Two Complexity Results about Polynomial Optimization and Lasserre hierarchies

Luis Felipe Vargas,

Dutch Optimization Seminar

Joint work with Monique Laurent

September, 2023

Polynomial Optimization

Graph theory

Positive polynomials vs. Sums of squares of polynomials Graph parameters

Stability number of a graph

Polynomial optimization

Given a polynomials f and g_1, \ldots, g_m , a polynomial optimization problem (PoP) is:

$$f^* = \inf_{x \in K} f(x), \tag{PoP}$$

where

$$\mathcal{K} = \{x \in \mathbb{R}^n : g_i(x) \ge 0, \text{ for } i = 1, \dots, m\}$$

Polynomial optimization

Given a polynomials f and g_1, \ldots, g_m , a polynomial optimization problem (PoP) is:

$$f^* = \inf_{x \in K} f(x), \tag{PoP}$$

where

$$\mathcal{K} = \{x \in \mathbb{R}^n : g_i(x) \ge 0, \text{ for } i = 1, \dots, m\}$$

The problem can be reformulated as:

$$f^* = \sup\{\lambda : f(x) - \lambda \ge 0 \ \forall x \in K\}$$

Polynomial optimization

Given a polynomials f and g_1, \ldots, g_m , a polynomial optimization problem (PoP) is:

$$f^* = \inf_{x \in \mathcal{K}} f(x), \tag{PoP}$$

where

$$\mathcal{K} = \{x \in \mathbb{R}^n : g_i(x) \ge 0, \text{ for } i = 1, \dots, m\}$$

The problem can be reformulated as:

$$f^* = \sup\{\lambda : f(x) - \lambda \ge 0 \ \forall x \in K\}$$

Polynomial equations p(x) = 0 can be added $(p(x) \ge 0, p(x) \le 0)$.

Solving (PoP) is very hard in general.

Examples of semialgebraic sets K

Sphere:
$$\{x \in \mathbb{R}^n : \sum_{i=1}^n x_i^2 \le 1\}$$

Polytopes: Linear inequalities

Nonconvex in general: $\{1 \le x^2 + y^2 \le 4\}$

$$\{0,1\}^n$$
 Discrete sets $x_i^2 = x_i$, for $i \in [n]$

Sum-of-squares approximations

$$\mathcal{K} = \{x \in \mathbb{R}^n : g_i(x) \ge 0, \text{ for } i = 1, \dots, m\}$$

$$f^* = \sup\{\lambda : f(x) - \lambda \ge 0 \ \forall x \in K\}$$

Sum-of-squares approximations

$$K = \{x \in \mathbb{R}^n : g_i(x) \ge 0, \text{ for } i = 1, \dots, m\}$$

$$f^* = \sup\{\lambda : f(x) - \lambda \ge 0 \ \forall x \in K\}$$

Sum-of-squares approximations

$$K = \{x \in \mathbb{R}^n : g_i(x) \ge 0, \text{ for } i = 1, \dots, m\}$$

$$f^* = \sup\{\lambda : f(x) - \lambda \ge 0 \ \forall x \in K\}$$

Definition. A polynomial p is a **sum of squares (SOS)** if $p = q_1^2 + q_2^2 + \cdots + q_m^2$ for some polynomials q_i .

If f is SOS, then $f(x) \ge 0$ for all $x \in \mathbb{R}^n$.

 $\mathsf{Sum-of}\text{-}\mathsf{squares} \quad \longleftrightarrow \quad \mathsf{PSD} \ \mathsf{matrix}$

is $p = x^4 - 2x^3y + 2x^2y^2 - 2x^2y - 2x + 1$ a sum of squares?

Sum-of-squares \iff PSD matrix

is $p = x^4 - 2x^3y + 2x^2y^2 - 2x^2y - 2x + 1$ a sum of squares? Yes $p = (x^2 - xy)^2 + (x - 1)^2 + (x - xy)^2$

Sum-of-squares $\leftrightarrow \rightarrow$ PSD matrix

is $p = x^4 - 2x^3y + 2x^2y^2 - 2x^2y - 2x + 1$ a sum of squares? Yes $p = (x^2 - xy)^2 + (x - 1)^2 + (x - xy)^2$ Let $m^t = (1, x, y, x^2, xy, y^2)$ $\int_{m^t} \int_{m^t}^{p_t} \int_{(x - 1)^2}^{p_t} \frac{p_t}{p_t} \int_{(x - 1)^2}$

Sum-of-squares $\leftrightarrow \rightarrow$ PSD matrix

 $p = m^t Q m$, where $Q \succeq 0$

Sum-of-squares \longleftrightarrow PSD matrix

is
$$p = x^4 - 2x^3y + 2x^2y^2 - 2x^2y - 2x + 1$$
 a sum of squares?
Yes
 $p = (x^2 - xy)^2 + (x - 1)^2 + (x - xy)^2$ Let $m^t = (1, x, y, x^2, xy, y^2)$
 $f = \bigwedge_{m^t \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}} \bigwedge_{m^t + m^t \begin{pmatrix} -1 \\ 0 \\ 0 \\ 0 \end{pmatrix}} \bigwedge_{m^t + m^t \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}} \bigwedge_{m^t + m^t \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}} \bigwedge_{m^t + m^t \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}} \bigwedge_{m^t + m^t \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}} \bigwedge_{m^t + m^t \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}} \bigwedge_{m^t + m^t \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}} \bigwedge_{m^t + m^t \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}} \bigwedge_{m^t + m^t \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}} \bigwedge_{m^t + m^t \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}} \bigwedge_{m^t + m^t \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}} \bigwedge_{m^t + m^t \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}} \bigwedge_{m^t + m^t \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}} \bigwedge_{m^t + m^t \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}} \bigwedge_{m^t + m^t \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}} \bigwedge_{m^t + m^t \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}} \bigwedge_{m^t + m^t \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}} \bigwedge_{m^t + m^t \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}} \bigwedge_{m^t + m^t \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}} \bigwedge_{m^t + m^t \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}} \bigwedge_{m^t + m^t \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}} \bigwedge_{m^t + m^t \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}} \bigwedge_{m^t + m^t \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}} \bigwedge_{m^t + m^t \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}} \bigwedge_{m^t + m^t \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}} \bigwedge_{m^t + m^t \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}} \bigwedge_{m^t + m^t \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}} \bigwedge_{m^t + m^t \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}} \bigwedge_{m^t + m^t \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}} \bigwedge_{m^t + m^t \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}} \bigwedge_{m^t + m^t \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}} \bigwedge_{m^t + m^t \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}} \bigwedge_{m^t + m^t \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}} \bigwedge_{m^t + m^t \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}} \bigwedge_{m^t + m^t \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}} \bigwedge_{m^t + m^t \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}} \bigwedge_{m^t + m^t \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}} \bigwedge_{m^t + m^t \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}} \bigwedge_{m^t + m^t \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}} \bigwedge_{m^t + m^t \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}} \bigwedge_{m^t + m^t \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}} \bigwedge_{m^t + m^t \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}} \bigwedge_{m^t + m^t \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}} \bigwedge_{m^t + m^t \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}} \bigwedge_{m^t + m^t \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}} \bigwedge_{m^t + m^t \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}} \bigwedge_{m^t + m^t \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}} \bigwedge_{m^t + m^t \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}} \bigwedge_{m^t + m^t \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}} \bigwedge_{m^t + m^t \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}} \bigwedge_{m^t + m^t \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}} \bigwedge_{m^t + m^t \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}} \bigwedge_{m^t + m^t \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}} \bigwedge_{m^t + m^t \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}} \bigwedge_{m^t + m^t \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}} \bigwedge_{m^t + m^t \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}} \bigwedge_{m^t + m^t \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}} \bigwedge_{m^t + m^t \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}} \bigwedge_{m^t + m^t \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}} \bigwedge_{m^t + m^t \begin{pmatrix} 0 \\ 0$

The constrain "p is a sum of squares" can be modeled via a semidefinite program.

Certificates using sums of squares: On semialgebraic sets

Let
$$K = \{x \in \mathbb{R}^n : g_1(x) \ge 0, \dots, \dots, g_m(x) \ge 0\}$$

The quadratic module defined by **g** is

$$M(\mathbf{g}) = \left\{ \sigma_0 + \sigma_1 g_1 + \dots + \sigma_m g_m : \sigma_i \text{ is SOS} \right\}$$
$$f \in M(\mathbf{g}) \Longrightarrow f \ge 0 \text{ on } K$$

Certificates using sums of squares: On semialgebraic sets

Let
$$K = \{x \in \mathbb{R}^n : g_1(x) \ge 0, \dots, \dots, g_m(x) \ge 0\}$$

The quadratic module defined by **g** is

$$M(\mathbf{g}) = \left\{ \sigma_0 + \sigma_1 g_1 + \dots + \sigma_m g_m : \sigma_i \text{ is SOS} \right\}$$
$$f \in M(\mathbf{g}) \Longrightarrow f \ge 0 \text{ on } K$$

Theorem (Putinar)

Assume the archimedean conditions holds: $N - \sum_{i=1}^{n} x_i^2 \in M(\mathbf{g})$, for some $N \in \mathbb{N}$.

If
$$f > 0$$
 on K , then $f \in M(\mathbf{g})$

- ▶ The archimedean condition implies that *K* is compact.
- The condition f > 0 is necessary in general.

Lasserre hierarchy for polynomial optimization

$$\mathcal{K} = \{ x \in \mathbb{R}^n : g_1(x) \ge 0, \dots, g_m(x) \ge 0 \}$$
$$f^* = \sup\{ \lambda : f(x) - \lambda \ge 0 \text{ on } \mathsf{K} \}$$

Define the truncated quadratic module

$$M(\mathbf{g})_r = \left\{\underbrace{\sigma_0}_{\deg \leq 2r} + \underbrace{\sigma_1 g_1}_{\deg \leq 2r} + \cdots + \underbrace{\sigma_m g_m}_{\deg \leq 2r} : \sigma_i \text{is SOS}\right\}$$

The Lasserre hierarchy for polynomial optimization is:

$$f^{(r)} = \sup\{\lambda : f(x) - \lambda \in M(g)_r\}$$

Lasserre hierarchy for polynomial optimization

$$\mathcal{K} = \{ x \in \mathbb{R}^n : g_1(x) \ge 0, \dots, g_m(x) \ge 0 \}$$
$$f^* = \sup\{ \lambda : f(x) - \lambda \ge 0 \text{ on } \mathsf{K} \}$$

Define the truncated quadratic module

$$M(\mathbf{g})_r = \left\{\underbrace{\sigma_0}_{\deg \leq 2r} + \underbrace{\sigma_1 g_1}_{\deg \leq 2r} + \cdots + \underbrace{\sigma_m g_m}_{\deg \leq 2r} : \sigma_i \text{is SOS}\right\}$$

The Lasserre hierarchy for polynomial optimization is:

$$f^{(r)} = \sup\{\lambda : f(x) - \lambda \in M(\boldsymbol{g})_r\}$$

If K is archimedean (Compact + Technical condition) $f^{(r)}
ightarrow f^*$

Lasserre hierarchy for polynomial optimization

$$\mathcal{K} = \{ x \in \mathbb{R}^n : g_1(x) \ge 0, \dots, g_m(x) \ge 0 \}$$
$$f^* = \sup\{ \lambda : f(x) - \lambda \ge 0 \text{ on } \mathsf{K} \}$$

Define the truncated quadratic module

$$M(\mathbf{g})_r = \left\{\underbrace{\sigma_0}_{\deg \leq 2r} + \underbrace{\sigma_1 g_1}_{\deg \leq 2r} + \cdots + \underbrace{\sigma_m g_m}_{\deg \leq 2r} : \sigma_i \text{is SOS}\right\}$$

The Lasserre hierarchy for polynomial optimization is:

$$f^{(r)} = \sup\{\lambda : f(x) - \lambda \in M(\mathbf{g})_r\}$$

If K is archimedean (Compact + Technical condition) $f^{(r)} \rightarrow f^*$

We say that we have finite convergence if $f^{(r)} = f^*$ for some r.

It is not always achieved.

When do we have finite convergence?

$$f^* = \inf_{x \in K} f(x), \tag{PoP}$$

$$\mathcal{K} = \{x \in \mathbb{R}^n : g_i(x) \ge 0, h_j(x) = 0 \text{ for } i \in [m], j \in [l]\}$$

Various results by Lasserre, Marshall, Nie, Scheiderer, Schweighofer.

- **1.** When $V_{\mathbb{R}}(h)$ is finite. [Nie, 2012]
- 2. When (PoP) has finitely many minimizers and they satisfy the classical optimality conditions. [Nie, 2014]
 - Finite convergence holds generically

When do we have finite convergence?

$$f^* = \inf_{x \in K} f(x), \tag{PoP}$$

$$\mathcal{K} = \{x \in \mathbb{R}^n : g_i(x) \ge 0, h_j(x) = 0 \text{ for } i \in [m], j \in [l]\}$$

Various results by Lasserre, Marshall, Nie, Scheiderer, Schweighofer.

- **1.** When $V_{\mathbb{R}}(h)$ is finite. [Nie, 2012]
- 2. When (PoP) has finitely many minimizers and they satisfy the classical optimality conditions. [Nie, 2014]
 - Finite convergence holds generically

In this talk: What is the complexity of

- 1. Deciding whether (PoP) has finitely many minimizers?
- 2. Deciding whether the Lasserre hierarchy of (PoP) has finite convergence?

Let (L-P) be a linear program

Let (L-P) be a linear program

Finitely many minimizers?

Let (L-P) be a linear program

Finitely many minimizers?

Deciding whether a linear program has finitely many minimizers (then unique) is in P [Appa, 2002].

Let (L-P) be a linear program

Finitely many minimizers?

 Deciding whether a linear program has finitely many minimizers (then unique) is in P [Appa, 2002].

Finite convergence?

> Yes, always. The Lasserre hierarchy (at r = 1) finds the optimal solution.

Let G = (V, E) be a graph.

 $S \subseteq V$ is **stable** if S contains no edge.

The stability number of G is $\alpha(G) := \max\{|S| : S \text{ is stable}\}\$

Let
$$G = (V, E)$$
 be a graph.

 $S \subseteq V$ is **stable** if S contains no edge.

The stability number of G is $\alpha(G) := \max\{|S| : S \text{ is stable}\}\$

Discrete formulation

$$\alpha(G) = \max\left\{\sum_{i \in V} x_i : x_i^2 = x_i \text{ for } i \in V, x_i x_j = 0 \text{ for } \{i, j\} \in E\right\}$$

The Lasserre hierarchy has finite convergence as $V_{\mathbb{R}}(h)$ is finite.

Let
$$G = (V, E)$$
 be a graph.

 $S \subseteq V$ is **stable** if S contains no edge.

The stability number of G is $\alpha(G) := \max\{|S| : S \text{ is stable}\}\$

Discrete formulation

$$\alpha(G) = \max\left\{\sum_{i \in V} x_i : x_i^2 = x_i \text{ for } i \in V, x_i x_j = 0 \text{ for } \{i, j\} \in E\right\}$$

The Lasserre hierarchy has finite convergence as $V_{\mathbb{R}}(h)$ is finite.

Motzkin-Straus 1965

$$\frac{1}{\alpha(G)} = \min\left\{x^{T}(A_{G}+I)x: \sum_{i=1}^{n} x_{i} = 1, x \geq 0\right\}$$

Let
$$G = (V, E)$$
 be a graph.

 $S \subseteq V$ is **stable** if S contains no edge.

The stability number of G is $\alpha(G) := \max\{|S| : S \text{ is stable}\}\$

Discrete formulation

$$\alpha(G) = \max\left\{\sum_{i \in V} x_i : x_i^2 = x_i \text{ for } i \in V, x_i x_j = 0 \text{ for } \{i, j\} \in E\right\}$$

The Lasserre hierarchy has finite convergence as $V_{\mathbb{R}}(h)$ is finite.

Motzkin-Straus 1965

$$\frac{1}{\alpha(G)} = \min\left\{x^{T}(A_{G}+I)x: \sum_{i=1}^{n} x_{i} = 1, x \geq 0\right\}$$

When do we have finite convergence?

Motzkin-Straus Formulation

$$\frac{1}{\alpha(G)} = \min\left\{x^{T}(A_{G}+I)x : \sum_{i=1}^{n} x_{i} = 1, x \geq 0\right\}$$

For any S stable of size $\alpha(G)$, $x = \frac{1}{\alpha(G)}\chi^{S}$ is a minimizer:

$$\begin{pmatrix} s \\ 1 & \cdots & 0 \end{pmatrix}_{S} \begin{pmatrix} 1 & 0 \\ 0 & \ddots & 1 \end{pmatrix} \begin{pmatrix} 1 \\ \vdots \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ \vdots \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ \vdots \\ \alpha(6) \end{pmatrix}_{C} \begin{pmatrix} 1 \\$$

Motzkin-Straus Formulation

$$\frac{1}{\alpha(G)} = \min\left\{x^{T}(A_{G}+I)x: \sum_{i=1}^{n} x_{i} = 1, x \geq 0\right\}$$

For any S stable of size $\alpha(G)$, $x = \frac{1}{\alpha(G)}\chi^{S}$ is a minimizer:

$$\frac{1}{\alpha(6)} \cdot \frac{1}{\alpha(6)} \cdot \frac{1$$

Consider $G = C_5$ the 5-cycle. Then, for any $t \in [0,1]$ we have:

Definition. An edge *e* of *G* is critical if $\alpha(G \setminus e) = \alpha(G) + 1$.

Figure 1: C₅, all edges are critical

Figure 2: C_6 , no edge is critical

Definition. An edge *e* of *G* is critical if $\alpha(G \setminus e) = \alpha(G) + 1$.

Figure 1: C₅, all edges are critical

Theorem

Given a graph G and an edge e. The problem of deciding whether e is critical in G is NP-hard.

Minimizers of (M-S)

Theorem (Minimizers of (M-S))

Let x be feasible for (M-S) with support $S := \{i : x_i > 0\}$, and $C_1, C_2, ..., C_k$ the connected components of the graph G[S]. Then x is an optimal solution of (M-S) if and only if the following holds:

- $k = \alpha(G)$,
- C_i is a clique for all $i \in [k]$,
- $\sum_{j \in C_i} x_j = \frac{1}{\alpha(G)}$ for all $i \in [k]$.

In that case, all edges of G[S] are critical.

Minimizers of (M-S)

Theorem (Minimizers of (M-S))

Let x be feasible for (M-S) with support $S := \{i : x_i > 0\}$, and $C_1, C_2, ..., C_k$ the connected components of the graph G[S]. Then x is an optimal solution of (M-S) if and only if the following holds:

- $k = \alpha(G)$,
- C_i is a clique for all $i \in [k]$,
- $\sum_{j \in C_i} x_j = \frac{1}{\alpha(G)}$ for all $i \in [k]$.

In that case, all edges of G[S] are critical.

Every optimal solution of problem (M-S) associated to C_5 has the following form (up to symmetry)

$$x_1=\displaystyle\frac{1}{2}$$
 , $x_3+x_4=\displaystyle\frac{1}{2}$ and $x_2=x_5=0.$

Minimizers of (M-S)

Theorem (Minimizers of (M-S))

Let x be feasible for (M-S) with support $S := \{i : x_i > 0\}$, and $C_1, C_2, ..., C_k$ the connected components of the graph G[S]. Then x is an optimal solution of (M-S) if and only if the following holds:

- $k = \alpha(G)$,
- C_i is a clique for all $i \in [k]$,
- $\sum_{j \in C_i} x_j = \frac{1}{\alpha(G)}$ for all $i \in [k]$.

In that case, all edges of G[S] are critical.

Every optimal solution of problem (M-S) associated to C_5 has the following form (up to symmetry)

$$x_1 = \frac{1}{2}$$
, $x_3 + x_4 = \frac{1}{2}$ and $x_2 = x_5 = 0$.

The only edges in the support of an optimal solution are critical.

Perturbed Motzkin-Straus formulation

For an edge $e \in E$, consider the following problem

$$\frac{1}{\alpha(G)} = \min x^{T} (A_{G} + I + A_{G \setminus e}) x \text{ subject to } \sum_{i=0}^{n} x_{i} = 1, x \ge 0$$
(1)

The optimal value is $\frac{1}{\alpha(G)}$ as $x = \frac{1}{\alpha(G)}\chi^{S}$ is a solution.

Perturbed Motzkin-Straus formulation

For an edge $e \in E$, consider the following problem

$$\frac{1}{\alpha(G)} = \min x^{T} (A_{G} + I + A_{G \setminus e}) x \text{ subject to } \sum_{i=0}^{n} x_{i} = 1, x \ge 0$$
(1)

The optimal value is $\frac{1}{\alpha(G)}$ as $x = \frac{1}{\alpha(G)}\chi^{S}$ is a solution.

Problem (1) has finitely many global minimizers if and only if e is not critical in G.

Perturbed Motzkin-Straus formulation

For an edge $e \in E$, consider the following problem

$$\frac{1}{\alpha(G)} = \min x^{T} (A_{G} + I + A_{G \setminus e}) x \text{ subject to } \sum_{i=0}^{n} x_{i} = 1, x \ge 0$$
(1)

The optimal value is $\frac{1}{\alpha(G)}$ as $x = \frac{1}{\alpha(G)}\chi^{S}$ is a solution.

Problem (1) has finitely many global minimizers if and only if e is not critical in G.

Theorem (Laurent-V 2022)

The problem of deciding whether a polynomial optimization problem (even quadratic over the simplex) has finitely many minimizers is NP-hard

Deciding finite convergence is NP-hard

Theorem (Laurent-V 2022, V 2023+)

The Lasserre hierarchy of problem (1) has finite convergence if and only e is not critical.

Idea of the proof.

Deciding finite convergence is NP-hard

Theorem (Laurent-V 2022, V 2023+)

The Lasserre hierarchy of problem (1) has finite convergence if and only e is not critical.

Idea of the proof.

" — " The problem has finitely many minimizers and they satisfy the optimality conditions. By Nie's theorem, we have finite convergence.

" \implies " Exploit the structure of the (infinitely many) minimizers to reach a contradiction.

Deciding finite convergence is NP-hard

Theorem (Laurent-V 2022, V 2023+)

The Lasserre hierarchy of problem (1) has finite convergence if and only e is not critical.

Idea of the proof.

" \Leftarrow " The problem has finitely many minimizers and they satisfy the optimality conditions. By Nie's theorem, we have finite convergence.

" \implies " Exploit the structure of the (infinitely many) minimizers to reach a contradiction.

Corollary

The problem of deciding whether the Lasserre hierarchy of a polynomial optimization problem has finite convergence is NP-hard.

Final remarks

Summary

We show NP-hardness of:

- Deciding whether PoP has finitely many minimizers.
- Deciding whether the Lasserre hierarchy of a PoP has finite convergence.

Main tools:

- Motzkin-Straus formulation (and perturbations of it)
- Critical edges.

Final remarks

Summary

We show NP-hardness of:

- Deciding whether PoP has finitely many minimizers.
- Deciding whether the Lasserre hierarchy of a PoP has finite convergence. Main tools:
 - Motzkin-Straus formulation (and perturbations of it)
 - Critical edges.

Related work

 A. Ahmadi and Zhang have used the Motzkin-Straus formulation for obtaining complexity results in optimization (local minmizers, ...)