Treewidth and Scanwidth in Phylogenetics

Leo van lersel’ Niels Holtgrefe! ~ Mark Jones! Mathias Weller*
T TU Delft, * TU Berlin

Dutch Seminar on Optimization, 2023

PRESENT

1/51

Definition

Let X be a finite set. A rooted phylogenetic tree on X is a rooted tree with no
indegree-1 outdegree-1 vertices whose leaves are bijectively labelled by the elements of X.

82 Mya

- Emu Ostrich Moa

(New Zealand) Cassowary (Australia) .
(New Guinea + Australia) (Africa) (New Zealand)

2/51

Definition

Let X be a finite set. A rooted phylogenetic network on X is a rooted directed acyclic
graph with no indegree-1 outdegree-1 vertices whose leaves are bijectively labelled by the

elements of X.
o i ; . ,
!(N / ’,

3/51

Dog phylogenetic network (Buffon, 1755)

% QQHL E)C% (9/(7/0 aau (‘%{e/wL)

/51

Strawberry phylogenetic network (Duchesne, 1766)

Howt. nat. des Fr P 238,
GENEALOGIE DES FRAISIERS.

Bare b i
|

5. le Frawer-fressant,

[l4.le Prawner sans coudans.)

T
15, le Prawer de versadle

6. le Frawer verd)
10, le Frawner ecarlate,

. le Prawner-ananad.

| T sy ¥ |
| o.a. [pannaché

b e 5
gt -Seudp

5/51

Wheat phylogenetic network (Marcussen et al.,

Triticum

2014)

Aegilops

T. monococcum

% DD
AABBDD
T. aestivum

T. turgidum

BB
A. speltoides

not identified

A. tauschii

6/51

Tree Containment problem

Ty T2 X3 Ty Iy Ty Ty I3 T4 X5

Tree T Network N

A phylogenetic network N on X displays a phylogenetic network T on X if a subdivision
of T is a subgraph of N.

TREE CONTAINMENT

Given: rooted binary phylogenetic tree T on X, rooted binary phylogenetic net-
work N on X
Question: Does N display T7

@ Stepping stone to other problems (eg network construction)
o Important verification step - check that a constructed network fits known data.
@ NP-hard; FPT w.r.t. reticulation number of N, level of N

We study TREE CONTAINMENT parameterized by the treewidth of N

7/51

Tree Containment problem

Ty Ty Ty Ty Ty Ty Tz Ty Ty Ty Ty T2 T3 Ty Tp

Tree T Subdivision Network N

A phylogenetic network N on X displays a phylogenetic network T on X if a subdivision
of T is a subgraph of N.

TREE CONTAINMENT

Given: rooted binary phylogenetic tree T on X, rooted binary phylogenetic net-
work N on X

Question: Does N display T7?

@ Stepping stone to other problems (eg network construction)
o Important verification step - check that a constructed network fits known data.
@ NP-hard; FPT w.r.t. reticulation number of N, level of N

We study TREE CONTAINMENT parameterized by the treewidth of N

8/51

Our result, and similar problems

TREE CONTAINMENT

Given: rooted binary phylogenetic tree T on X, rooted binary phylogenetic network N
on X

Question: Does N display T7

T1 Ty T3 Ty X5 T1 Xy T3 Ty T

Theorem (van lersel, Jones, Weller, 2022)

TREE CONTAINMENT /s fixed-parameter tractable (FPT) with respect to the treewidth k of the
network. The algorithm has running time 2O(k2)|A|.

TREE CONTAINMENT has some similarities with:
® SUGRAPH ISOMORPHISM - but subdivisions allowed (homeomorphism)

9/51

Our result, and similar problems

TREE CONTAINMENT

Given: rooted binary phylogenetic tree T on X, rooted binary phylogenetic network N
on X

Question: Does N display T7

T1 Ty T3 Ty X5 T1 Xy T3 Ty T

Theorem (van lersel, Jones, Weller, 2022)

TREE CONTAINMENT /s fixed-parameter tractable (FPT) with respect to the treewidth k of the
network. The algorithm has running time 2O(k2)|A|.

TREE CONTAINMENT has some similarities with:
® SUGRAPH ISOMORPHISM - but subdivisions allowed (homeomorphism)
o H-MINOR CONTAINMENT - but the “H" is large (and labelled)

9/51

Our result, and similar problems

TREE CONTAINMENT

Given: rooted binary phylogenetic tree T on X, rooted binary phylogenetic network N
on X

Question: Does N display T7

T1 Ty T3 Ty X5 T1 Xy T3 Ty T

Theorem (van lersel, Jones, Weller, 2022)

TREE CONTAINMENT /s fixed-parameter tractable (FPT) with respect to the treewidth k of the
network. The algorithm has running time 2O(k2)|A|.

TREE CONTAINMENT has some similarities with:
® SUGRAPH ISOMORPHISM - but subdivisions allowed (homeomorphism)
o H-MINOR CONTAINMENT - but the “H" is large (and labelled)
o STEINER TREE - but we require specific topology

9/51

Our result, and similar problems

TREE CONTAINMENT

Given: rooted binary phylogenetic tree T on X, rooted binary phylogenetic network N
on X
Question: Does N display T7

T1 Ty T3 Ty X5 T1 Xy T3 Ty T

Theorem (van lersel, Jones, Weller, 2022)

TREE CONTAINMENT /s fixed-parameter tractable (FPT) with respect to the treewidth k of the
network. The algorithm has running time 2O(k2)|A|.

TREE CONTAINMENT has some similarities with:
® SUGRAPH ISOMORPHISM - but subdivisions allowed (homeomorphism)
o H-MINOR CONTAINMENT - but the “H" is large (and labelled)
o STEINER TREE - but we require specific topology

Big challenge: tracking interaction between two input graphs
9/51

Reticulation Number and Level

Definition

o the reticulation number r is defined as r = |A| — |V| + 1
i.e. the number of arcs you need to delete to get a tree

o the level ¢ is the maximum reticulation number of a biconnected component

T2

Ty T

Ts5

10/51

Reticulation Number and Level

o TREE CONTAINMENT can easily be solved in O(2°|A|) time
o this can be improved to O(2“2|V|?) (Kanj, Nakhleh, Than, Xia, 2008)

x5 Ts5

11/51

@ The treewidth tw(G) of G is the smallest width of a tree decomposition of G.
a

@ Tree decomposition: a (non-phylogenetic) tree 7 whose vertices ('bags’) are subsets
of V(G), and such that:
© Every vertex of G appears in at least one bag.
@ For every edge uv in G, u, v appear in at least one bag together.
© For every vertex v in G, the bags containing v form a connected subgraph of 7.

@ The width of a tree decomposition is the maximum size of a_bag —1.

12 /51

Treewidth vs Level

@ a tree has treewidth 1 and level 0
o treewidth < level +1

a

€y €3

i)

13/51

Treewidth vs Level

\
\
\

14 /51

Display Graph

The display graph D(N, T) is the graph derived from N, T by identifying leaves with the

/AN

Ty T2 Iy Ty Ty Xy T2 T3 Ty T

15/51

Display Graph

The display graph D(N, T) is the graph derived from N, T by identifying leaves with the

same taxon label.
/ SI I \ /A<\ |

Ty T2 Iy Ty Ty Xy T2 T3 Ty T

Theorem (Janssen, Jones, Kelk, Stamoulis & Wu, 2019)

If N displays T, then the display graph D(N, T) has treewidth at most 2tw(N) + 1.

15/51

Treewidth of the display graph

b ’ c
1 3 z ' T3
4 d
D(N.T)

Theorem (Janssen, Jones, Kelk, Stamoulis & Wu, 2019)
If N displays T, then the display graph D(N, T) has treewidth at most 2tw(N) + 1.

16/51

Embedding function

Represent a solution to TREE CONTAINMENT by an embedding function on the display
graph.

Map every vertex u in T to a vertex ¢(u) in N.

(Each leaf is mapped to itself)

Map each arc uv in T to a path ¢(uv) in N from ¢(u) to ¢(v)
Paths are arc-disjoint, other constraints for technical reasons....

17/51

Embedding function

Represent a solution to TREE CONTAINMENT by an embedding function on the display
graph.

Map every vertex u in T to a vertex ¢(u) in N.

(Each leaf is mapped to itself)

Map each arc uv in T to a path ¢(uv) in N from ¢(u) to ¢(v)
Paths are arc-disjoint, other constraints for technical reasons....

18/51

Past, Present, Future

For a dynamic programming algorithm, we can think of a bag in the tree decomposition
in terms of Past/Present/Future:

’ abc

) p

o Past: the part of the graph we've already explored

o Present: the current bag

@ Future: the part of the graph we have yet to explore
The Present separates the Past from the Future

19/51

Dynamic Programming on Tree Decompositions

General approach: Reduce information about a partial solution to a small signature
e.g. Hamiltonian Path:

Partial Solution Signature
a a

)

20/51

Tracking embedding within bag

How do we define signatures for TREE CONTAINMENT?

PRESENT

i T4 5 L6

PRESENT

First idea: Track the embedding function restricted to Present.

21/51

Tracking embedding within bag

How do we define signatures for TREE CONTAINMENT?

PRESENT

PasT

i

8

PRESENT

First idea: Track the embedding function restricted to Present.

22/51

Tracking embedding within bag

How do we define signatures for TREE CONTAINMENT?

PRESENT

i

PRESENT

First idea: Track the embedding function restricted to Present.

23 /51

Tracking embedding within bag

How do we define signatures for TREE CONTAINMENT?

%
/ . ',
4 PR
PRESENT | :
‘ 3 Ty w5 il g
PRESENT

First idea: Track the embedding function restricted to Present.

24 /51

Tracking embedding within bag

How do we define signatures for TREE CONTAINMENT?

ol
PRESENT / N

L6

8
w
5
8
ot

PRESENT

First idea: Track the embedding function restricted to Present.

Problem(s):
@ The correct embedding may map Present vertices in T to Past/Future vertices in N

24 /51

Tracking embedding within bag

How do we define signatures for TREE CONTAINMENT?

8
ot

L6

PRESENT .

n

First idea: Track the embedding function restricted to Present.
Problem(s):

@ The correct embedding may map Present vertices in T to Past/Future vertices in N
o Past tree vertices may have been mapped to Present/Future network vertices

24 /51

Tracking embedding within bag

How do we define signatures for TREE CONTAINMENT?

v

PRESENT

8
w
5
8
ot

L6

PRESENT

First idea: Track the embedding function restricted to Present.
Problem(s):

@ The correct embedding may map Present vertices in T to Past/Future vertices in N
o Past tree vertices may have been mapped to Present/Future network vertices

@ We may want to map Future vertices in T to Past/Present vertices in N! 250

Tracking embedding within bag

How do we define signatures for TREE CONTAINMENT?

PRESENT
Past

il T2 3 T4

PRESENT

First idea: Track the embedding function restricted to Present.

Problem(s):
@ The correct embedding may map Present vertices in T to Past/Future vertices in N
o Past tree vertices may have been mapped to Present/Future network vertices

@ We may want to map Future vertices in T to Past/Present vertices in N! 2551

Tracking embedding within bag

How do we define signatures for TREE CONTAINMENT?

PRESENT ‘

7
'
'
.
.
I
'
I
]
'
'
'
'
'
i
'
'
v
v
v
'
'
.
)
.
'
‘

8
w
5

. PRESENT

First idea: Track the embedding function restricted to Present.
Problem(s):
@ The correct embedding may map Present vertices in T to Past/Future vertices in N

o Past tree vertices may have been mapped to Present/Future network vertices

@ We may want to map Future vertices in T to Past/Present vertices in N! 2551

Which information do we keep?

PRESENT

Present” |

PRESENT PRESENT

PRESENT

¢(u) € Past | ¢(u) € Present | ¢(u) € Future

u € Past
u € Present
u € Future

27/51

Which information do we keep?

PRESENT

Present” |

PRESENT PRESENT

PRESENT

¢(u) € Past | ¢(u) € Present | ¢(u) € Future
u € Past
u € Present Keep
u € Future

27/51

Which information do we keep?

PRESENT

3

PRESENT PRESENT
kol
PRESENT
¢(u) € Past | ¢(u) € Present | ¢(u) € Future
u € Past
u € Present Keep* Keep Keep*
u € Future

@ * do not store identities of vertices in Past/Future
(e.g. if #(u) = v and v € Past, we only record that ¢(u) €Past)

27/51

Which information do we keep?

PRESENT

Present” |

2y

PRESENT PRESENT

PRESENT

¢(u) € Past | ¢(u) € Present | ¢(u) € Future
u € Past Keep* Keep*
u € Present Keep* Keep Keep*
u € Future

@ * do not store identities of vertices in Past/Future

(e.g. if ¢(u) = v and v € Past, we only record that ¢(u) €Past) 2751

Which information do we keep?

PRESENT

Present” |

PRESENT PRESENT
kol
PRESENT
¢(u) € Past | ¢(u) € Present | ¢(u) € Future
u € Past Keep* Keep*
u € Present Keep* Keep Keep*
u € Future Keep* Keep*

@ * do not store identities of vertices in Past/Future
(e.g. if #(u) = v and v € Past, we only record that ¢(u) €Past)

27/51

Which information do we keep?

PRESENT

Present” |

PRESENT PRESENT
kol
PRESENT
¢(u) € Past | ¢(u) € Present | ¢(u) € Future
u € Past Forget Keep* Keep*
u € Present Keep* Keep Keep*
u € Future Keep* Keep*

@ * do not store identities of vertices in Past/Future
(e.g. if #(u) = v and v € Past, we only record that ¢(u) €Past)

27/51

Which information do we keep?

PRESENT

Present” |

PRESENT PRESENT
kol
PRESENT
¢(u) € Past | ¢(u) € Present | ¢(u) € Future
u € Past Forget Keep* Keep*
u € Present Keep* Keep Keep*
u € Future Keep* Keep* ‘Forget’

@ * do not store identities of vertices in Past/Future
(e.g. if #(u) = v and v € Past, we only record that ¢(u) €Past)

27/51

Example Signature

PRESENT <

1 twgy x3

PRESENT

28 /51

Example Signature

PRESENT .
. Past

PRESENT <

Ty twg 3

PRESENT PRESENT

28 /51

Example Signature

PRESENT .
. Past

PRESENT <

Ty twg 3

PRESENT PRESENT
Ommited details:
@ Tree arcs / corresponding paths only removed if all their vertices are in Past (or Future)
@ Vertices only removed if all their incident arcs are removed

@ Long network paths within Past/Future are contracted

28 /51

Bounding information in a signature

Present ;

PRESENT PRESENT

Recall Present = one bag of the tree decomposition, thus |Present| < tw(D(N, T)) + 1.

¢(u) € Past | ¢(u) € Present | ¢(u) € Future
u € Past Forget Keep* Keep*
u € Present Keep* Keep Keep*
u € Future Keep* Keep* "Forget’

29 /51

Bounding information in a signature

Present” {

PRESENT

PRESENT

Recall Present = one bag of the tree decomposition, thus |Present| < tw(D(N, T)) + 1.

¢(u) € Past | ¢(u) € Present | ¢(u) € Future
u € Past Keep* Keep*
u € Present Keep* Keep Keep*
u € Future Keep* Keep*

@ Relatively easy to bound information involving the Present

o Vertices that move between Past/Future are more tricky...

30/51

Bounding time-travellers

U* PasT

31/51

Bounding time-travellers

U PasT

32/51

Bounding time-travellers

E Z;
U PasT

33/51

Bounding time-travellers

.
.
.
'

: PRESENT
. x;

U PaAsT

34 /51

Bounding time-travellers

.
.
I

PRESENT

Ti

I
.
1
'
1
'
'
'
]
'
'
1
[
[
[
[y
[

[y
[y

[y

U pPasT

Number of lowest tree vertices u for which u € Past, ¢(u) € Future (or vice versa) can

be bounded by the number of vertices in Present.

35/51

@ Size of signatures (and number of signatures per bag) is bounded by a function of
treewidth

o Deciding whether a given signature for a bag has a corresponding (partial) solution
can be decided using only signatures on child bags.

Theorem (van lersel, Jones, Weller, 2022)

TREE CONTAINMENT is fixed-parameter tractable (FPT) with respect to the treewidth k
of the network. The algorithm has running time 2O(k2)|A|.

36/51

Hybridization Number

HYBRIDIZATION NUMBER

Given: (Un)rooted phylogenetic trees T1,..., T, on X, integers w,k.
Parameter: w

Question: Does there exist a phylogenetic network N with treewidth < w and
reticulation number < k such that N displays each of T1,..., T,?

@ Open question: Is HYBRIDIZATION NUMBER FPT w.r.t treewidth (for constant r)?

37/51

Hybridization Number

HYBRIDIZATION NUMBER

Given: (Un)rooted phylogenetic trees T1,..., T, on X, integers w,k.
Parameter: w

Question: Does there exist a phylogenetic network N with treewidth < w and
reticulation number < k such that N displays each of T1,..., T,?

@ Open question: Is HYBRIDIZATION NUMBER FPT w.r.t treewidth (for constant r)?
o Key challenge: We don't know N to do dynamic programming!

37/51

Hybridization Number

HYBRIDIZATION NUMBER

Given: (Un)rooted phylogenetic trees T1,..., T, on X, integers w,k.
Parameter: w

Question: Does there exist a phylogenetic network N with treewidth < w and
reticulation number < k such that N displays each of T1,..., T,?

@ Open question: Is HYBRIDIZATION NUMBER FPT w.r.t treewidth (for constant r)?

Key challenge: We don’t know N to do dynamic programming!

But: If N displays Ti,..., T, then display graph D(Tx,..., T,) has treewidth
<r-(tw(N)+1) <r(w+1)
Hope for a DP algorithm?

QMR

Ty Tz T X9

37/51

SCANWIDTH

38/51

Tree Extensions

Definition

A tree extension of a network N is a tree T with the same vertex set as N such that
o Ju-vpathin N = Ju-vpathin T

Oa Ob

network N a tree-extension T of N

39/51

Definition

@ The width of a tree extension is the maximum number of network edges travelling
through an edge of the tree extension.

@ The scanwidth of a network is the minimum width of a tree extension.

Oa Ob

network N a tree-extension T of N

40/51

Definition

@ The width of a tree extension is the maximum number of network edges travelling
through an edge of the tree extension.

@ The scanwidth of a network is the minimum width of a tree extension.

Oa L/

network N an optimal tree-extension of N

41/51

The idea of scanwidth is that you “scan” a network with multiple scanners.

Oa Ob

network N an optimal tree-extension of N

42/51

The scanwidth of a network is the maximum scanwidth of a biconnected component.

T

43/51

Decomposition and reduction

@ split into biconnected components (delete trivial ones)

@ suppress indegree-1 outdegree-1 vertices

44 /51

Scanwidth vs Level

x1

€3

€2

45 /51

Scanwidth vs Level

x1

€3

If W is a weakly connected sink set then §— (W) < r + 1.

Hence, scanwidth < r + 1 with r the reticulation number.
Hence, scanwidth < ¢ + 1 with £ the level.

45 /51

Scanwidth vs Treewidth

treewidth < scanwidth

Iy

46 /51

Scanwidth vs Cutwidth

Definition

@ an extension of a network is a linear ordering of its vertices such that
all arcs point to the left

o the width of an extension is the maximum number of arcs cut by any ‘vertical cut’

o the cutwidth of a network is the minimum width of an extension

N an extension of N

47 /51

Scanwidth using extensions

Scanwidth can also be defined using extension, but then you split each cut corresponding
to weakly connected components

extension of N

scanwidth < cutwidth

48

@ NP-hard to compute (Berry, Scornavacca and Weller, 2020)

49/51

@ NP-hard to compute (Berry, Scornavacca and Weller, 2020)

@ Exact dynamic programming algorithm O(k - |V|**?) (Holtgrefe, 2023)

49/51

@ NP-hard to compute (Berry, Scornavacca and Weller, 2020)
@ Exact dynamic programming algorithm O(k - |V|**?) (Holtgrefe, 2023)

@ solves instances with up to 100 leaves and 30 indegree-2 vertices exactly

49/51

NP-hard to compute (Berry, Scornavacca and Weller, 2020)

Exact dynamic programming algorithm O(k - |V|**?) (Holtgrefe, 2023)

@ solves instances with up to 100 leaves and 30 indegree-2 vertices exactly

@ Open question: can scanwidth be computed in FPT time?
(i.e. f(k)-|V]|° time with ¢ a constant)

49/51

Dynamic programming algorithm idea

o for bipartition (L, R) of the vertices, compute the scanwidth assuming vertices
from R are to the right from vertices in L in the extension
@ split into weakly connected components when possible

There are at most |V/|* sets L for which N[L]

@ is weakly connected

@ has no outgoing arcs

@ has at most k incoming arcs

Running time O(k - |V|*™2)

50/51

Recent results (van lersel, Jones, Weller)

TREE CONTAINMENT can be solved using scanwidth:

51/51

Recent results (van lersel, Jones, Weller)

TREE CONTAINMENT can be solved using scanwidth:

@ much simpler algorithm than using treewidth

51/51

Recent results (van lersel, Jones, Weller)

TREE CONTAINMENT can be solved using scanwidth:

@ much simpler algorithm than using treewidth

o dependency on parameter is much better: 20(1°€4)| 4]

51/51

Recent results (van lersel, Jones, Weller)

TREE CONTAINMENT can be solved using scanwidth:

@ much simpler algorithm than using treewidth

o dependency on parameter is much better: 20(k'°gk)| 4|

assuming a tree extension is given

51/51

Recent results (van lersel, Jones, Weller)
TREE CONTAINMENT can be solved using scanwidth:

@ much simpler algorithm than using treewidth

o dependency on parameter is much better: 20(k'°gk)| 4|

assuming a tree extension is given

@ can be generalized to nonbinary

51/51

Recent results (van lersel, Jones, Weller)

TREE CONTAINMENT can be solved using scanwidth:

much simpler algorithm than using treewidth

dependency on parameter is much better: 20(k1ek)| 4|

assuming a tree extension is given
@ can be generalized to nonbinary

o faster is not possible under the ETH

51/51

Recent results (van lersel, Jones, Weller)

TREE CONTAINMENT can be solved using scanwidth:

much simpler algorithm than using treewidth

dependency on parameter is much better: 20(k1ek)| 4|

assuming a tree extension is given
@ can be generalized to nonbinary
o faster is not possible under the ETH

the generalization NETWORK CONTAINMENT is W[1]-hard

51/51

Recent results (van lersel, Jones, Weller)

TREE CONTAINMENT can be solved using scanwidth:

much simpler algorithm than using treewidth

dependency on parameter is much better: 20(k1ek)| 4|

assuming a tree extension is given
@ can be generalized to nonbinary
o faster is not possible under the ETH

the generalization NETWORK CONTAINMENT is W[1]-hard

@ Open question: can scanwidth be computed in FPT time?
(i.e. f(k)-|V]° time with ¢ a constant)

51/51

Recent results (van lersel, Jones, Weller)

TREE CONTAINMENT can be solved using scanwidth:

much simpler algorithm than using treewidth

dependency on parameter is much better: 20(k1ek)| 4|

assuming a tree extension is given
@ can be generalized to nonbinary
o faster is not possible under the ETH

the generalization NETWORK CONTAINMENT is W[1]-hard

@ Open question: can scanwidth be computed in FPT time?
(i.e. f(k)-|V]° time with ¢ a constant)

o Open question: is HYBRIDIZATION NUMBER FPT parameterized by scanwidth?

51/51

