈N+

u

xuv + ∑
v∈N−

u

(1 − xuv) ∀u ∈ V

xuv ≤ xvw + xuw ∀u, v, w ∈ V
xuv ∈ ℤ≥0 ∀u, v ∈ V

min | |y | |p

Not (generally) practical to solve
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Previous techniques 

Convex program relaxation


Can be solved efficiently

Integer convex program

min | |y | |p

y(u) = ∑
v∈N+

u

xuv + ∑
v∈N−

u

(1 − xuv) ∀u ∈ V

xuv ≤ xvw + xuw ∀u, v, w ∈ V
0 ≤ xuv ≤ 1 ∀u, v ∈ V

xuv = 0 then u, v same cluster  
xuv = 1 then u, v different clusters
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Previous techniques 

Convex program relaxation


Can be solved efficiently

Integer convex program

min | |y | |p

y(u) = ∑
v∈N+

u

xuv + ∑
v∈N−

u

(1 − xuv) ∀u ∈ V

xuv ≤ xvw + xuw ∀u, v, w ∈ V
0 ≤ xuv ≤ 1 ∀u, v ∈ V

xuv = 0 then u, v same cluster  
xuv = 1 then u, v different clusters

Step 1: Solve convex program

Step 2: “Round” fractional 
solution to integral one
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Rounding algorithm 
by Kalhan, 

Makarychev, Zhou
LP solution Clustering

Constraints induce a 
semi-metric space

y(u) = ∑
v∈N+

u

xuv + ∑
v∈N−

u

(1 − xuv) ∀u ∈ V

xuv ≤ xvw + xuw ∀u, v, w ∈ V
0 ≤ xuv ≤ 1 ∀u, v ∈ V

min | |y | |p

Convex program for ℓp correlation clustering

Previous techniques 
Input: semi-metric x on V

Let r = 1/5
While there is some unclustered vertex


Find “densest” cluster with center c* and radius r

Create cluster C around c* with radius 2r


Return clusters




min | |y | |p

y(u) = ∑
v∈N+

u

xuv + ∑
v∈N−

u

(1 − xuv) ∀u ∈ V

xuv ≤ xvw + xuw ∀u, v, w ∈ V
0 ≤ xuv ≤ 1 ∀u, v ∈ V

LP solution Clustering

Rounding algorithm 
by Kalhan, 

Makarychev, Zhou
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Input correlation metric duv , an apx for xuv 

Correlation metric for ℓ∞:

(1) satisfies triangle inequality 

(2) has ∑

v∈N+
u

duv + ∑
v∈N−

u

(1 − duv) ≤ O(1) ⋅ max
w∈V

y(w)

Correlation metric

∑
u∈V

∑
v∈N+

u

duv + ∑
v∈N−

u

(1 − duv)

p

≤ O(1) ⋅ ∑
w∈V

y(w)p
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‣Nu+ = (+) neighbors of u, Nu— = (—) neighbors of u

‣  duv =
|N+

u ∩ N−
v | + |N−

u ∩ N+
v |

n − |N−
u ∩ N−

v |

u

-+

Nu-Nu+

Correlation metric
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-

-

-+

-

v

u

+ +

+

Correlation metric

‣Nu+ = (+) neighbors of u, Nu— = (—) neighbors of u

‣  duv =
|N+

u ∩ N−
v | + |N−

u ∩ N+
v |

n − |N−
u ∩ N−

v |

-

-

-+

-

v

u

+ +

+



Intuition: u and v have large mixed neighborhoods, 
want them in different clusters

Intuition: if u and v have large mixed nbhds

 relative to |Nu+ ∪ Nv+|, want them in different clusters
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Correlation metric

‣Nu+ = (+) neighbors of u, Nu— = (—) neighbors of u
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u ∩ N−
v | + |N−
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v |
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u ∩ N−

v |

-

-

-+

-
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-

-

-+

-

v

u

+ +

+

Correlation metric

Correlation metric = duv = 1 −
|N+

u ∩ N+
v |

|N+
u ∪ N+

v |
=

|N+
u ∩ N−

v | + |N−
u ∩ N+

v |
|N+

u ∪ N+
v |

Very coarse approximation for probability 
Pivot separates u,v


1

432 5

Pivot 1

Pivot algorithm

-  Randomly choose a pivot (unclustered vertex)

-  New cluster with pivot + all its unclustered + neighbors  

Intuition: if u and v have large mixed nbhds

 relative to |Nu+ ∪ Nv+|, want them in different clusters
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-

v

u

+ +

+

Correlation metric

‣Nu+ = (+) neighbors of u, Nu— = (—) neighbors of u

‣  duv =
|N+

u ∩ N−
v | + |N−

u ∩ N+
v |

n − |N−
u ∩ N−

v |

Correlation metric fast to compute, time O(nω).

↪Even faster on sparse graphs O(n·∆2·log n)

↪Further sped up on any graph with sampling procedure

Correlation metric = duv = 1 −
|N+

u ∩ N+
v |

|N+
u ∪ N+

v |
=

|N+
u ∩ N−

v | + |N−
u ∩ N+

v |
|N+

u ∪ N+
v |

Works as is for ℓ∞ norm 
objective 


Correlation 
metric

Clustering

Rounding algorithm 
by Kalhan, 

Makarychev, Zhou
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Today

✦ Introduction (the model, prior work, our results)  


✦ The correlation metric (constructing a “guess” for the fraction solution, an inherent asymmetry)


✦ Proof sketch for the ℓ∞-norm 


✦ Adjusting the correlation metric (regular graphs are easy, dealing with negative edges )


✦ Conclusions (mainly vibes)

🔥

🔥 🔥

🔥 🔥 🔥

🔥🔥
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Correlation metric for ℓ∞

Easy to bound positive edges for ℓ∞ objective!

∑
v∈N+

u

duv ≤ ∑
v∈N+

u ∩C(u)

|N+
u ∩ N−

v | + |N−
u ∩ N+

v |
|N+

u ∪ N+
v |

+ ∑
v∈N+

u ∩C(u)

1

≤
1

|N+
u | ∑

v∈N+
u ∩C(u)

( |N+
u ∩ N−

v | + |N−
u ∩ N+

v | ) + y(u)

≤
1

|N+
u | ∑

v∈N+
u ∩C(u)

(y(u) + y(v)) + y(u)

≤ 2y(u) + max
z

y(z) ≤ 3 ⋅ OPT .

-

-

-+

-

v

u

+ +

+

Want to show for ℓ∞: ∑
v∈N+

u

duv + ∑
v∈N−

u

(1 − duv) ≤ O(1) ⋅ max
w∈V

y(w)

duv =
|N+

u ∩ N−
v | + |N−

u ∩ N+
v |

|N+
u ∪ N+

v |
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Correlation metric for ℓ∞

Easy to bound positive edges for ℓ∞ objective!

∑
v∈N+

u

duv ≤ ∑
v∈N+

u ∩C(u)

|N+
u ∩ N−

v | + |N−
u ∩ N+

v |
|N+

u ∪ N+
v |

+ ∑
v∈N+

u ∩C(u)

1

≤
1

|N+
u | ∑

v∈N+
u ∩C(u)

( |N+
u ∩ N−

v | + |N−
u ∩ N+

v | ) + y(u)

≤
1

|N+
u | ∑

v∈N+
u ∩C(u)

(y(u) + y(v)) + y(u)

≤ 2y(u) + max
z

y(z) ≤ 3 ⋅ OPT .

-

-

-+

-

v

u

+ +

+

Want to show for ℓ∞: ∑
v∈N+

u

duv + ∑
v∈N−

u

(1 − duv) ≤ O(1) ⋅ max
w∈V

y(w)

duv =
|N+

u ∩ N−
v | + |N−

u ∩ N+
v |

|N+
u ∪ N+

v |

Recall y(u) = # disagreements incident to u
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Correlation metric for ℓ∞

Easy to bound positive edges for ℓ∞ objective!
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Easy to bound positive edges for ℓ∞ objective!

∑
v∈N+

u

duv ≤ 3 ⋅ OPT .

Correlation metric for ℓ∞

Want to show for ℓ∞: ∑
v∈N+

u

duv + ∑
v∈N−

u

(1 − duv) ≤ O(1) ⋅ max
w∈V

y(w)

duv =
|N+

u ∩ N−
v | + |N−

u ∩ N+
v |

|N+
u ∪ N+

v |
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Easy to bound positive edges for ℓ∞ objective!

∑
v∈N+

u

duv ≤ 3 ⋅ OPT .

Correlation metric for ℓ∞

Want to show for ℓ∞: ∑
v∈N+

u

duv + ∑
v∈N−

u

(1 − duv) ≤ O(1) ⋅ max
w∈V

y(w)

duv =
|N+

u ∩ N−
v | + |N−

u ∩ N+
v |

|N+
u ∪ N+

v |

-

-

-+

-

v

u
+ +

+- w

Bound on negative edges

∑
v∈N−

u

(1 − duv) = ∑
v∈N−

u ∩C(u)

(1 − duv) + ∑
v∈N−

u ∩C(u)

(1 − duv)

= y(u) + ∑
v∈N−

u ∩C(u)

|N+
u ∩ N+

v |
n − |N−

u ∩ N−
v |

Every w in |Nu+ ⋂ Nv+| incident to an 
edge in disagreement, charge to 

carefully chosen v*(w) in C(w)
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🔥
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For regular graphs, correlation metric O(1)—apxs ℓ1 -norm 

✦ Proof via dual fitting! 

✦ Problem is when graph is far from regular


Must adjust correlation metric for non-regular 

graphs for general ℓp-norms

duv =
|N+

u ∩ N−
v | + |N−

u ∩ N+
v |

|N+
u ∪ N+

v |

Adjusted correlation metric

→ Simultaneous approximation for 
ℓ1 - and ℓ∞ -norm objectives

duv = 2/3 for all u,v in {2,…,n}, so 
fractional cost w.r.t d is  θ(n2)

1

432 …n

+ + +

———
——

—

+
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Adjusted correlation metric

Correlation metric = duv = 1 −
|N+

u ∩ N+
v |

|N+
u ∪ N+

v |
=

|N+
u ∩ N−

v | + |N−
u ∩ N+

v |
|N+

u ∪ N+
v |

Adjusted 
correlation metric

Clustering

Rounding algorithm 
by Kalhan, 

Makarychev, Zhou

For all ℓp norms

✦ If negative edge (u,v) has duv >0.7, 
update duv ← 1

✦ For u with , 
update duv ← 1

|N−
u ∩ {v : duv ≤ 0.7} | ≥

10
3

Δu
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Summary

Solution specific to one 
fixed ℓp-norm


Solving metric 
constrained LPs on 

large networks is slow!

Not very amenable to 
online settings


ℓp-norm correlation clustering algs solve a convex program
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Summary

Solution specific to one 
fixed ℓp-norm


Solving metric 
constrained LPs on 

large networks is slow!

Not very amenable to 
online settings


ℓp-norm correlation clustering algs solve a convex program

Combinatorial techniques can 
resolve these issues



Sometimes called universality property
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Δ = max (+) degree of any vertex

ω = matrix multiplication exponent

Summary

Correlation clustering has interesting 
combinatorial structure that can be exploited

Result 1: O(1)-apx alg with run-time O(min{ n·∆2·log n , nω}). Near-linear for sparse graphs.


Result 2: ∃ an alg producing a clustering that is O(1)-apx for all ℓp-norms, simultaneously.


Result 3: (In progress, probably true) Given a random ε—fraction of the network, ∃ a semi-online algorithm 
that for any ℓp-norm objective produces a O(log n)-competitive algorithm.
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What’s next?

‣ 👩💻In progress: Extend to a semi-online setting 

↪ Factor depends on p. For  p=∞, the algorithm is θ(log n)-competitive


‣🔥Hot conjecture: Exists a combinatorial alg simultaneously 4-
approximating all ℓp-norms running in O(nω) time


‣😶🌫 Broader Qs: 

1. Combinatorial algorithms by designing ”approximate LP solution”

2. Further study on the all-norms objective
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Thank you!

samidavies@berkeley.edu

mailto:samidavies@berkeley.edu

