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The kissing number problem

The kissing number k(n) is the maximum number of unit spheres that simultaneously touch
a central unit sphere.
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The kissing number problem

● The ‘cannonball packing’ shows that k(3) ≥ 12, and is rigid.

● However, letting spheres touch at the vertices of the regular icosahedron gives a
non-rigid configuration of size 12.

● The D4 root system (vertices of the 24-cell) shows that k(4) ≥ 24, and is rigid.

● k(4) = 24 by O. Musin in 2008

● Q: can something similar as in dimension 3 happen?

● A: No, we prove that the D4 root system is the unique optimal kissing configuration in
dimension 4, and is an optimal spherical code.
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The Lasserre hierarchy for packing problems

The Lasserre hierarchy for the kissing number problem is a sequence of optimization
problems

las1(n) ≥ las2(n) ≥ . . . ≥ lask(n)(n) = k(n).

Each of these problem can be approximated using sums-of-squares polynomials and
semidefinite programming.

● In dimension n = 8 and n = 24, las1(n) = k(n) (Delsarte LP bound).

● We prove that las2(4) = k(4) = 24 by giving an exact solution.
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The independent set problem

Let G = (V ,E) be a graph. A set I ⊆ V is independent if {x , y} /∈ E for all x , y ∈ I .

Take V = Sn−1 and distinct x , y ∈ V adjacent if x ⋅ y > 1/2. Then the kissing number is the
maximum size of an independent set in this graph.
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The Lasserre hierarchy for packing problems
● It : independent sets of size at most t

● C(It × It)⪰0: the positive definite kernels on It .
● At ∶ C(It × It)→ C(I2t) is the operator

At(K)(S) = ∑
J,J′∈It
J∪J′=S

K(J, J ′)

Then the t-th step of the Lasserre hierarchy is given by:

minimize K(∅,∅)
subject to AtK(S) ≤ −χI=1(S) ∀S ∈ I2t ∖ {∅}

K ∈ C(It × It)⪰0
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Proof that last gives an upper bound

minimize K(∅,∅)
subject to AtK(S) ≤ −χI=1(S) ∀S ∈ I2t ∖ {∅}

K ∈ C(It × It)⪰0

Let C ⊂ Sn−1 be a independent set and K a feasible kernel. Then

0 ≤

∑
J,J′⊆C
∣J ∣,∣J′∣≤t

K(J, J ′)

= ∑
S⊆C
∣S ∣≤2t

AtK(S) ≤ K(∅,∅) − ∣C ∣

so K(∅,∅) ≥ ∣C ∣.
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Complementary slackness

If K(∅,∅) = ∣C ∣, all inequalities in the proof need to be equalities.

In particular,

At(K)({x , y}) = 0 ∀ x ≠ y ∈ C .

So sharp bounds give information about possible configurations!
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Optimality and uniqueness of the D4 root system

By complementary slackness, our exact optimal solution to las2(4) shows that for all sets C
of size 24,

x ⋅ y ∈ {−1,−1/2,0,1/2} for all x ≠ y ∈ C .

This can be used to show that

● the D4 root system is the unique optimal kissing configuration in R4.

● the D4 root system is the unique optimal spherical code with 24 points in dimension 4.
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Approach for computing an exact solution to las2

● Write the kernels K ∈ C(It × It)O(n)⪰0 in terms of positive semidefinite matrices.

Time: 2
days

● Use sum-of-squares polynomials to write the problem as a semidefinite program.

● Solve the semidefinite program up to high enough precision.

Time: 2 weeks

● Round the solution to an exact optimal solution.

Time: 4 hours
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Rounding SDP solutions
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What is rounding?

maximize ⟨C ,X ⟩
subject to ⟨Ai ,X ⟩ = bi , i = 1, . . . ,m

X ⪰ 0

A solver gives X ∗ ⪰ −εI such that
⟨Ai ,X ⟩ ≈ bi

and ⟨C ,X ∗⟩ is approximately optimal. We want an exact optimal solution.
Assumptions:

● Everything can be done over algebraic fields of low degree (in this talk we use Q for
convenience)

● There is a basis of the kernel of an optimal solution X of small bitsize
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The rounding procedure

Procedure:

1 Find the kernel vectors

2 Do a basis change (facial reduction)

3 Find an exact solution close to the original solution in the new basis

Intuition:

1 We first set the almost 0 eigenvalues to exactly 0.

2 Then we modify the remaining eigenvectors and eigenvalues a little bit to satisfy the
constraints, so that strictly positive eigenvalues stay strictly positive.
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Finding the kernel vectors

We want to find exact kernel vectors using the numerical kernel vectors X ∗. Previous
approaches used the LLL-algorithm for this (O(n6)).

Let V contain the (numerical) kernel vectors of X ∗ as rows. Let VR be the row-reduced
echelon form of V . Now round VR to Q entry-wise. Since there is a basis of the kernel of
low bitsize by assumption, this gives relatively nice kernel vectors.

15 / 17
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Transformations

Let the columns of B form a basis of Rn with the kernel vectors vi as the first few basis
vectors.

Then for any optimal matrix X ,

BTXB = (0 0

0 X̂
) .

Let Âi be the block of B−1AiB
−T corresponding to X̂ . Then

⟨Âi , X̂ ⟩ = ⟨Ai ,X ⟩ = bi .

So the optimal face is described by

F̂ = {X̂ ⪰ 0 ∶ ⟨Âi , X̂ ⟩ = bi , i = 1, . . . ,m}.
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F̂ = {X̂ ⪰ 0 ∶ ⟨Âi , X̂ ⟩ = bi , i = 1, . . . ,m}.

16 / 17



Introduction The kissing number problem Rounding SDP solutions

Transformations

Let the columns of B form a basis of Rn with the kernel vectors vi as the first few basis
vectors. Then for any optimal matrix X ,

BTXB = (0 0

0 X̂
) .

Let Âi be the block of B−1AiB
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Getting an exact solution

Write the affine constraint ⟨Âi , X̂ ⟩ = bi as Ax = b by vectorizing X̂ . Goal: find a solution x
close to the numerical solution x∗.

Idea: interpolate between the closest solution and a solution modifying few entries of x∗.
Use the pseudoinverse (which gives the closest solution) to solve

Ãx̃ = b −Ax∗

where Ã contains

● a basis of the column space

● a small number of extra columns (say 10% more columns than strictly needed)

This is both fast and gives solutions of small size.
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Ãx̃ = b −Ax∗
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Questions?

D. de Laat, N. M. Leijenhorst, and W. H. H. de Muinck Keizer. Optimality and uniqueness
of the D4 root system. arXiv:2404.18794. Apr. 2024

H. Cohn, D. de Laat, and N. Leijenhorst. Optimality of spherical codes via exact
semidefinite programming bounds. arXiv:2403.16874. Mar. 2024

The rounding procedure is available as part of the Julia SDP solver
ClusteredLowRankSolver.jl.
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