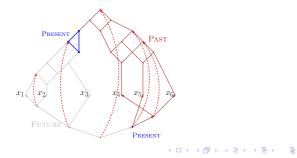
### Treewidth and Scanwidth in Phylogenetics

Leo van lersel<sup> $\dagger$ </sup> Niels Holtgrefe<sup> $\dagger$ </sup> Mark Jones<sup> $\dagger$ </sup> Mathias Weller<sup>\*</sup>

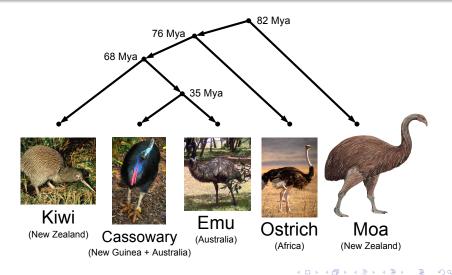
<sup>†</sup> TU Delft, \* TU Berlin

#### Dutch Seminar on Optimization, 2023



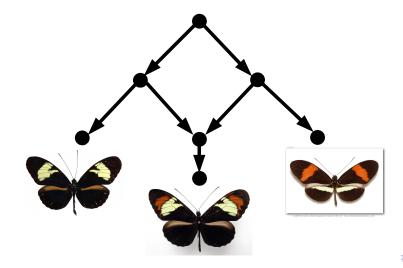
#### Definition

Let X be a finite set. A rooted phylogenetic tree on X is a rooted tree with no indegree-1 outdegree-1 vertices whose leaves are bijectively labelled by the elements of X.



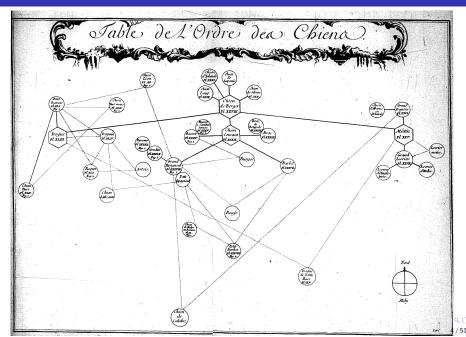
#### Definition

Let X be a finite set. A **rooted phylogenetic network** on X is a rooted **directed acyclic graph** with no indegree-1 outdegree-1 vertices whose leaves are bijectively labelled by the elements of X.

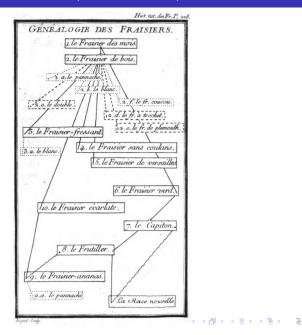


। 3/51

# Dog phylogenetic network (Buffon, 1755)

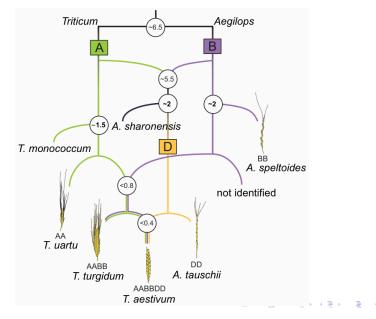


#### Strawberry phylogenetic network (Duchesne, 1766)



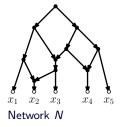
5/51

## Wheat phylogenetic network (Marcussen et al., 2014)



### Tree Containment problem





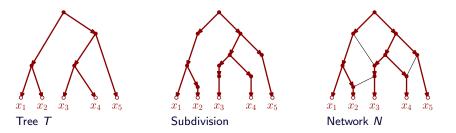
A phylogenetic network N on X displays a phylogenetic network T on X if a subdivision of T is a subgraph of N.

TREE CONTAINMENT **Given:** rooted binary phylogenetic tree T on X, rooted binary phylogenetic network N on X**Question:** Does N display T?

- Stepping stone to other problems (eg network construction)
- Important verification step check that a constructed network fits known data.
- NP-hard; FPT w.r.t. reticulation number of N, level of N

We study TREE CONTAINMENT parameterized by the treewidth of N

### Tree Containment problem

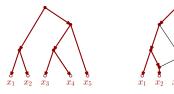


A phylogenetic network N on X displays a phylogenetic network T on X if a subdivision of T is a subgraph of N.

TREE CONTAINMENT **Given:** rooted binary phylogenetic tree T on X, rooted binary phylogenetic network N on X**Question:** Does N display T?

- Stepping stone to other problems (eg network construction)
- Important verification step check that a constructed network fits known data.
- NP-hard; FPT w.r.t. reticulation number of N, level of N

We study TREE CONTAINMENT parameterized by the treewidth of N

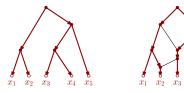


#### Theorem (van Iersel, Jones, Weller, 2022)

TREE CONTAINMENT is fixed-parameter tractable (FPT) with respect to the treewidth k of the network. The algorithm has running time  $2^{O(k^2)}|A|$ .

TREE CONTAINMENT has some similarities with:

• SUGRAPH ISOMORPHISM - but subdivisions allowed (homeomorphism)

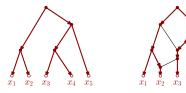


#### Theorem (van Iersel, Jones, Weller, 2022)

TREE CONTAINMENT is fixed-parameter tractable (FPT) with respect to the treewidth k of the network. The algorithm has running time  $2^{O(k^2)}|A|$ .

TREE CONTAINMENT has some similarities with:

- SUGRAPH ISOMORPHISM but subdivisions allowed (homeomorphism)
- H-MINOR CONTAINMENT but the "H" is large (and labelled)

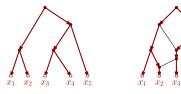


#### Theorem (van Iersel, Jones, Weller, 2022)

TREE CONTAINMENT is fixed-parameter tractable (FPT) with respect to the treewidth k of the network. The algorithm has running time  $2^{O(k^2)}|A|$ .

TREE CONTAINMENT has some similarities with:

- SUGRAPH ISOMORPHISM but subdivisions allowed (homeomorphism)
- H-MINOR CONTAINMENT but the "H" is large (and labelled)
- $\bullet~\mathrm{Steiner}~\mathrm{Tree}$  but we require specific topology



#### Theorem (van Iersel, Jones, Weller, 2022)

TREE CONTAINMENT is fixed-parameter tractable (FPT) with respect to the treewidth k of the network. The algorithm has running time  $2^{O(k^2)}|A|$ .

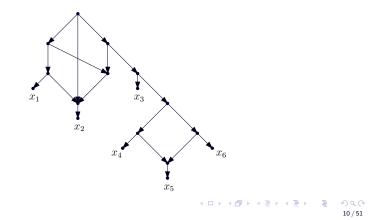
TREE CONTAINMENT has some similarities with:

- SUGRAPH ISOMORPHISM but subdivisions allowed (homeomorphism)
- H-MINOR CONTAINMENT but the "H" is large (and labelled)
- $\bullet~\mathrm{Steiner}~\mathrm{Tree}$  but we require specific topology

Big challenge: tracking interaction between two input graphs, and the second se

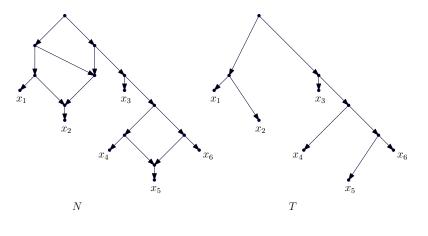
#### Definition

- the reticulation number r is defined as r = |A| |V| + 1
  - i.e. the number of arcs you need to delete to get a tree
- $\bullet$  the level  $\ell$  is the maximum reticulation number of a biconnected component



#### Reticulation Number and Level

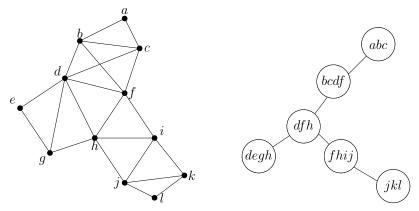
- TREE CONTAINMENT can easily be solved in  $O(2^{\ell}|A|)$  time
- this can be improved to  $O(2^{\ell/2}|V|^2)$  (Kanj, Nakhleh, Than, Xia, 2008)



<ロト < 部ト < 言ト < 言ト 差 の Q () 11/51

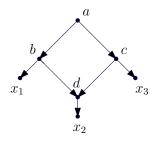
### Treewidth

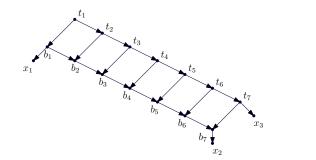
• The treewidth tw(G) of G is the smallest width of a tree decomposition of G.

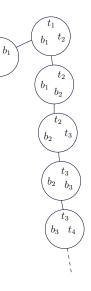


- Tree decomposition: a (non-phylogenetic) tree  $\mathcal{T}$  whose vertices ('bags') are subsets of V(G), and such that:
  - Every vertex of G appears in at least one bag.
  - 2 For every edge uv in G, u, v appear in at least one bag together.
  - **(3)** For every vertex v in G, the bags containing v form a **connected subgraph** of  $\mathcal{T}$ .
- The width of a tree decomposition is the maximum size of a bag -1.

- $\bullet\,$  a tree has treewidth 1 and level 0
- treewidth  $\leq$  level +1



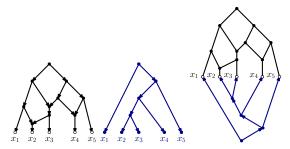




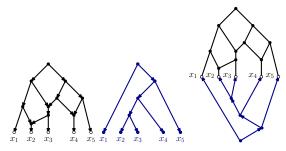
 $x_1$ 

< □ > < 部 > < 差 > < 差 > 差 ● < 2 > < 2 > < 2 < √ < < 14/51

The **display graph** D(N, T) is the graph derived from N, T by identifying leaves with the same taxon label.



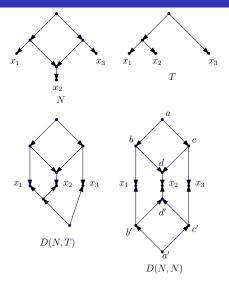
The **display graph** D(N, T) is the graph derived from N, T by identifying leaves with the same taxon label.



Theorem (Janssen, Jones, Kelk, Stamoulis & Wu, 2019)

If N displays T, then the display graph D(N, T) has treewidth at most 2tw(N) + 1.

#### Treewidth of the display graph

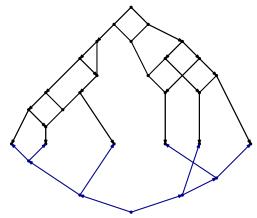


Theorem (Janssen, Jones, Kelk, Stamoulis & Wu, 2019)

If N displays T, then the display graph D(N, T) has treewidth at most 2tw(N) + 1.

## Embedding function

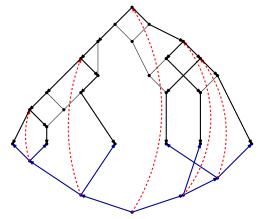
Represent a solution to TREE CONTAINMENT by an **embedding function** on the display graph.



- Map every vertex u in T to a vertex  $\phi(u)$  in N.
- (Each leaf is mapped to itself)
- Map each arc uv in T to a path  $\phi(uv)$  in N from  $\phi(u)$  to  $\phi(v)$
- Paths are arc-disjoint, other constraints for technical reasons

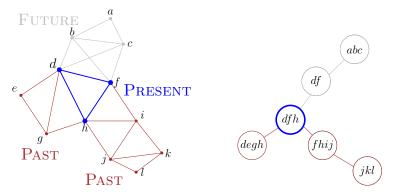
## Embedding function

Represent a solution to TREE CONTAINMENT by an **embedding function** on the display graph.



- Map every vertex u in T to a vertex  $\phi(u)$  in N.
- (Each leaf is mapped to itself)
- Map each arc uv in T to a path  $\phi(uv)$  in N from  $\phi(u)$  to  $\phi(v)$
- Paths are arc-disjoint, other constraints for technical reasons

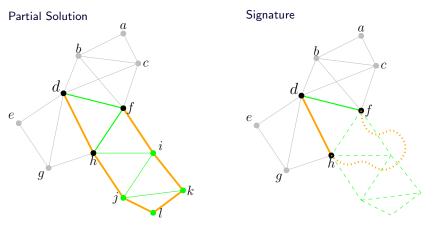
For a dynamic programming algorithm, we can think of a bag in the tree decomposition in terms of Past/Present/Future:



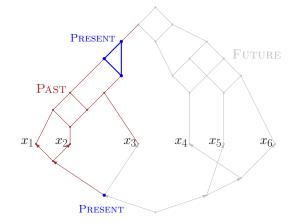
- Past: the part of the graph we've already explored
- Present: the current bag
- Future: the part of the graph we have yet to explore
- The Present separates the Past from the Future

(日) (部) (注) (注) (三)

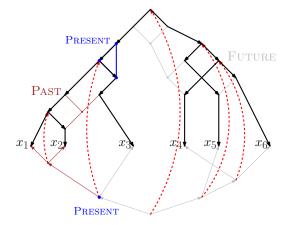
General approach: Reduce information about a **partial solution** to a **small signature** e.g. Hamiltonian Path:



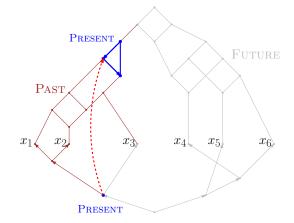
How do we define signatures for  $\ensuremath{\mathrm{TREE}}$  Containment?



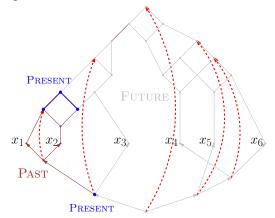
How do we define signatures for  $\ensuremath{\mathrm{TREE}}$  Containment?



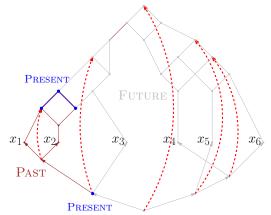
How do we define signatures for  $\ensuremath{\mathrm{TREE}}$  Containment?



How do we define signatures for TREE CONTAINMENT?



How do we define signatures for TREE CONTAINMENT?

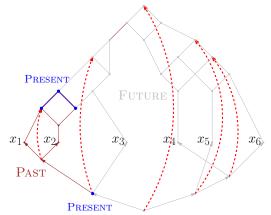


First idea: Track the embedding function restricted to Present.

Problem(s):

• The correct embedding may map **Present** vertices in T to **Past/Future** vertices in N

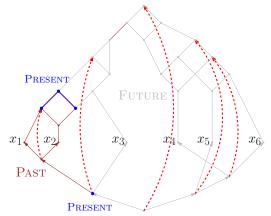
How do we define signatures for TREE CONTAINMENT?



First idea: Track the embedding function restricted to Present.

- The correct embedding may map **Present** vertices in T to **Past/Future** vertices in N
- Past tree vertices may have been mapped to Present/Future network vertices

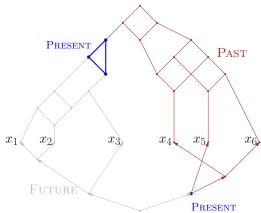
How do we define signatures for TREE CONTAINMENT?



First idea: Track the embedding function restricted to Present.

- The correct embedding may map **Present** vertices in T to **Past/Future** vertices in N
- Past tree vertices may have been mapped to Present/Future network vertices
- We may want to map **Future** vertices in T to **Past/Present** vertices in N!

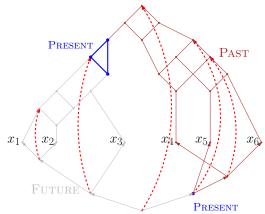
How do we define signatures for TREE CONTAINMENT?



First idea: Track the embedding function restricted to Present.

- The correct embedding may map **Present** vertices in T to **Past/Future** vertices in N
- Past tree vertices may have been mapped to Present/Future network vertices
- We may want to map **Future** vertices in T to **Past/Present** vertices in N!

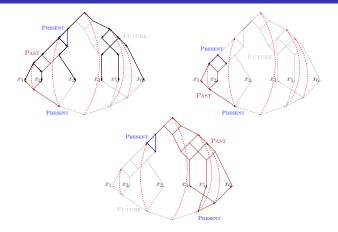
How do we define signatures for TREE CONTAINMENT?



First idea: Track the embedding function restricted to Present.

- The correct embedding may map **Present** vertices in T to **Past/Future** vertices in N
- Past tree vertices may have been mapped to Present/Future network vertices
- We may want to map **Future** vertices in T to **Past/Present** vertices in N!

# Which information do we keep?

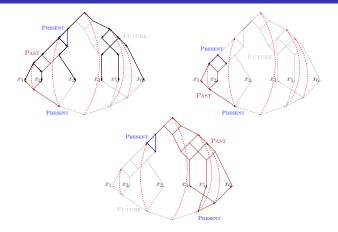


|                 | $\phi(u) \in Past$ | $\phi(u) \in Present$ | $\phi(u) \in Future$ |
|-----------------|--------------------|-----------------------|----------------------|
| $u \in Past$    |                    |                       |                      |
| $u \in Present$ |                    |                       |                      |
| $u \in Future$  |                    |                       |                      |

・ロト・白ト・ヨト・ヨー うへぐ

27 / 51

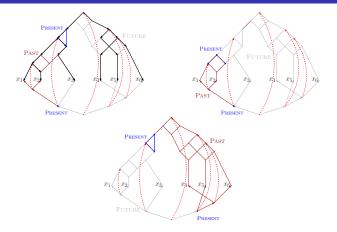
# Which information do we keep?



|                 | $\phi(u) \in Past$ | $\phi(u) \in Present$ | $\phi(u) \in Future$ |
|-----------------|--------------------|-----------------------|----------------------|
| $u \in Past$    |                    |                       |                      |
| $u \in Present$ |                    | Keep                  |                      |
| $u \in Future$  |                    |                       |                      |

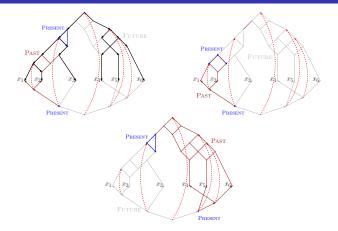
27 / 51

#### Which information do we keep?

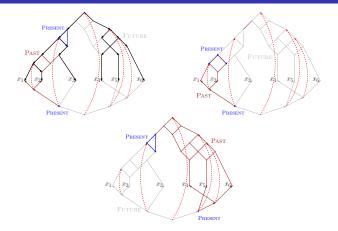


|                 | $\phi(u) \in Past$ | $\phi(u) \in Present$ | $\phi(u) \in Future$ |
|-----------------|--------------------|-----------------------|----------------------|
| $u \in Past$    |                    |                       |                      |
| $u \in Present$ | Keep*              | Keep                  | Keep*                |
| $u \in Future$  |                    |                       |                      |

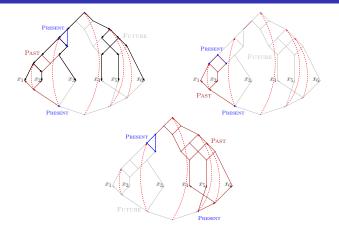
• \* do not store identities of vertices in Past/Future (e.g. if  $\phi(u) = v$  and  $v \in Past$ , we only record that  $\phi(u) \in Past$ )  $(\square v + (\square v) + (\square v))$ 



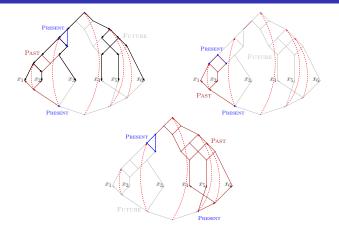
|                 | $\phi(u) \in Past$ | $\phi(u) \in Present$ | $\phi(u) \in Future$ |
|-----------------|--------------------|-----------------------|----------------------|
| $u \in Past$    |                    | Keep*                 | Keep*                |
| $u \in Present$ | Keep*              | Keep                  | Keep*                |
| $u \in Future$  |                    |                       |                      |



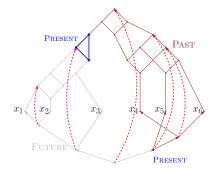
|                 | $\phi(u) \in Past$ | $\phi(u) \in Present$ | $\phi(u) \in Future$ |
|-----------------|--------------------|-----------------------|----------------------|
| $u \in Past$    |                    | Keep*                 | Keep*                |
| $u \in Present$ | Keep*              | Keep                  | Keep*                |
| $u \in Future$  | Keep*              | Keep*                 |                      |

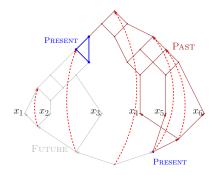


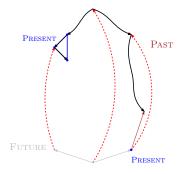
|                 | $\phi(u) \in Past$ | $\phi(u) \in Present$ | $\phi(u) \in Future$ |
|-----------------|--------------------|-----------------------|----------------------|
| $u \in Past$    | Forget             | Keep*                 | Keep*                |
| $u \in Present$ | Keep*              | Keep                  | Keep*                |
| $u \in Future$  | Keep*              | Keep*                 |                      |



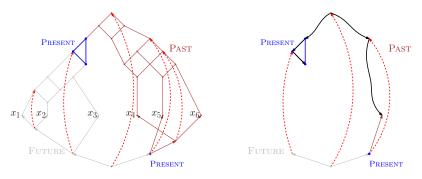
|                 | $\phi(u) \in Past$ | $\phi(u) \in Present$ | $\phi(u) \in Future$ |
|-----------------|--------------------|-----------------------|----------------------|
| $u \in Past$    | Forget             | Keep*                 | Keep*                |
| $u \in Present$ | Keep*              | Keep                  | Keep*                |
| $u \in Future$  | Keep*              | Keep*                 | 'Forget'             |







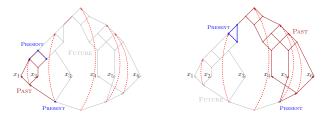
< □ > < 部 > < 差 > < 差 > 差 の Q (~ 28/51



#### Ommited details:

- Tree arcs / corresponding paths only removed if all their vertices are in Past (or Future)
- Vertices only removed if all their incident arcs are removed
- Long network paths within Past/Future are contracted

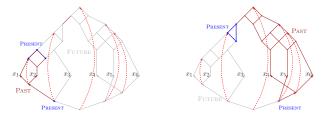
## Bounding information in a signature



Recall Present = one bag of the tree decomposition, thus  $|Present| \le tw(D(N, T)) + 1$ .

|                 | $\phi(u) \in Past$ | $\phi(u) \in Present$ | $\phi(u) \in Future$ |
|-----------------|--------------------|-----------------------|----------------------|
| $u \in Past$    | Forget             | Keep*                 | Keep*                |
| $u \in Present$ | Keep*              | Кеер                  | Keep*                |
| $u \in Future$  | Keep*              | Keep*                 | 'Forget'             |

## Bounding information in a signature



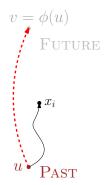
Recall Present = one bag of the tree decomposition, thus  $|Present| \le tw(D(N, T)) + 1$ .

|                 | $\phi(u)\inPast$ | $\phi(u) \in Present$ | $\phi(u) \in Future$ |
|-----------------|------------------|-----------------------|----------------------|
| $u \in Past$    |                  | Keep*                 | Keep*                |
| $u \in Present$ | Keep*            | Keep                  | Keep*                |
| $u \in Future$  | Keep*            | Keep*                 |                      |

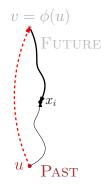
- Relatively easy to bound information involving the Present
- Vertices that move between Past/Future are more tricky...

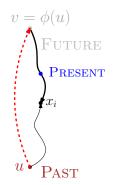


<ロト < 部ト < 差ト < 差ト 差 の Q () 31/51

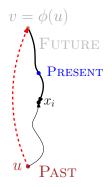


< □ > < 部 > < 差 > < 差 > 差 ● < 2 > 32 / 51





< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □



Number of *lowest* tree vertices u for which  $u \in \text{Past}$ ,  $\phi(u) \in \text{Future}$  (or vice versa) can be bounded by the number of vertices in Present.

- Size of signatures (and number of signatures per bag) is bounded by a function of treewidth
- Deciding whether a given signature for a bag has a corresponding (partial) solution can be decided using only signatures on child bags.

## Theorem (van Iersel, Jones, Weller, 2022)

TREE CONTAINMENT is fixed-parameter tractable (FPT) with respect to the treewidth k of the network. The algorithm has running time  $2^{O(k^2)}|A|$ .

HYBRIDIZATION NUMBER **Given:** (Un)rooted phylogenetic trees  $T_1, \ldots, T_r$  on X, integers w, k. **Parameter:** w **Question:** Does there exist a phylogenetic network N with treewidth  $\leq w$  and reticulation number  $\leq k$  such that N displays each of  $T_1, \ldots, T_r$ ?

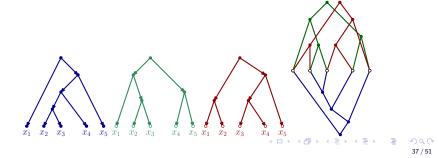
• Open question: Is HYBRIDIZATION NUMBER FPT w.r.t treewidth (for constant r)?

HYBRIDIZATION NUMBER **Given:** (Un)rooted phylogenetic trees  $T_1, \ldots, T_r$  on X, integers w, k. **Parameter:** w**Question:** Does there exist a phylogenetic network N with treewidth  $\leq w$  and reticulation number  $\leq k$  such that N displays each of  $T_1, \ldots, T_r$ ?

- Open question: Is HYBRIDIZATION NUMBER FPT w.r.t treewidth (for constant r)?
- Key challenge: We don't know N to do dynamic programming!

# HYBRIDIZATION NUMBER **Given:** (Un)rooted phylogenetic trees $T_1, \ldots, T_r$ on X, integers w, k. **Parameter:** w**Question:** Does there exist a phylogenetic network N with treewidth $\leq w$ and reticulation number $\leq k$ such that N displays each of $T_1, \ldots, T_r$ ?

- Open question: Is HYBRIDIZATION NUMBER FPT w.r.t treewidth (for constant r)?
- Key challenge: We don't know N to do dynamic programming!
- But: If N displays  $T_1, \ldots, T_r$  then display graph  $D(T_1, \ldots, T_r)$  has treewidth  $< r \cdot (tw(N) + 1) \le r(w + 1)$
- Hope for a DP algorithm?

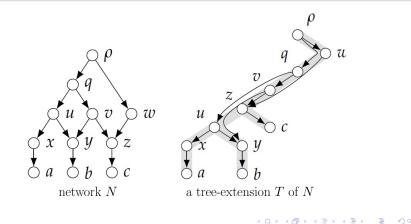


# $\mathbf{S}_{\mathrm{CANWIDTH}}$

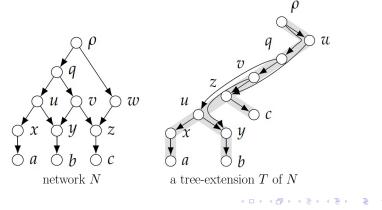
4 ロ ト 4 日 ト 4 目 ト 4 目 ト 1 日 今 Q ()
38 / 51

A tree extension of a network N is a tree T with the same vertex set as N such that

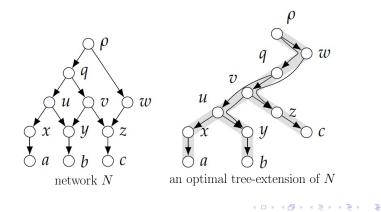
•  $\exists u - v$  path in  $N \implies \exists u - v$  path in T



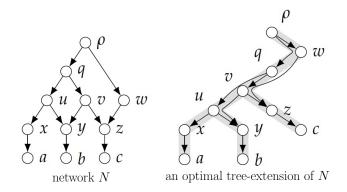
- The width of a tree extension is the maximum number of network edges travelling through an edge of the tree extension.
- The scanwidth of a network is the minimum width of a tree extension.



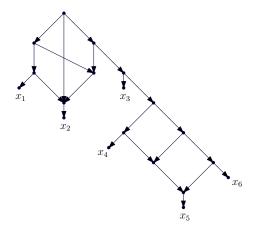
- The width of a tree extension is the maximum number of network edges travelling through an edge of the tree extension.
- The scanwidth of a network is the minimum width of a tree extension.



The idea of scanwidth is that you "scan" a network with multiple scanners.

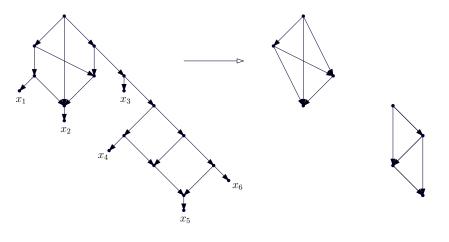


The scanwidth of a network is the maximum scanwidth of a biconnected component.

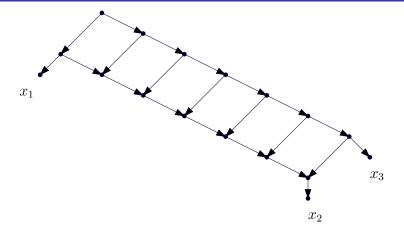


# Decomposition and reduction

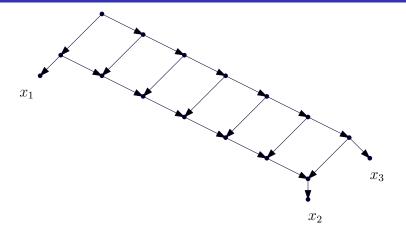
- split into biconnected components (delete trivial ones)
- suppress indegree-1 outdegree-1 vertices



# Scanwidth vs Level



# Scanwidth vs Level



#### Lemma

If W is a weakly connected sink set then  $\delta^{-}(W) \leq r+1$ .

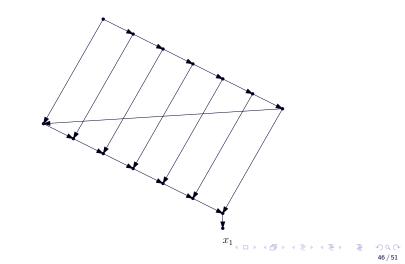
Hence, scanwidth  $\leq r + 1$  with r the reticulation number. Hence, scanwidth  $\leq \ell + 1$  with  $\ell$  the level.

<ロ><部><部><日><部><日><日><日><日><日><日><日><日><日><10</p>

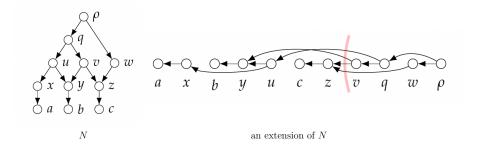
# Scanwidth vs Treewidth

## Lemma

## $\textit{treewidth} \leq \textit{scanwidth}$



- an extension of a network is a linear ordering of its vertices such that all arcs point to the left
- the width of an extension is the maximum number of arcs cut by any 'vertical cut'
- the cutwidth of a network is the minimum width of an extension



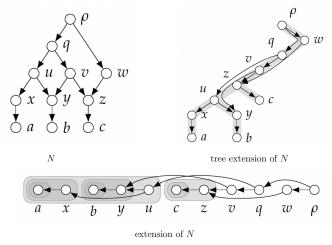
イロト イヨト イヨト イヨト

3

47 / 51

## Scanwidth using extensions

Scanwidth can also be defined using extension, but then you split each cut corresponding to weakly connected components



Lemma

#### $scanwidth \leq cutwidth$

• NP-hard to compute (Berry, Scornavacca and Weller, 2020)

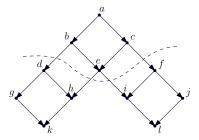
- NP-hard to compute (Berry, Scornavacca and Weller, 2020)
- Exact dynamic programming algorithm  $O(k \cdot |V|^{k+2})$  (Holtgrefe, 2023)

- NP-hard to compute (Berry, Scornavacca and Weller, 2020)
- Exact dynamic programming algorithm  $O(k \cdot |V|^{k+2})$  (Holtgrefe, 2023)
- solves instances with up to 100 leaves and 30 indegree-2 vertices exactly

- NP-hard to compute (Berry, Scornavacca and Weller, 2020)
- Exact dynamic programming algorithm  $O(k \cdot |V|^{k+2})$  (Holtgrefe, 2023)
- solves instances with up to 100 leaves and 30 indegree-2 vertices exactly
- Open question: can scanwidth be computed in FPT time?
   (i.e. f(k) · |V|<sup>c</sup> time with c a constant)

# Dynamic programming algorithm idea

- for bipartition (L, R) of the vertices, compute the scanwidth assuming vertices from R are to the right from vertices in L in the extension
- split into weakly connected components when possible



#### Lemma

There are at most  $|V|^k$  sets L for which N[L]

- is weakly connected
- has no outgoing arcs
- has at most k incoming arcs

Running time  $O(k \cdot |V|^{k+2})$ 

• much simpler algorithm than using treewidth

- much simpler algorithm than using treewidth
- dependency on parameter is much better:  $2^{O(k \log k)} |A|$

- much simpler algorithm than using treewidth
- dependency on parameter is much better: 2<sup>O(k log k)</sup>|A|
   assuming a tree extension is given

- much simpler algorithm than using treewidth
- dependency on parameter is much better: 2<sup>O(k log k)</sup>|A|
   assuming a tree extension is given
- can be generalized to nonbinary

- much simpler algorithm than using treewidth
- dependency on parameter is much better: 2<sup>O(k log k)</sup>|A|
   assuming a tree extension is given
- can be generalized to nonbinary
- faster is not possible under the ETH

- much simpler algorithm than using treewidth
- dependency on parameter is much better: 2<sup>O(k log k)</sup>|A|
   assuming a tree extension is given
- can be generalized to nonbinary
- faster is not possible under the ETH
- $\bullet$  the generalization <code>Network Containment</code> is  $\mathsf{W}[1]\text{-hard}$

TREE CONTAINMENT can be solved using scanwidth:

- much simpler algorithm than using treewidth
- dependency on parameter is much better: 2<sup>O(k log k)</sup>|A| assuming a tree extension is given
- can be generalized to nonbinary
- faster is not possible under the ETH
- $\bullet$  the generalization <code>Network Containment</code> is  $\mathsf{W}[1]\text{-hard}$

Open question: can scanwidth be computed in FPT time?
 (i.e. f(k) · |V|<sup>c</sup> time with c a constant)

- much simpler algorithm than using treewidth
- dependency on parameter is much better: 2<sup>O(k log k)</sup>|A| assuming a tree extension is given
- can be generalized to nonbinary
- faster is not possible under the ETH
- $\bullet$  the generalization <code>Network Containment</code> is  $\mathsf{W}[1]\text{-hard}$

- Open question: can scanwidth be computed in FPT time?
   (i.e. f(k) · |V|<sup>c</sup> time with c a constant)
- Open question: is HYBRIDIZATION NUMBER FPT parameterized by scanwidth?

イロト イヨト イヨト イヨト 三日