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Static models of traffic

Static models well-studied from the algorithmic game theory
perspective

traffic (cars/s) traffic (cars/s)
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Equilibria computable via a convex program Beckmann et al. '56
Price of anarchy bounds Roughgarden & Tardos, ...
Braess's paradox



Dynamic aspects can be very important

Static models can be useful, but they do miss something...
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Mean Delay in MPH
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Credit: Brent, Beland (2020). Traffic congestion, transportation policies, and the performance of first responders, J.

Environmental Economics and Management.
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The Vickrey bottleneck model
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e Continuous, nonatomic limit
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The Vickrey bottleneck model

queue delay
Ge(&)

delay e
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Networks of Vickrey bottlenecks

Each link behaves as per the Vickrey bottleneck model:
(f;’ fe—, ZE)'

Flow conservation: except for s, t, flow in = flow out at all
times.

All traffic from s to t; constant inflow rate ug from time 0.
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Equilibria in networks of Vickrey bottlenecks
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e Dynamic equilibria: users choose routes to arrive as early
as possible, given congestion (queues) induced by other
users.

¢ In the sense of Nash: no deviating improvement possible
in hindsight.



Equilibria in networks of Vickrey bottlenecks

t

e Dynamic equilibria: users choose routes to arrive as early
as possible, given congestion (queues) induced by other
users.

¢ In the sense of Nash: no deviating improvement possible
in hindsight.



Equilibria in networks of Vickrey bottlenecks

t

e Dynamic equilibria: users choose routes to arrive as early
as possible, given congestion (queues) induced by other
users.

¢ In the sense of Nash: no deviating improvement possible
in hindsight.



Equilibria in networks of Vickrey bottlenecks

t

e Dynamic equilibria: users choose routes to arrive as early
as possible, given congestion (queues) induced by other
users.

¢ In the sense of Nash: no deviating improvement possible
in hindsight.



Equilibria in networks of Vickrey bottlenecks

t

e Dynamic equilibria: users choose routes to arrive as early
as possible, given congestion (queues) induced by other
users.

¢ In the sense of Nash: no deviating improvement possible
in hindsight.



Equilibria in networks of Vickrey bottlenecks

£ =52

Ug =2
.s t

e Dynamic equilibria: users choose routes to arrive as early
as possible, given congestion (queues) induced by other
users.

¢ In the sense of Nash: no deviating improvement possible
in hindsight.



Equilibria in networks of Vickrey bottlenecks

£=3
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e Dynamic equilibria: users choose routes to arrive as early
as possible, given congestion (queues) induced by other
users.

¢ In the sense of Nash: no deviating improvement possible
in hindsight.



Relevance

e Model is a continuous approximation of a discrete reality
e Travel times on roads are likely to be noisy

e Users may take only approximately shortest routes, not
precisely shortest routes

Are dynamic equilibria “stable” under perturbations?

Do they have anything to do with equilibria in models
that are “almost” the same?




A more precise question (1)

One can define discrete (packet) versions of the deterministic
queueing model. Hoefer et al. '11, Werth et al. 14, ...

Equilibrium: no packet can arrive to the sink earlier using a
different route.

Suppose we fix an instance, but divide up the flow into
packets of smaller and smaller size.

The hope: as packet size goes to 0, equilibrium con-
verges to the dynamic equilibrium of the deterministic
queueing model.
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A more precise question (1)

One can define discrete (packet) versions of the deterministic
queueing model. Hoefer et al. '11, Werth et al. 14, ...

Equilibrium: no packet can arrive to the sink earlier using a
different route.

Suppose we fix an instance, but divide up the flow into
packets of smaller and smaller size.

The hope: as packet size goes to 0, equilibrium con-
verges to the dynamic equilibrium of the deterministic

queueing model.
e,
o




A more precise question (2)

An e-equilibrium is a joint strategy choice of all users in
which each user arrives at the sink at most e later than
the earliest possible, given the delays caused by other
users.

Fix an instance. Let €1, €3, . . . be a sequence converging
to 0. Let ¢; be an e€;-equilibrium for each i.

The hope: ¢; converges to the exact dynamic equilibrium
as i — oo,

10



Main theorem 0.-Sering-Vargas Koch FOCS 23

(Informal.) In both of these situations (among others),
convergence to the dynamic equilibrium is guaranteed.

e Point in favour of “meaningfulness” of the equilibrium
concept

e Allows for results in the deterministic queueing model to
be ported to other models
e |f the network capacity is at least as large as the inflow,
queues stay bounded in dynamic equilibria
Correa-Cominetti-0. '17, 22

e So the same holds for packet models, for sufficiently small
packet sizes

e Shows that discretization can be used to compute
approximate equilibria in the nonatomic model



Labels and equilibrium conditions

e Agent set A. Agent a € A departs source at time I.

e Strategy profile ¢ : A — P = {s-t paths}.

= a flow x’(6) of value ug describing what particles
departing at time 6 do.
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e Agent set A. Agent a € A departs source at time I.
e Strategy profile ¢ : A — P = {s-t paths}.
= a flow x’(6) of value ug describing what particles
departing at time @ do.

Network loading: Maps ¢ to the resulting
flow-over-time (f3 (-),fo (+) Ze(*)) pep-

From this, we can determine:

e Departure times: for v € ¢(a), dy(a) is the time that agent
a departs node v.

e Earliest arrival labels: €,(0) is the earliest time a particle
leaving s at time O can arrive at v, taking into account
queues caused by earlier particles.



Dynamic equilibrium conditions

A strategy profile ¢ is an equilibrium if
dv(a) = €,(8q) forallae A, veep(a).

the labels ¢,(6) then define an equilibrium trajectory.




Dynamic equilibrium conditions

A strategy profile ¢ is an equilibrium if
dv(a) = €,(8q) forallae A, veep(a).

the labels ¢,(6) then define an equilibrium trajectory.

Active arcs:

Ep:={e=vweE:€y(8) = ,(0) + Te + 2e(£y(6))/ve}
[ —

qe(6)

Dynamic equilibrium conditions (alternative)

Xe(6) >0 =eckE, forallb,e.
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Equilibrium structure Koch-Skutella 11

Labels are primary.
To understand how the equilibrium develops, it suffices
to keep track of the labels £(6).
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Labels are primary.
To understand how the equilibrium develops, it suffices
to keep track of the labels £(6).

e Labels suffice to determine the set of active arcs and the
(relevant) queue lengths: for e = vw,

ecEy ifandonlyif £€,(8)> €,(0)+7e

qe(8) = [£w(8) — €y(8) — Te]”



Equilibrium structure Koch-Skutella 11

There is a vector field Z : RV — RV s.t. for any equilibrium,

¢ (8) = 2(£(8)) foralmost every 6.

17



Equilibrium structure Koch-Skutella 11

Further, we can write Z(£(0)) := Z(F’ e(e)) where

£(0)’
Ei={e=wweE:ly—1l >t}

ET:={e=VW€E:[W—lv>TQ}

18



Equilibrium structure

e Z(l) is defined as a solution to a certain nonlinear system
of equations (the “thin flow equations”) Koch-Skutella "1
e This system always has a unique solution (so Z is
well-defi ned) Cominetti-Correa-Larré '16
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Equilibrium structure

Z(1) is defined as a solution to a certain nonlinear system
of equations (the “thin flow equations”) Koch-Skutella "1

This system always has a unique solution (so Z is
well-defi ned) Cominetti-Correa-Larré '16

Implies the existence of an equilibrium. KS "1 + CCL '16

£(0) is piecewise-linear; we call each linear segment a
phase.

We don’t know if Z(-) can be efficiently computed. ]
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Long-term behaviour

Q: Does an equilibrium always reach a steady state,
after which £ is linear?
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Long-term behaviour

Q: Does an equilibrium always reach a steady state,
after which £ is linear?

Theorem 0.-Sering-Vargas Koch "21

A steady state is always reached in finite time.

e Builds on Cominetti-Correa-0. (2017, 2021), which shows this
under the condition that the capacity of the network is at
least ug.

Implies bounded queues in this case.

e Key is the construction of a (rather non-obvious) non-
decreasing potential.

21



Uniqueness and continuity

Uniqueness of Z(-) does not imply uniqueness of £.
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Uniqueness and continuity

Uniqueness of Z(-) does not imply uniqueness of £.

Theorem 0.-Sering-Vargas Koch "21

Equilibrium trajectories are unique and depend
continuously on initial conditions £(0).

22



The vector fields that describe equilibria dynamics are
very special!

23



Back to stability

Main theorem 0.-Sering-Vargas Koch FOCS '23

(Informal.) For packet-based models (as packet size
goes to zero) and for e-equilibria (as € — 0),
convergence to the dynamic equilibrium is guaranteed.

2%



Strict 5-equilibria
A strategy profile ¢ is an exact equilibrium if

dy(a) = €,(8q)) foralla € A,v € ¢(a);
the labels ¢,(8) then define an equilibrium trajectory.

Strict 5-equilibria

A strategy profile ¢ is a strict 6-equilibrium if

dy(a) < 8,(8q)+8  forallae A,v e @(a);
the labels &,(0) then define a 5-trajectory.

e An e-approximate equilibrium is a strict e-equilibrium (but
not conversely).

25



Formal theorem statement

e ¢-equilibria are strict O(e)-equilibria.
e Packet equilibria with packets of size € are strict
O(e)-equilibria

Main theorem 0.-Sering-Vargas Koch FOCS '23

Strict 5-equilibria converge to exact dynamic equilibria
asé — 0.

More precisely: if £(€) is an equilibrium trajectory, and
20 (8) a 6D-trajectory for each i, with §() — 0, then

sup||€(8) — €9 (9)|| — o.
6>0

26



Continuity vs stability

e Qur continuity result shows that equilibria are stable under

a single perturbation (or finite number of perturbations).

Clearly necessary, but not nearly enough:
e ¢ need not follow the vector field anywhere.

e A slow drift away is not acceptable; something must “pull £
back”.

27



Proof heavily exploits induction on the number of
hyperplanes.

“far” from
e,; induct

“far” from
eq; induct

\

close to all
hyperplanes;
something
else

|
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Base case: equilibrium trajectory is in “steady state”: all
labels and queues change linearly forever.

We give a “robust” version of proof by Cominetti, Correa and
Larré that Z(+) is unique.

29



Conclusion

Theorem 0.-Sering-Vargas Koch 23

Strict 5-equilibria converge to exact dynamic equilibria
asé — 0.

e Dependence on § is horrible... 3
Can it be shown that supg ||€(6) — £(09)|| = 0(6)?

Many basic open questions about equilibria remain:

e Computational complexity of computing X(-)
e Price of anarchy

e Structure of equilibria with multiple origin-destination
pairs

30



Conclusion

Theorem 0.-Sering-Vargas Koch 23

Strict 5-equilibria converge to exact dynamic equilibria
asé — 0.

e Dependence on § is horrible... 3
Can it be shown that supg ||€(6) — £(09)|| = 0(6)?

Many basic open questions about equilibria remain:

e Computational complexity of computing X(-)
e Price of anarchy

e Structure of equilibria with multiple origin-destination
pairs

Thank you!
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