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» “Tacit knowledge often contradicts optimized route plans”

e Dataset with 6112 real-world

routes from expert human drivers

* Goal: learn how to route like expert

human drivers.

« $175,000 in prizes!
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Python Package for 10

|| pedroszattoni / invopt

An open-source Python package to solve
Inverse Optimization problems.

@ pedroszattoni

https://github.com/pedroszattoni/invopt

28


https://github.com/pedroszattoni/InvOpt

References

-

Theory

Routing
problems

Code

\_

Zattoni Scroccaro, Atasoy, and Mohajerin Esfahani, “Learning in Inverse
Optimization: Incenter Cost, Augmented Suboptimality Loss, and Algorithms”,
arXiv:2305.07730, 2023

Zattoni Scroccaro, van Beek, Mohajerin Esfahani and Atasoy, “Inverse Optimization
for Routing Problems”, arXiv:2307.07357, 2023

Zattoni Scroccaro, “InvOpt: Inverse Optimization with Python”,
https://github.com/pedroszattoni/invopt, 2023

~N

/

Cook, Held, and Helsgaun, “Constrained Local Search for Last-Mile Routing”,
Transportation Science, 2022.

29


https://github.com/pedroszattoni/invopt

Thank you!
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