
Treewidth and Scanwidth in Phylogenetics

Leo van Iersel† Niels Holtgrefe† Mark Jones† Mathias Weller∗

† TU Delft, ∗ TU Berlin

Dutch Seminar on Optimization, 2023

�� �2 �3 �4 �5 �6

Past

�uture

Present

Present

1 / 51



Definition

Let X be a finite set. A rooted phylogenetic tree on X is a rooted tree with no
indegree-1 outdegree-1 vertices whose leaves are bijectively labelled by the elements of X .

Kiwi
(New Zealand) Cassowary

(New Guinea + Australia)

Emu
(Australia)

Ostrich
(Africa)

Moa
(New Zealand)

82 Mya
76 Mya

68 Mya

35 Mya

2 / 51



Definition

Let X be a finite set. A rooted phylogenetic network on X is a rooted directed acyclic
graph with no indegree-1 outdegree-1 vertices whose leaves are bijectively labelled by the
elements of X .

3 / 51



Dog phylogenetic network (Buffon, 1755)

4 / 51



Strawberry phylogenetic network (Duchesne, 1766)

5 / 51



Wheat phylogenetic network (Marcussen et al., 2014)

6 / 51



Tree Containment problem

�� �2 �3 �4 �5

Tree T

�� �2 �3 �4 �5

Network N

A phylogenetic network N on X displays a phylogenetic network T on X if a subdivision
of T is a subgraph of N.

Tree Containment
Given: rooted binary phylogenetic tree T on X , rooted binary phylogenetic net-
work N on X
Question: Does N display T?

Stepping stone to other problems (eg network construction)

Important verification step - check that a constructed network fits known data.

NP-hard; FPT w.r.t. reticulation number of N, level of N

We study Tree Containment parameterized by the treewidth of N
7 / 51



Tree Containment problem

�� �2 �3 �4 �5

Tree T

�� �2 �3 �4 �5

Subdivision

�� �2 �3 �4 �5

Network N

A phylogenetic network N on X displays a phylogenetic network T on X if a subdivision
of T is a subgraph of N.

Tree Containment
Given: rooted binary phylogenetic tree T on X , rooted binary phylogenetic net-
work N on X
Question: Does N display T?

Stepping stone to other problems (eg network construction)

Important verification step - check that a constructed network fits known data.

NP-hard; FPT w.r.t. reticulation number of N, level of N

We study Tree Containment parameterized by the treewidth of N
8 / 51



Our result, and similar problems

Tree Containment
Given: rooted binary phylogenetic tree T on X , rooted binary phylogenetic network N
on X
Question: Does N display T?

�� �2 �3 �4 �5 �� �2 �3 �4 �5

Theorem (van Iersel, Jones, Weller, 2022)

Tree Containment is fixed-parameter tractable (FPT) with respect to the treewidth k of the

network. The algorithm has running time 2O(k2)|A|.

Tree Containment has some similarities with:

Sugraph Isomorphism - but subdivisions allowed (homeomorphism)

H-minor Containment - but the “H” is large (and labelled)

Steiner Tree - but we require specific topology

Big challenge: tracking interaction between two input graphs

9 / 51



Our result, and similar problems

Tree Containment
Given: rooted binary phylogenetic tree T on X , rooted binary phylogenetic network N
on X
Question: Does N display T?

�� �2 �3 �4 �5 �� �2 �3 �4 �5

Theorem (van Iersel, Jones, Weller, 2022)

Tree Containment is fixed-parameter tractable (FPT) with respect to the treewidth k of the

network. The algorithm has running time 2O(k2)|A|.

Tree Containment has some similarities with:

Sugraph Isomorphism - but subdivisions allowed (homeomorphism)

H-minor Containment - but the “H” is large (and labelled)

Steiner Tree - but we require specific topology

Big challenge: tracking interaction between two input graphs

9 / 51



Our result, and similar problems

Tree Containment
Given: rooted binary phylogenetic tree T on X , rooted binary phylogenetic network N
on X
Question: Does N display T?

�� �2 �3 �4 �5 �� �2 �3 �4 �5

Theorem (van Iersel, Jones, Weller, 2022)

Tree Containment is fixed-parameter tractable (FPT) with respect to the treewidth k of the

network. The algorithm has running time 2O(k2)|A|.

Tree Containment has some similarities with:

Sugraph Isomorphism - but subdivisions allowed (homeomorphism)

H-minor Containment - but the “H” is large (and labelled)

Steiner Tree - but we require specific topology

Big challenge: tracking interaction between two input graphs

9 / 51



Our result, and similar problems

Tree Containment
Given: rooted binary phylogenetic tree T on X , rooted binary phylogenetic network N
on X
Question: Does N display T?

�� �2 �3 �4 �5 �� �2 �3 �4 �5

Theorem (van Iersel, Jones, Weller, 2022)

Tree Containment is fixed-parameter tractable (FPT) with respect to the treewidth k of the

network. The algorithm has running time 2O(k2)|A|.

Tree Containment has some similarities with:

Sugraph Isomorphism - but subdivisions allowed (homeomorphism)

H-minor Containment - but the “H” is large (and labelled)

Steiner Tree - but we require specific topology

Big challenge: tracking interaction between two input graphs
9 / 51



Reticulation Number and Level

Definition

the reticulation number r is defined as r = |A| − |V |+ 1

i.e. the number of arcs you need to delete to get a tree

the level ` is the maximum reticulation number of a biconnected component

x1

x2

x3

x4

x5

x6

10 / 51



Reticulation Number and Level

Tree Containment can easily be solved in O(2`|A|) time

this can be improved to O(2`/2|V |2) (Kanj, Nakhleh, Than, Xia, 2008)

x1

x2

x3

x4

x5

x6

x1

x2

x3

x4

x5

x6

N T

11 / 51



Treewidth

The treewidth tw(G) of G is the smallest width of a tree decomposition of G .

�

b
c

d

e
f

g
h

i

j

l

k

�bc

bcdf

dfh

fhijdegh

jkl

Tree decomposition: a (non-phylogenetic) tree T whose vertices (’bags’) are subsets
of V (G), and such that:

1 Every vertex of G appears in at least one bag.
2 For every edge uv in G , u, v appear in at least one bag together.
3 For every vertex v in G , the bags containing v form a connected subgraph of T .

The width of a tree decomposition is the maximum size of a bag −1.
12 / 51



Treewidth vs Level

a tree has treewidth 1 and level 0

treewidth ≤ level +1

x1

x2

x3

a

b c

d

13 / 51



Treewidth vs Level

x1

x2

x3

t1
t2

t3
t4

t5
t6

t7

b1
b2

b3
b4

b5
b6

b7

t1
t2b1

b1
x1

t2
b1

b2

t2
t3b2

t3
b2 b3

t3
t4b3

14 / 51



Display Graph

The display graph D(N,T ) is the graph derived from N,T by identifying leaves with the
same taxon label.

�� �2 �3 �4 �5 �� �2 �3 �4 �5

�� �2 �3 �4 �5

Theorem (Janssen, Jones, Kelk, Stamoulis & Wu, 2019)

If N displays T , then the display graph D(N,T ) has treewidth at most 2tw(N) + 1.

15 / 51



Display Graph

The display graph D(N,T ) is the graph derived from N,T by identifying leaves with the
same taxon label.

�� �2 �3 �4 �5 �� �2 �3 �4 �5

�� �2 �3 �4 �5

Theorem (Janssen, Jones, Kelk, Stamoulis & Wu, 2019)

If N displays T , then the display graph D(N,T ) has treewidth at most 2tw(N) + 1.

15 / 51



Treewidth of the display graph

x1

x2

x3 x1 x2 x3

N

T

x1 x2 x3

D(N, T )

x1 x2 x3

D(N,N)

a

b c

d

b′ c′

a′

d′

Theorem (Janssen, Jones, Kelk, Stamoulis & Wu, 2019)

If N displays T , then the display graph D(N,T ) has treewidth at most 2tw(N) + 1.

16 / 51



Embedding function

Represent a solution to Tree Containment by an embedding function on the display
graph.

Map every vertex u in T to a vertex φ(u) in N.
(Each leaf is mapped to itself)
Map each arc uv in T to a path φ(uv) in N from φ(u) to φ(v)
Paths are arc-disjoint, other constraints for technical reasons....

17 / 51



Embedding function

Represent a solution to Tree Containment by an embedding function on the display
graph.

Map every vertex u in T to a vertex φ(u) in N.
(Each leaf is mapped to itself)
Map each arc uv in T to a path φ(uv) in N from φ(u) to φ(v)
Paths are arc-disjoint, other constraints for technical reasons....

18 / 51



Past, Present, Future

For a dynamic programming algorithm, we can think of a bag in the tree decomposition
in terms of Past/Present/Future:

�

b
c

d

e
f

g
h

i

j

l

k

Present

Past

�uture

Past

�bc

df

dfh

fhijdegh

jkl

Past: the part of the graph we’ve already explored

Present: the current bag

Future: the part of the graph we have yet to explore

The Present separates the Past from the Future

19 / 51



Dynamic Programming on Tree Decompositions

General approach: Reduce information about a partial solution to a small signature
e.g. Hamiltonian Path:

Partial Solution Signature
�

b
c

d

e
f

g
h

i

j

l

k

�

b
c

d

e
f

g
h

20 / 51



Tracking embedding within bag

How do we define signatures for Tree Containment?

�� �2 �3 �4 �5 �6

Past

�uture

Present

Present

First idea: Track the embedding function restricted to Present.

21 / 51



Tracking embedding within bag

How do we define signatures for Tree Containment?

�� �2 �3 �4 �5 �6

Past

�uture

Present

Present

First idea: Track the embedding function restricted to Present.

22 / 51



Tracking embedding within bag

How do we define signatures for Tree Containment?

�� �2 �3 �4 �5 �6

Past

�uture

Present

Present

First idea: Track the embedding function restricted to Present.

23 / 51



Tracking embedding within bag

How do we define signatures for Tree Containment?

�� �2 �3 �4 �5 �6

Past

�uture

Present

Present

First idea: Track the embedding function restricted to Present.

Problem(s):

The correct embedding may map Present vertices in T to Past/Future vertices in N
Past tree vertices may have been mapped to Present/Future network vertices
We may want to map Future vertices in T to Past/Present vertices in N!

24 / 51



Tracking embedding within bag

How do we define signatures for Tree Containment?

�� �2 �3 �4 �5 �6

Past

�uture

Present

Present

First idea: Track the embedding function restricted to Present.

Problem(s):

The correct embedding may map Present vertices in T to Past/Future vertices in N

Past tree vertices may have been mapped to Present/Future network vertices
We may want to map Future vertices in T to Past/Present vertices in N!

24 / 51



Tracking embedding within bag

How do we define signatures for Tree Containment?

�� �2 �3 �4 �5 �6

Past

�uture

Present

Present

First idea: Track the embedding function restricted to Present.

Problem(s):

The correct embedding may map Present vertices in T to Past/Future vertices in N
Past tree vertices may have been mapped to Present/Future network vertices

We may want to map Future vertices in T to Past/Present vertices in N!

24 / 51



Tracking embedding within bag

How do we define signatures for Tree Containment?

�� �2 �3 �4 �5 �6

Past

�uture

Present

Present

First idea: Track the embedding function restricted to Present.

Problem(s):

The correct embedding may map Present vertices in T to Past/Future vertices in N
Past tree vertices may have been mapped to Present/Future network vertices
We may want to map Future vertices in T to Past/Present vertices in N!

24 / 51



Tracking embedding within bag

How do we define signatures for Tree Containment?

�� �2 �3 �4 �5 �6

Past

�uture

Present

Present

First idea: Track the embedding function restricted to Present.

Problem(s):

The correct embedding may map Present vertices in T to Past/Future vertices in N
Past tree vertices may have been mapped to Present/Future network vertices
We may want to map Future vertices in T to Past/Present vertices in N!

25 / 51



Tracking embedding within bag

How do we define signatures for Tree Containment?

�� �2 �3 �4 �5 �6

Past

�uture

Present

Present

First idea: Track the embedding function restricted to Present.

Problem(s):

The correct embedding may map Present vertices in T to Past/Future vertices in N
Past tree vertices may have been mapped to Present/Future network vertices
We may want to map Future vertices in T to Past/Present vertices in N!

26 / 51



Which information do we keep?

�� �2 �3 �4 �5 �6

Past

�uture

Present

Present

�� �2 �3 �4 �5 �6

Past

�uture

Present

Present

�� �2 �3 �4 �5 �6

Past

�uture

Present

Present

φ(u) ∈ Past φ(u) ∈ Present φ(u) ∈ Future
u ∈ Past

Forget Keep* Keep*

u ∈ Present

Keep* Keep Keep*

u ∈ Future

Keep* Keep* ‘Forget’

* do not store identities of vertices in Past/Future
(e.g. if φ(u) = v and v ∈ Past, we only record that φ(u) ∈Past)

27 / 51



Which information do we keep?

�� �2 �3 �4 �5 �6

Past

�uture

Present

Present

�� �2 �3 �4 �5 �6

Past

�uture

Present

Present

�� �2 �3 �4 �5 �6

Past

�uture

Present

Present

φ(u) ∈ Past φ(u) ∈ Present φ(u) ∈ Future
u ∈ Past

Forget Keep* Keep*

u ∈ Present

Keep*

Keep

Keep*

u ∈ Future

Keep* Keep* ‘Forget’

* do not store identities of vertices in Past/Future
(e.g. if φ(u) = v and v ∈ Past, we only record that φ(u) ∈Past)

27 / 51



Which information do we keep?

�� �2 �3 �4 �5 �6

Past

�uture

Present

Present

�� �2 �3 �4 �5 �6

Past

�uture

Present

Present

�� �2 �3 �4 �5 �6

Past

�uture

Present

Present

φ(u) ∈ Past φ(u) ∈ Present φ(u) ∈ Future
u ∈ Past

Forget Keep* Keep*

u ∈ Present Keep* Keep Keep*
u ∈ Future

Keep* Keep* ‘Forget’

* do not store identities of vertices in Past/Future
(e.g. if φ(u) = v and v ∈ Past, we only record that φ(u) ∈Past)

27 / 51



Which information do we keep?

�� �2 �3 �4 �5 �6

Past

�uture

Present

Present

�� �2 �3 �4 �5 �6

Past

�uture

Present

Present

�� �2 �3 �4 �5 �6

Past

�uture

Present

Present

φ(u) ∈ Past φ(u) ∈ Present φ(u) ∈ Future
u ∈ Past

Forget

Keep* Keep*
u ∈ Present Keep* Keep Keep*
u ∈ Future

Keep* Keep* ‘Forget’

* do not store identities of vertices in Past/Future
(e.g. if φ(u) = v and v ∈ Past, we only record that φ(u) ∈Past)

27 / 51



Which information do we keep?

�� �2 �3 �4 �5 �6

Past

�uture

Present

Present

�� �2 �3 �4 �5 �6

Past

�uture

Present

Present

�� �2 �3 �4 �5 �6

Past

�uture

Present

Present

φ(u) ∈ Past φ(u) ∈ Present φ(u) ∈ Future
u ∈ Past

Forget

Keep* Keep*
u ∈ Present Keep* Keep Keep*
u ∈ Future Keep* Keep*

‘Forget’

* do not store identities of vertices in Past/Future
(e.g. if φ(u) = v and v ∈ Past, we only record that φ(u) ∈Past)

27 / 51



Which information do we keep?

�� �2 �3 �4 �5 �6

Past

�uture

Present

Present

�� �2 �3 �4 �5 �6

Past

�uture

Present

Present

�� �2 �3 �4 �5 �6

Past

�uture

Present

Present

φ(u) ∈ Past φ(u) ∈ Present φ(u) ∈ Future
u ∈ Past Forget Keep* Keep*
u ∈ Present Keep* Keep Keep*
u ∈ Future Keep* Keep*

‘Forget’

* do not store identities of vertices in Past/Future
(e.g. if φ(u) = v and v ∈ Past, we only record that φ(u) ∈Past)

27 / 51



Which information do we keep?

�� �2 �3 �4 �5 �6

Past

�uture

Present

Present

�� �2 �3 �4 �5 �6

Past

�uture

Present

Present

�� �2 �3 �4 �5 �6

Past

�uture

Present

Present

φ(u) ∈ Past φ(u) ∈ Present φ(u) ∈ Future
u ∈ Past Forget Keep* Keep*
u ∈ Present Keep* Keep Keep*
u ∈ Future Keep* Keep* ‘Forget’

* do not store identities of vertices in Past/Future
(e.g. if φ(u) = v and v ∈ Past, we only record that φ(u) ∈Past)

27 / 51



Example Signature

�� �2 �3 �4 �5 �6

Past

�uture

Present

Present

Past

�uture

Present

Present

Ommited details:

Tree arcs / corresponding paths only removed if all their vertices are in Past (or Future)

Vertices only removed if all their incident arcs are removed

Long network paths within Past/Future are contracted

28 / 51



Example Signature

�� �2 �3 �4 �5 �6

Past

�uture

Present

Present

Past

�uture

Present

Present

Ommited details:

Tree arcs / corresponding paths only removed if all their vertices are in Past (or Future)

Vertices only removed if all their incident arcs are removed

Long network paths within Past/Future are contracted

28 / 51



Example Signature

�� �2 �3 �4 �5 �6

Past

�uture

Present

Present

Past

�uture

Present

Present

Ommited details:

Tree arcs / corresponding paths only removed if all their vertices are in Past (or Future)

Vertices only removed if all their incident arcs are removed

Long network paths within Past/Future are contracted

28 / 51



Bounding information in a signature

�� �2 �3 �4 �5 �6

Past

�uture

Present

Present

�� �2 �3 �4 �5 �6

Past

�uture

Present

Present

Recall Present = one bag of the tree decomposition, thus |Present| ≤ tw(D(N,T )) + 1.

φ(u) ∈ Past φ(u) ∈ Present φ(u) ∈ Future
u ∈ Past Forget Keep* Keep*
u ∈ Present Keep* Keep Keep*
u ∈ Future Keep* Keep* ’Forget’

29 / 51



Bounding information in a signature

�� �2 �3 �4 �5 �6

Past

�uture

Present

Present

�� �2 �3 �4 �5 �6

Past

�uture

Present

Present

Recall Present = one bag of the tree decomposition, thus |Present| ≤ tw(D(N,T )) + 1.

φ(u) ∈ Past φ(u) ∈ Present φ(u) ∈ Future
u ∈ Past Keep* Keep*
u ∈ Present Keep* Keep Keep*
u ∈ Future Keep* Keep*

Relatively easy to bound information involving the Present

Vertices that move between Past/Future are more tricky...

30 / 51



Bounding time-travellers

u

v = ��u)

�uture

Past

31 / 51



Bounding time-travellers

u

xi

v = ��u)

�uture

Past

32 / 51



Bounding time-travellers

u

xi

v = ��u)

�uture

Past

33 / 51



Bounding time-travellers

u

xi

v = ��u)

�uture

Past

Present

34 / 51



Bounding time-travellers

u

xi

v = ��u)

�uture

Past

Present

Number of lowest tree vertices u for which u ∈ Past, φ(u) ∈ Future (or vice versa) can
be bounded by the number of vertices in Present.

35 / 51



Summary

Size of signatures (and number of signatures per bag) is bounded by a function of
treewidth

Deciding whether a given signature for a bag has a corresponding (partial) solution
can be decided using only signatures on child bags.

Theorem (van Iersel, Jones, Weller, 2022)

Tree Containment is fixed-parameter tractable (FPT) with respect to the treewidth k

of the network. The algorithm has running time 2O(k2)|A|.

36 / 51



Hybridization Number

Hybridization Number
Given: (Un)rooted phylogenetic trees T1, . . . ,Tr on X , integers w ,k.
Parameter: w
Question: Does there exist a phylogenetic network N with treewidth ≤ w and
reticulation number ≤ k such that N displays each of T1, . . . ,Tr?

Open question: Is Hybridization Number FPT w.r.t treewidth (for constant r)?

Key challenge: We don’t know N to do dynamic programming!

But: If N displays T1, . . . ,Tr then display graph D(T1, . . . ,Tr ) has treewidth
< r · (tw(N) + 1) ≤ r(w + 1)

Hope for a DP algorithm?

�� �2 �3 �4 �5 �� �2 �3 �4 �5 �� �2 �3 �4 �5

37 / 51



Hybridization Number

Hybridization Number
Given: (Un)rooted phylogenetic trees T1, . . . ,Tr on X , integers w ,k.
Parameter: w
Question: Does there exist a phylogenetic network N with treewidth ≤ w and
reticulation number ≤ k such that N displays each of T1, . . . ,Tr?

Open question: Is Hybridization Number FPT w.r.t treewidth (for constant r)?

Key challenge: We don’t know N to do dynamic programming!

But: If N displays T1, . . . ,Tr then display graph D(T1, . . . ,Tr ) has treewidth
< r · (tw(N) + 1) ≤ r(w + 1)

Hope for a DP algorithm?

�� �2 �3 �4 �5 �� �2 �3 �4 �5 �� �2 �3 �4 �5

37 / 51



Hybridization Number

Hybridization Number
Given: (Un)rooted phylogenetic trees T1, . . . ,Tr on X , integers w ,k.
Parameter: w
Question: Does there exist a phylogenetic network N with treewidth ≤ w and
reticulation number ≤ k such that N displays each of T1, . . . ,Tr?

Open question: Is Hybridization Number FPT w.r.t treewidth (for constant r)?

Key challenge: We don’t know N to do dynamic programming!

But: If N displays T1, . . . ,Tr then display graph D(T1, . . . ,Tr ) has treewidth
< r · (tw(N) + 1) ≤ r(w + 1)

Hope for a DP algorithm?

�� �2 �3 �4 �5 �� �2 �3 �4 �5 �� �2 �3 �4 �5

37 / 51



Scanwidth

38 / 51



Tree Extensions

Definition

A tree extension of a network N is a tree T with the same vertex set as N such that

∃ u-v path in N =⇒ ∃ u-v path in T

network N a tree-extension T of N

39 / 51



Scanwidth

Definition

The width of a tree extension is the maximum number of network edges travelling
through an edge of the tree extension.

The scanwidth of a network is the minimum width of a tree extension.

network N a tree-extension T of N

40 / 51



Scanwidth

Definition

The width of a tree extension is the maximum number of network edges travelling
through an edge of the tree extension.

The scanwidth of a network is the minimum width of a tree extension.

network N an optimal tree-extension of N

41 / 51



Scanwidth

The idea of scanwidth is that you “scan” a network with multiple scanners.

network N an optimal tree-extension of N

42 / 51



Decomposition

The scanwidth of a network is the maximum scanwidth of a biconnected component.

x1

x2

x3

x4

x5

x6

43 / 51



Decomposition and reduction

split into biconnected components (delete trivial ones)

suppress indegree-1 outdegree-1 vertices

x1

x2

x3

x4

x5

x6

44 / 51



Scanwidth vs Level

x1

x2

x3

Lemma

If W is a weakly connected sink set then δ−(W ) ≤ r + 1.

Hence, scanwidth ≤ r + 1 with r the reticulation number.
Hence, scanwidth ≤ `+ 1 with ` the level.

45 / 51



Scanwidth vs Level

x1

x2

x3

Lemma

If W is a weakly connected sink set then δ−(W ) ≤ r + 1.

Hence, scanwidth ≤ r + 1 with r the reticulation number.
Hence, scanwidth ≤ `+ 1 with ` the level.

45 / 51



Scanwidth vs Treewidth

Lemma

treewidth ≤ scanwidth

x1

46 / 51



Scanwidth vs Cutwidth

Definition

an extension of a network is a linear ordering of its vertices such that
all arcs point to the left

the width of an extension is the maximum number of arcs cut by any ‘vertical cut’

the cutwidth of a network is the minimum width of an extension

N an extension of N

47 / 51



Scanwidth using extensions

Scanwidth can also be defined using extension, but then you split each cut corresponding
to weakly connected components

N tree extension of N

extension of N

Lemma

scanwidth ≤ cutwidth
48 / 51



Scanwidth

NP-hard to compute (Berry, Scornavacca and Weller, 2020)

Exact dynamic programming algorithm O(k · |V |k+2) (Holtgrefe, 2023)

solves instances with up to 100 leaves and 30 indegree-2 vertices exactly

Open question: can scanwidth be computed in FPT time?

(i.e. f (k) · |V |c time with c a constant)

49 / 51



Scanwidth

NP-hard to compute (Berry, Scornavacca and Weller, 2020)

Exact dynamic programming algorithm O(k · |V |k+2) (Holtgrefe, 2023)

solves instances with up to 100 leaves and 30 indegree-2 vertices exactly

Open question: can scanwidth be computed in FPT time?

(i.e. f (k) · |V |c time with c a constant)

49 / 51



Scanwidth

NP-hard to compute (Berry, Scornavacca and Weller, 2020)

Exact dynamic programming algorithm O(k · |V |k+2) (Holtgrefe, 2023)

solves instances with up to 100 leaves and 30 indegree-2 vertices exactly

Open question: can scanwidth be computed in FPT time?

(i.e. f (k) · |V |c time with c a constant)

49 / 51



Scanwidth

NP-hard to compute (Berry, Scornavacca and Weller, 2020)

Exact dynamic programming algorithm O(k · |V |k+2) (Holtgrefe, 2023)

solves instances with up to 100 leaves and 30 indegree-2 vertices exactly

Open question: can scanwidth be computed in FPT time?

(i.e. f (k) · |V |c time with c a constant)

49 / 51



Dynamic programming algorithm idea

for bipartition (L,R) of the vertices, compute the scanwidth assuming vertices
from R are to the right from vertices in L in the extension
split into weakly connected components when possible

a

b c

d e f

g h i j

k l

Lemma

There are at most |V |k sets L for which N[L]

is weakly connected

has no outgoing arcs

has at most k incoming arcs

Running time O(k · |V |k+2)
50 / 51



Recent results (van Iersel, Jones, Weller)

Tree Containment can be solved using scanwidth:

much simpler algorithm than using treewidth

dependency on parameter is much better: 2O(k log k)|A|

assuming a tree extension is given

can be generalized to nonbinary

faster is not possible under the ETH

the generalization Network Containment is W[1]-hard

Open question: can scanwidth be computed in FPT time?

(i.e. f (k) · |V |c time with c a constant)

Open question: is Hybridization Number FPT parameterized by scanwidth?

51 / 51



Recent results (van Iersel, Jones, Weller)

Tree Containment can be solved using scanwidth:

much simpler algorithm than using treewidth

dependency on parameter is much better: 2O(k log k)|A|

assuming a tree extension is given

can be generalized to nonbinary

faster is not possible under the ETH

the generalization Network Containment is W[1]-hard

Open question: can scanwidth be computed in FPT time?

(i.e. f (k) · |V |c time with c a constant)

Open question: is Hybridization Number FPT parameterized by scanwidth?

51 / 51



Recent results (van Iersel, Jones, Weller)

Tree Containment can be solved using scanwidth:

much simpler algorithm than using treewidth

dependency on parameter is much better: 2O(k log k)|A|

assuming a tree extension is given

can be generalized to nonbinary

faster is not possible under the ETH

the generalization Network Containment is W[1]-hard

Open question: can scanwidth be computed in FPT time?

(i.e. f (k) · |V |c time with c a constant)

Open question: is Hybridization Number FPT parameterized by scanwidth?

51 / 51



Recent results (van Iersel, Jones, Weller)

Tree Containment can be solved using scanwidth:

much simpler algorithm than using treewidth

dependency on parameter is much better: 2O(k log k)|A|

assuming a tree extension is given

can be generalized to nonbinary

faster is not possible under the ETH

the generalization Network Containment is W[1]-hard

Open question: can scanwidth be computed in FPT time?

(i.e. f (k) · |V |c time with c a constant)

Open question: is Hybridization Number FPT parameterized by scanwidth?

51 / 51



Recent results (van Iersel, Jones, Weller)

Tree Containment can be solved using scanwidth:

much simpler algorithm than using treewidth

dependency on parameter is much better: 2O(k log k)|A|

assuming a tree extension is given

can be generalized to nonbinary

faster is not possible under the ETH

the generalization Network Containment is W[1]-hard

Open question: can scanwidth be computed in FPT time?

(i.e. f (k) · |V |c time with c a constant)

Open question: is Hybridization Number FPT parameterized by scanwidth?

51 / 51



Recent results (van Iersel, Jones, Weller)

Tree Containment can be solved using scanwidth:

much simpler algorithm than using treewidth

dependency on parameter is much better: 2O(k log k)|A|

assuming a tree extension is given

can be generalized to nonbinary

faster is not possible under the ETH

the generalization Network Containment is W[1]-hard

Open question: can scanwidth be computed in FPT time?

(i.e. f (k) · |V |c time with c a constant)

Open question: is Hybridization Number FPT parameterized by scanwidth?

51 / 51



Recent results (van Iersel, Jones, Weller)

Tree Containment can be solved using scanwidth:

much simpler algorithm than using treewidth

dependency on parameter is much better: 2O(k log k)|A|

assuming a tree extension is given

can be generalized to nonbinary

faster is not possible under the ETH

the generalization Network Containment is W[1]-hard

Open question: can scanwidth be computed in FPT time?

(i.e. f (k) · |V |c time with c a constant)

Open question: is Hybridization Number FPT parameterized by scanwidth?

51 / 51



Recent results (van Iersel, Jones, Weller)

Tree Containment can be solved using scanwidth:

much simpler algorithm than using treewidth

dependency on parameter is much better: 2O(k log k)|A|

assuming a tree extension is given

can be generalized to nonbinary

faster is not possible under the ETH

the generalization Network Containment is W[1]-hard

Open question: can scanwidth be computed in FPT time?

(i.e. f (k) · |V |c time with c a constant)

Open question: is Hybridization Number FPT parameterized by scanwidth?

51 / 51



Recent results (van Iersel, Jones, Weller)

Tree Containment can be solved using scanwidth:

much simpler algorithm than using treewidth

dependency on parameter is much better: 2O(k log k)|A|

assuming a tree extension is given

can be generalized to nonbinary

faster is not possible under the ETH

the generalization Network Containment is W[1]-hard

Open question: can scanwidth be computed in FPT time?

(i.e. f (k) · |V |c time with c a constant)

Open question: is Hybridization Number FPT parameterized by scanwidth?

51 / 51


