Combinatorial l_p-norm Correlation Clustering

Sami Davies (UC Berkeley/ Simons), Benjamin Moseley (CMU), Heather Newman (CMU)

Community detection

- Creating large-scale maps with meta nodes
- Understanding community vs aggregate features
- Identifying topological/ spectral properties

Community detection

Many different models

Community detection

- Minimum cut clustering
- + Correlation clustering

Many different models

- Hierarchical clustering
- Best for data with underlying heirarchy
 - Fixed # of clusters
- Girvan Newman algorithm
- Runtime $O(m^2n)$
- Modularity maximization
 - Doesn't find small clusters

Correlation clustering

Model:

- Cluster similar nodes together, separate dissimilar nodes
- No pre-fixed # of clusters, complete unweighted graph

Correlation clustering

Model:

- Cluster similar nodes together, separate dissimilar nodes
- No pre-fixed # of clusters, complete unweighted graph
- •Edge (*u,v*) in **disagreement** w.r.t C if + (+) with *u*, *v* different clusters or
 - + (–) with *u*, *v* same cluster

Original objective for Correlation Clustering = minimize # of edges in disagreement

l_p Correlation clustering

Model:

- Cluster similar nodes together, separate dissimilar nodes
- •Edge (*u,v*) in **disagreement** w.r.t C if
 - + (+) with *u*, *v* different clusters or
 - + (–) with *u*, *v* same cluster

No pre-fixed # of clusters, complete unw p small = global obj $\leftrightarrow p$ large = local/fair obj

 $\ell_1 = original cc$ $\ell_{\infty} = \min \max \operatorname{norm}$

Previous work

For l_1 -norm (original) objective:

- Introduced by [Bansal, Blum, Chawla '04]
- Linear time Pivot algorithm gives 3-apx [Ailon, Charikar, Newman JACM08] [Chierichetti, Dalvi, Kumar KDD14]
- ► APX-hard

[Charikar, Guruswami, Wirth JCSS05]

Many other active threads of research! [Ahmadi, Khuller, Saha IPCO19] [Veldt ICML22] [Cohen-Addad, Lee, Li, Newman FOCS23]

Previous work

For l_1 -norm (original) objective:

- Introduced by [Bansal, Blum, Chawla '04]
- Linear time Pivot algorithm gives 3-apx [Ailon, Charikar, Newman JACM08] [Chierichetti, Dalvi, Kumar KDD14]
- ► APX-hard

[Charikar, Guruswami, Wirth JCSS05]

Many other active threads of research! [Ahmadi, Khuller, Saha IPCO19] [Veldt ICML22] [Cohen-Addad, Lee, Li, Newman FOCS23]

For general l_p -norm objectives:

- 5-approximation algorithm; NP-hard [Puleo, Milenkovic ICML16], [Charikar, Gupta, Schwartz IPCO17], [Kalhan, Makarychev, Zhou ICML19]
- Techniques round solution to a convex program

Previous work

For l_1 -norm (original) objective: Introduced by [Bansal, Blum, Chawla '04]

Linear time Pivot algorithm gives 3-apx [Ailon, Charikar, Newman JACM08] [Chierichetti, Dalvi, Kumar KDD14]

► APX-hard

[Charikar, Guruswami, Wirth JCSS05]

Many other active threads of research! [Ahmadi, Khuller, Saha IPCO19] [Veldt ICML22] [Cohen-Addad, Lee, Li, Newman FOCS23]

For general l_p -norm objectives:

- 5-approximation algorithm; NP-hard [Puleo, Milenkovic ICML16], [Charikar, Gupta, Schwartz IPCO17], [Kalhan, Makarychev, Zhou ICML19]
- Techniques round solution to a convex program

- unclustered positive neighbors

l_p -norm correlation clustering algs solve a convex program

Solving *metric* constrained LPs on large networks is slow!

Work on solving CC LPs fast only scales to graphs with few thousand vertices!

[Ruggles et al. '20], [Sonthalia & Gilbert '20], [Veldt '22]

All-norms objective = simultaneously optimize all ℓ_p -norms Introduced by [Azar, Epstein, Richter, Woeginger '04]

Universal algorithms produce a solution good for many objs In, e.g., Steiner tree, TSP, clustering

ℓ_p -norm correlation clustering algs solve a convex program

Solving *metric constrained* LPs on large networks is slow!

Not ve onl

Work on solving CC LPs fast only scales to graphs with few thousand vertices!

[Ruggles et al. '20], [Sonthalia & Gilbert '20], [Veldt '22]

ry amenable to ine settings Solution specific to one fixed l_p -norm

All-norms objective = simultaneously optimize all ℓ_p -norms Introduced by [Azar, Epstein, Richter, Woeginger '04]

Universal algorithms produce a solution good for many objs In, e.g., Steiner tree, TSP, clustering

OPT for one l_p -norm can be really bad for others!

OPT for one l_p -norm can be really bad for others!

Does there exist a "pretty good" solution for all ℓ_p -norms?

ℓ_p -norm correlation clustering algs solve a convex program

Solving metric constrained LPs on large networks is slow!

Our combinatorial approach

"Fast Combinatorial Algorithms for Min Max Correlation Clustering" ICML23

"One Partition Approximating All ℓ_{p} -norm Objectives in Correlation Clustering" In sub

In progress

Initial constant was 40 Heidrich, Irmai, Andres built off us, improve to 4!

(1) Develop faster O(1)-apx alg for min max objective; ↔ near-linear time on networks with small positive degree

(2) Find simultaneously O(1)-apx clustering for all ℓ_p -norm objs

(3) Algorithms in the online setting

Not possible for k-center & k-median [Alamdari & Shmoys WAOA17]

Introduction (the model, prior work, our results) + Proof sketch for the ℓ_{∞} -norm () () Conclusions (mainly vibes)

◆ Introduction (the model, prior work, our results) + Proof sketch for the ℓ_{∞} -norm () () ♦ Conclusions (mainly vibes)

Previous techniques

Integer convex program

Not (generally) practical to solve

 $x_{uv} = 0$ then u, v same cluster $x_{uv} = 1$ then u, v different clusters

$\min ||y||_p$

$$y(u) = \sum_{v \in N_u^+} x_{uv} + \sum_{v \in N_u^-} (1 - x_{uv}) \quad \forall u \in V$$
$$x_{uv} \le x_{vw} + x_{uw} \quad \forall u, v, w \in V$$
$$x_{uv} \in \mathbb{Z}_{\geq 0} \quad \forall u, v \in V$$

Convex program relaxation

Can be solved efficiently

Previous techniques

Integer convex program

Not (generally) practical to solve

 $x_{uv} = 0$ then u, v same cluster

 $x_{uv} = 1$ then u, v c

Step 1: Solve convex program Step 2: "Round" fractional solution to integral one

$$y(u) = \sum_{v \in N_u^+} x_{vv} \qquad u = \sum_{v \in N_u^+} x_{vv} \qquad v \in N_u^-$$
$$x_{uv} \leq x_{vw} + x_{uw} \qquad \forall u, v, w \in V$$
$$x_{uv} \in \mathbb{Z}_{>0} \qquad \forall u, v \in V$$

Previous techniques

Convex program for ℓ_p correlation clustering $\min ||y||_p$ $y(u) = \sum x_{uv} + \sum (1 - x_{uv})$ $\forall u \in V$ $v \in N_{\mu}^{-}$ $v \in N_u^+$ $\forall u, v, w \in V$ $x_{uv} \le x_{vw} + x_{uw}$ $\forall u, v \in V$ $0 \leq x_{\mu\nu} \leq 1$

Constraints induce a semi-metric space

Input: semi-metric *x* on *V* Let r = 1/5While there is some unclustered vertex Find "densest" cluster with center c^{*} and radius r Create cluster C around c^* with radius 2r

Return clusters

Correlation metric for ℓ_{∞} :

(1) satisfies triangle inequality (2) has $\sum_{w \in V} d_{uv} + \sum_{w \in V} (1 - d_{uv}) \le O(1) \cdot \max_{w \in V} y(w)$ $v \in N_{\mu}^{-}$ $v \in N_u^+$

$$\min ||y||_{p}$$

$$y(u) = \sum_{v \in N_{u}^{+}} x_{uv} + \sum_{v \in N_{u}^{-}} (1 - x_{uv}) \quad \forall u \in V$$

$$x_{uv} \le x_{vw} + x_{uw} \quad \forall u, v, w \in V$$

$$0 \le x_{uv} \le 1 \quad \forall u, v \in V$$

$\sum_{u \in V} \left(\sum_{v \in N_u^+} d_{uv} + \sum_{v \in N_u^-} (1 - d_{uv}) \right)^r \le O(1) \cdot \sum_{w \in V} y(w)^p$

Input correlation metric d_{uv} , an apx for x_{uv}

Rounding algorithm by Kalhan, Makarychev, Zhou

► $N_{u^+} = (+)$ neighbors of u, $N_u^- = (-)$ neighbors of u

► $N_{u^+} = (+)$ neighbors of u, $N_{u^-} = (-)$ neighbors of u

► $N_{u^+} = (+)$ neighbors of u, $N_{u^-} = (-)$ neighbors of u

- Randomly choose a *pivot* (unclustered vertex)
- New cluster with pivot + all its unclustered + neighbors

Rounding algorithm by Kalhan, Makarychev, Zhou

Introduction (the model, prior work, our results) ◆ The correlation metric (constructing a "guess" for the fraction solution, an inherent asymmetry) + Proof sketch for the ℓ_{∞} -norm () () Adjusting the correlation metric (regular graphs are easy, dealing with negative edges) Conclusions (mainly vibes)

Correlation metric for ℓ_{∞}

$$d_{uv} = \frac{|N_u^+ \cap N_v^-| + |N_u^- \cap N_v^+|}{|N_u^+ \cup N_v^+|}$$

Easy to bound positive edges for ℓ_{∞} objective! $\sum_{v \in N_u^+} d_{uv} \le \sum_{v \in N_u^+ \cap C(u)} \frac{|N_u^+ \cap N_v^-| + |N_u^- \cap N_v^+|}{|N_u^+ \cup N_v^+|} + \sum_{v \in N_u^+ \cap \overline{C(u)}} 1$

Correlation metric for l_{∞}

$$d_{uv} = \frac{|N_u^+ \cap N_v^-| + |N_u^- \cap N_v^+|}{|N_u^+ \cup N_v^+|}$$

Correlation metric for l_{∞}

$$d_{uv} = \frac{|N_u^+ \cap N_v^-| + |N_u^- \cap N_v^+|}{|N_u^+ \cup N_v^+|}$$

Easy to bound positive edges for ℓ_{∞} objective!

 $\sum_{v \in N_u^+} d_{uv} \le \sum_{v \in N_u^+ \cap C(u)} \frac{|N_u^+ \cap N_v^-| + |N_u^- \cap N_v^+|}{|N_u^+ \cup N_v^+|} + \sum_{v \in N_u^+ \cap \overline{C(u)}} 1$ $\le \frac{1}{|N_u^+|} \sum_{v \in N_u^+ \cap C(u)} (|N_u^+ \cap N_v^-| + |N_u^- \cap N_v^+|) + y(u)$ $\leq \frac{1}{|N_{u}^{+}|} \sum_{v \in N_{u}^{+} \cap C(u)} (y(u) + y(v)) + y(u)$ $\leq 2y(u) + \max y(z) \leq 3 \cdot \text{OPT}$.

Correlation metric for l_{∞}

Want to show for l_{∞} :

$$d_{uv} = \frac{|N_u^+ \cap N_v^-| + |N_u^- \cap N_v^+|}{|N_u^+ \cup N_v^+|}$$

$$\sum_{w \in N_{u}^{+}} d_{uv} + \sum_{v \in N_{u}^{-}} (1 - d_{uv}) \le O(1) \cdot \max_{w \in V} y(w)$$

Easy to bound positive edges for ℓ_{∞} objective! $\sum d_{uv} \leq 3 \cdot \text{OPT}.$

Correlation metric for ℓ_{∞}

 \mathcal{W}

Bound on negative edges $\sum_{v \in N_u^-} (1 - d_{uv}) = \sum_{v \in N_u^- \cap C(u)} (1 - d_{uv}) + \sum_{v \in N_u^- \cap \overline{C(u)}} (1 - d_{uv}) \qquad \sum_{v \in N_u^+} d_{uv} \le 3 \cdot \text{OPT}.$ $= y(u) + \sum_{v \in N_u^- \cap \overline{C(u)}} \frac{|N_u^+ \cap N_v^+|}{n - |N_u^- \cap N_v^-|}$

Every w in $|N_{u^+} \cap N_{v^+}|$ incident to an edge in disagreement, charge to carefully chosen $v^*(w)$ in C(w)

$$d_{uv} = \frac{|N_u^+ \cap N_v^-| + |N_u^- \cap N_v^+|}{|N_u^+ \cup N_v^+|}$$

Easy to bound positive edges for ℓ_{∞} objective!

◆ Introduction (the model, prior work, our results) + Proof sketch for the ℓ_{∞} -norm () () Conclusions (mainly vibes)

Adjusted correlation metric

→ Simultaneous approximation for ℓ_1 - and ℓ_∞ -norm objectives

For **regular graphs**, correlation metric O(1)-apxs l_1 -norm

Proof via dual fitting!

 Problem is when graph is far from regular Must *adjust* correlation metric for non-regular graphs for general l_p -norms

> $d_{uv} = 2/3$ for all u,v in $\{2,...,n\}$, so fractional cost w.r.t d is $\theta(n^2)$

$$d_{uv} = \frac{|N_u^+ \cap N_v^-| + |N_u^- \cap N_v^+|}{|N_u^+ \cup N_v^+|}$$

Adjusted correlation metric

Correlation metric = $d_{uv} = 1 - \frac{|N_u^+ \cap N_v^+|}{|N_u^+ \cup N_v^+|} = \frac{|N_u^+ \cap N_v^-| + |N_u^- \cap N_v^+|}{|N_u^+ \cup N_v^+|}$

- + If negative edge (u,v) has $d_{uv} > 0.7$, update $d_{uv} \leftarrow 1$
- + For *u* with $|N_u^- \cap \{v : d_{uv} \le 0.7\}| \ge \frac{10}{3} \Delta_u$, update $d_{uv} \leftarrow 1$

Introduction (the model, prior work, our results) + Proof sketch for the ℓ_{∞} -norm () () () ◆ Adjusting the correlation metric (regular graphs are easy, dealing with negative edges) ◆ Conclusions (mainly vibes)

ℓ_p -norm correlation clustering algs solve a convex program

Solving metric constrained LPs on large networks is slow!

ℓ_p -norm correlation clustering algs solve a convex program

Solving *metric constrained* LPs on large networks is slow!

Not very amenable to online settings

Combinatorial techniques can resolve these issues

Solution specific to one fixed ℓ_p -norm

 $\Delta = \max(+)$ degree of any vertex ω = matrix multiplication exponent

Result 1: O(1)-apx alg with run-time $O(min\{n \cdot \Delta^2 \cdot \log n, n^\omega\})$. Near-linear for sparse graphs.

Result 2: \exists an alg producing a clustering that is O(1)-apx for all ℓ_p -norms, simultaneously.

Result 3: (In progress, probably true) Given a random *e*-fraction of the network, I a semi-online algorithm that for any l_p -norm objective produces a $O(\log n)$ -competitive algorithm.

Sometimes called *universality* property

Correlation clustering has interesting combinatorial structure that can be exploited

What's next?

- In progress: Extend to a semi-online setting
 - \hookrightarrow Factor depends on p. For $p=\infty$, the algorithm is $\theta(\log n)$ -competitive
- Hot conjecture: Exists a combinatorial alg simultaneously 4approximating all l_p -norms running in $O(n^{\omega})$ time

Broader Qs:

- 1. Combinatorial algorithms by designing "approximate LP solution" 2. Further study on the all-norms objective

Thank you!

<u>samidavies@berkeley.edu</u>

