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Static models of traffic

Static models well-studied from the algorithmic game theory
perspective
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· Equilibria computable via a convex program Beckmann et al. ’56

· Price of anarchy bounds Roughgarden & Tardos, . . .

· Braess’s paradox
· . . .

2



Dynamic aspects can be very important

Static models can be useful, but they do miss something. . .
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Static models can be useful, but they do miss something. . .

Credit: Brent, Beland (2020). Traffic congestion, transportation policies, and the performance of first responders, J.

Environmental Economics and Management.
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The Vickrey bottleneck model Vickrey ’69
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The Vickrey bottleneck model

delay τe

capacity νe
f +
e (ξ)

qe(ξ)

f−e (ξ + τe + qe(ξ))

queue delay

dqe(ξ)
dξ

=

{
1
νe
[f+e (ξ) − νe] if qe(ξ) > 0

1
νe
[f+e (ξ) − νe]+ if qe(ξ) = 0
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Networks of Vickrey bottlenecks

· Each link behaves as per the Vickrey bottleneck model:
(f+e , f−e , ze).

· Flow conservation: except for s, t, flow in = flow out at all
times.

· All traffic from s to t; constant inflow rate u0 from time 0.
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νsw = 2

τsw = 1

νwt = 1

τwt = 1
νst = 1
τst = 3

u0 = 2
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Equilibria in networks of Vickrey bottlenecks
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u0 = 2

· Dynamic equilibria: users choose routes to arrive as early
as possible, given congestion (queues) induced by other
users.

· In the sense of Nash: no deviating improvement possible
in hindsight.
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Equilibria in networks of Vickrey bottlenecks
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· Dynamic equilibria: users choose routes to arrive as early
as possible, given congestion (queues) induced by other
users.

· In the sense of Nash: no deviating improvement possible
in hindsight.
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Equilibria in networks of Vickrey bottlenecks

s

w

t
u0 = 2

ξ = 3

· Dynamic equilibria: users choose routes to arrive as early
as possible, given congestion (queues) induced by other
users.

· In the sense of Nash: no deviating improvement possible
in hindsight.
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Relevance

· Model is a continuous approximation of a discrete reality
· Travel times on roads are likely to be noisy
· Users may take only approximately shortest routes, not

precisely shortest routes
· . . .

Are dynamic equilibria “stable” under perturbations?
Do they have anything to do with equilibria in models
that are “almost” the same?
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A more precise question (1)

One can define discrete (packet) versions of the deterministic
queueing model. Hoefer et al. ’11, Werth et al. ’14, . . .

Equilibrium: no packet can arrive to the sink earlier using a
different route.

Suppose we fix an instance, but divide up the flow into
packets of smaller and smaller size.

The hope: as packet size goes to 0, equilibrium con-
verges to the dynamic equilibrium of the deterministic
queueing model.
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A more precise question (2)

An ϵ-equilibrium is a joint strategy choice of all users in
which each user arrives at the sink at most ϵ later than
the earliest possible, given the delays caused by other
users.

Fix an instance. Let ϵ1, ϵ2, . . . be a sequence converging
to 0. Let φi be an ϵi-equilibrium for each i.

The hope: φi converges to the exact dynamic equilibrium
as i → ∞.
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Main theorem O.-Sering-Vargas Koch FOCS ’23

(Informal.) In both of these situations (among others),
convergence to the dynamic equilibrium is guaranteed.

· Point in favour of “meaningfulness” of the equilibrium
concept

· Allows for results in the deterministic queueing model to
be ported to other models
· If the network capacity is at least as large as the inflow,

queues stay bounded in dynamic equilibria
Correa-Cominetti-O. ’17, ’22

· So the same holds for packet models, for sufficiently small
packet sizes

· Shows that discretization can be used to compute
approximate equilibria in the nonatomic model
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Labels and equilibrium conditions

· Agent set A. Agent a ∈ A departs source at time ϑa.
· Strategy profile ϕ : A → P = {s-t paths}.

⇒ a flow x′(θ) of value u0 describing what particles
departing at time θ do.

Network loading: Maps ϕ to the resulting
flow-over-time

(
f+e (·), f−e (·), ze(·)

)
e∈E.

From this, we can determine:

· Departure times: for v ∈ ϕ (a), dv (a) is the time that agent
a departs node v.

· Earliest arrival labels: ℓv (θ) is the earliest time a particle
leaving s at time θ can arrive at v, taking into account
queues caused by earlier particles.
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Dynamic equilibrium conditions

A strategy profile ϕ is an equilibrium if

dv (a) = ℓv (ϑa) for all a ∈ A, v ∈ ϕ (a).

the labels ℓv (θ) then define an equilibrium trajectory.

Active arcs:

E′θ := {e = vw ∈ E : ℓw (θ) = ℓv (θ) + τe + ze(ℓv (θ))/νe︸         ︷︷         ︸
qe(θ)

}

Dynamic equilibrium conditions (alternative)

x′e(θ) > 0 ⇒ e ∈ E′θ for all θ, e.
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Example redux
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A more surprising example
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Equilibrium structure Koch-Skutella ’11

Labels are primary.
To understand how the equilibrium develops, it suffices
to keep track of the labels ℓ (θ).

· Labels suffice to determine the set of active arcs and the
(relevant) queue lengths: for e = vw,

e ∈ E′θ if and only if ℓw (θ) ≥ ℓv (θ) + τe

qe(θ) = [ℓw (θ) − ℓv (θ) − τe]+
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Equilibrium structure Koch-Skutella ’11

There is a vector field Z : ÒV → ÒV s.t. for any equilibrium,

ℓ′(θ) = Z(ℓ (θ)) for almost every θ.

ℓ (0)
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Equilibrium structure Koch-Skutella ’11

Further, we can write Z(ℓ (θ)) := Z(E′
ℓ (θ), E

∗
ℓ (θ)), where

E′l := {e = vw ∈ E : lw − lv ≥ τe}
E∗l := {e = vw ∈ E : lw − lv > τe}

ℓ (0)
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Equilibrium structure

· Z(l) is defined as a solution to a certain nonlinear system
of equations (the “thin flow equations”) Koch-Skutella ’11

· This system always has a unique solution (so Z is
well-defined) Cominetti-Correa-Larré ’16

· Implies the existence of an equilibrium. KS ’11 + CCL ’16

· ℓ (θ) is piecewise-linear; we call each linear segment a
phase.

We don’t know if Z(·) can be efficiently computed.
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Example again
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Example again
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Example again
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Long-term behaviour

Q: Does an equilibrium always reach a steady state,
after which ℓ is linear?

21



Long-term behaviour

Q: Does an equilibrium always reach a steady state,
after which ℓ is linear?

Theorem O.-Sering-Vargas Koch ’21

A steady state is always reached in finite time.

· Builds on Cominetti-Correa-O. (2017, 2021), which shows this
under the condition that the capacity of the network is at
least u0.
Implies bounded queues in this case.

· Key is the construction of a (rather non-obvious) non-
decreasing potential.
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Uniqueness and continuity

Uniqueness of Z(·) does not imply uniqueness of ℓ .

Theorem O.-Sering-Vargas Koch ’21

Equilibrium trajectories are unique and depend
continuously on initial conditions ℓ (0).
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The vector fields that describe equilibria dynamics are
very special!
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Back to stability

Main theorem O.-Sering-Vargas Koch FOCS ’23

(Informal.) For packet-based models (as packet size
goes to zero) and for ϵ-equilibria (as ϵ → 0),
convergence to the dynamic equilibrium is guaranteed.
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Strict δ-equilibria

Exact equilibria

A strategy profile ϕ is an exact equilibrium if

dv (a) = ℓv (ϑa)) for all a ∈ A, v ∈ ϕ (a);
the labels ℓv (θ) then define an equilibrium trajectory.

Strict δ-equilibria

A strategy profile ϕ̃ is a strict δ-equilibrium if

d̃v (a) ≤ ℓ̃v (ϑa) + δ for all a ∈ A, v ∈ ϕ̃ (a);
the labels ℓ̃v (θ) then define a δ-trajectory.

· An ϵ-approximate equilibrium is a strict ϵ-equilibrium (but
not conversely).

25



Formal theorem statement

Theorem

· ϵ-equilibria are strict O(ϵ)-equilibria.
· Packet equilibria with packets of size ϵ are strict

O(ϵ)-equilibria

Main theorem O.-Sering-Vargas Koch FOCS ’23

Strict δ-equilibria converge to exact dynamic equilibria
as δ → 0.

More precisely: if ℓ (θ) is an equilibrium trajectory, and
ℓ̃ (i) (θ) a δ (i)-trajectory for each i, with δ (i) → 0, then

sup
θ≥0

∥ℓ (θ) − ℓ̃ (i) (θ)∥ → 0.
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Continuity vs stability

· Our continuity result shows that equilibria are stable under
a single perturbation (or finite number of perturbations).

· Clearly necessary, but not nearly enough:
· ℓ̃ need not follow the vector field anywhere.

· A slow drift away is not acceptable; something must “pull ℓ̃
back”.

Conclude 27



Proof heavily exploits induction on the number of
hyperplanes.

e1

e2

“far” from
e1; induct

“far” from
e2; induct

close to all
hyperplanes;
something
else

28



Base case: equilibrium trajectory is in “steady state”: all
labels and queues change linearly forever.

We give a “robust” version of proof by Cominetti, Correa and
Larré that Z(·) is unique.
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Conclusion

Theorem O.-Sering-Vargas Koch ’23

Strict δ-equilibria converge to exact dynamic equilibria
as δ → 0.

· Dependence on δ is horrible. . .
Can it be shown that supθ ∥ℓ (θ) − ℓ̃ (θ)∥ = O(δ)?

Many basic open questions about equilibria remain:

· Computational complexity of computing X(·)
· Price of anarchy
· Structure of equilibria with multiple origin-destination

pairs
· . . .

Thank you!
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