Complexity of Local Search for Euclidean
Clustering Problems

Bodo Manthey ' Nils Morawietz > Jesse van Rhijn 1
Frank Sommer 2

LUniversity of Twente

2Friedrich-Schiller University Jena

Dutch Optimization Seminar, March 2024

V‘)‘
JR supported by NWO grant OCENW.KLEIN.176

Clustering

Given n points in R?, group the points into clusters.

»_oe
- oty
&° 00.0

o>,

"8

Clustering

Given n points in R?, group the points into clusters.

Clustering

Given n points in RY, group the points into clusters.

Different objectives:

Clustering

Given n points in RY, group the points into clusters.
p group p Clusters

Different objectives:
» k-Means: minimize Zf-‘zl > oxec Ix = cm(C)|I%.

Clustering

Given n points in RY, group the points into clusters.
p group p Clusters

Different objectives:
» k-Means: minimize Zf‘zl > oxec Ix — cm(G)|2.

» Squared Euclidean Max Cut: maximize erx Zer HX—sz.

Flip Heuristics for Clustering
Simple local search method: reassign single points.

Flip Heuristics for Clustering

Simple local search method: reassign single points.

Called Flip for Max Cut and Hartigan-Wong method for k-Means.

Flip Heuristics for Clustering

Simple local search method: reassign single points.

Called Flip for Max Cut and Hartigan-Wong method for k-Means.

Flip Heuristics for Clustering

Simple local search method: reassign single points.

Called Flip for Max Cut and Hartigan-Wong method for k-Means.

Flip Heuristics for Clustering

Simple local search method: reassign single points.

Called Flip for Max Cut and Hartigan-Wong method for k-Means.

Flip Heuristics for Clustering

Simple local search method: reassign single points.

Called Flip for Max Cut and Hartigan-Wong method for k-Means.

Flip Heuristics for Clustering

Simple local search method: reassign single points.

Called Flip for Max Cut and Hartigan-Wong method for k-Means.

Theorem (Etscheid & Roglin, Manthey & R)

There exist instances of both k-Means and Squared Euclidean Max
Cut that require 2°\") jterations of Hartigan—Wong and Flip,
respectively.

Complexity of Local Search

Class PLS = Polynomial Local Search.

Complexity of Local Search

Class PLS = Polynomial Local Search.

Requires 3 efficient algorithms A, B, C:

Complexity of Local Search

Class PLS = Polynomial Local Search.

Requires d efficient algorithms A, B, C:

» A: computes some feasible solution,

Complexity of Local Search

Class PLS = Polynomial Local Search.

Requires d efficient algorithms A, B, C:

» A: computes some feasible solution,

» B: evaluates cost of solutions,

Complexity of Local Search

Class PLS = Polynomial Local Search.

Requires d efficient algorithms A, B, C:

» A: computes some feasible solution,

» B: evaluates cost of solutions,

» C: computes improving neighbor of solution

Complexity of Local Search

Class PLS = Polynomial Local Search.

Requires d efficient algorithms A, B, C:

» A: computes some feasible solution,

» B: evaluates cost of solutions,

» (C: computes improving neighbor of solution
— or outputs locally optimal.

Complexity of Local Search

Class PLS = Polynomial Local Search.

Requires d efficient algorithms A, B, C:

» A: computes some feasible solution,

» B: evaluates cost of solutions,

» (C: computes improving neighbor of solution
— or outputs locally optimal.

Need a notion of reduction between PLS problems.

PLS-reductions

PLS problems relate via a special type of reduction (f, g):

Kl

PLS-reductions

PLS problems relate via a special type of reduction (f, g):

P—"—0

Function f maps instance of P to instance of Q.

PLS-reductions

PLS problems relate via a special type of reduction (f, g):

Function f maps instance of P to instance of Q.

PLS-reductions

PLS problems relate via a special type of reduction (f, g):

Function f maps instance of P to instance of Q.

Function g maps solution of @ to solution of P.

PLS-reductions

PLS problems relate via a special type of reduction (f, g):

Function f maps instance of P to instance of Q.
Function g maps solution of @ to solution of P.

Crucial: if s’ is locally optimal, then so is s = g(s').

Implications

P is PLS-complete — P among hardest problems in PLS.

Implications

P is PLS-complete = P among hardest problems in PLS.

PLS-complete P in polytime = all @ € PLS in polytime.

Implications

P is PLS-complete = P among hardest problems in PLS.

PLS-complete P in polytime = all @ € PLS in polytime.

Theorem (Schaffer & Yannakakis)

If for some P, @ € PLS we have P <p;s @ via a tight reduction,

then @ inherits any lower bounds on the worst-case running time
of P.

Reduction Path

Max Cut-5/FLip

|

OpD HALF Pos NAE 3-SAT/FLip

|

OpDp HALF Pos NAE 2-SAT/FLip

|

OpD MaX BISECTION/FLIP

Opp MIN BisecTioN/FLIP DENSEST CuT/FLIP

|

(SQUARED) EUCLIDEAN MAX CuT/FLIP 2-MEANS/HARTIGAN-WONG SPARSEST CuT/FLIP

|

k-MEANS/HARTIGAN-WONG

Reduction Path

Max Cut-5/FLip

|

OpD HALF Pos NAE 3-SAT/FLip

l

OpDp HALF Pos NAE 2-SAT/FLip

|

OpD MaX BISECTION/FLIP
Opp MIN BisecTioN/FLIP DENSEST CuT/FLIP
(SQUARED) EUCLIDEAN MAX CuT/FLIP 2-MEANS/HARTIGAN-WONG SPARSEST CuT/FLIP

|

k-MEANS/HARTIGAN-WONG

Reduction Path

Max Cut-5/FLip

|

OpD HALF Pos NAE 3-SAT /FLip

l

OpDp HALF Pos NAE 2-SAT/FLip

|

OpD MaX BISECTION/FLIP

|

Opp MIN BisecTioN/FLIP

|

(SQuARED) EucLIDEAN Max Cut/FLip

Reduction Path

Max Cut-5/FLip

|

OpD HALF Pos NAE 3-SAT /FLip

l

OpDp HALF Pos NAE 2-SAT/FLip

|

OpD MaX BISECTION/FLIP

|

Opp MIN BisecTioN/FLIP

l

(SQuARED) EucLIDEAN Max Cut/FLip

Odd Min Bisection <p;s Squared Euclidean Max Cut

Odd Bisection is a Cut, but with |V;| = |V,| £ 1.

Odd Min Bisection <p;s Squared Euclidean Max Cut

Odd Bisection is a Cut, but with |V4| = V| £ 1.

Adapt NP-hardness proof of Ageev et al.:

Odd Min Bisection <p;s Squared Euclidean Max Cut

Odd Bisection is a Cut, but with |V4| = V| £ 1.

Adapt NP-hardness proof of Ageev et al.:

V2

wi /2 0 Vw32 a, 0 0 0

vi Vwi/2 /w2 0 0 a, 0 0
) X=

ws 0 w2 0 0 0 a, 0

"“ 0 0 wi/2 0 0 0 ay,

with o, = /w(E)/2 — w(d(v))/2

Odd Min Bisection <p;s Squared Euclidean Max Cut

Odd Bisection is a Cut, but with |V4| = V| £ 1.

Adapt NP-hardness proof of Ageev et al.:

wi /2 0 Vw32 ay, 0 0 0

vy Vwi/2 /w2 0 0 a, 0 0
v |:'|> X =
w3 0 wy /2 0 0 0 aa, O

0 0 Vw20 0 0 ay,
with a, = \/w(E)/2 — w(d(v))/2

Odd Min Bisection <p;s Squared Euclidean Max Cut

Odd Bisection is a Cut, but with |V4| = V| £ 1.
Adapt NP-hardness proof of Ageev et al.:

wi /2 0 Vw2 a0 0 0

wy
vi Vwi/2 /w2 0 0 a, 0 0
B> X=
w3 0 wy/2 0 0 0 a, 0
o 0 0 Vw2 0 0 0 ay

with o, = \/w(E)/2 — w(d(v))/2

Now we are in a purely combinatorial setting — more freedom.

Odd Min Bisection <p;s Squared Euclidean Max Cut

Max Cut-5/FLip

|

Opp HALF Pos NAE 3-SAT/Frip

OpD HALF Pos NAE 2-SAT/FLip

l

ObpD MAX BISECTION/FLIP

l

ObpD MIN BISECTION/FLIP

|

(SQUARED) EUCLIDEAN Max Cut/FLIp

Odd Min Bisection <p;s Squared Euclidean Max Cut

Max Cut-5/FLip

|

Opp HALF Pos NAE 3-SAT/Frip

OpD HALF Pos NAE 2-SAT/FLip

l

ObpD MAX BISECTION/FLIP

l

ObpD MIN BISECTION/FLIP

|

(SQUARED) EUCLIDEAN Max Cut/FLIp

Max Cut-5 <p;s Odd Half Pos NAE 3-SAT

Instance of Odd Half Pos NAE k-SAT:

Max Cut-5 <p;s Odd Half Pos NAE 3-SAT

Instance of Odd Half Pos NAE k-SAT:

» boolean variables xi, ..., xp,

Max Cut-5 <p;s Odd Half Pos NAE 3-SAT

Instance of Odd Half Pos NAE k-SAT:
» boolean variables xi, ..., X,,

> #{false} = #{true} +1,

Max Cut-5 <p;s Odd Half Pos NAE 3-SAT

Instance of Odd Half Pos NAE k-SAT:

» boolean variables xi, ..., X,,

» #{false} = #{true} £+ 1,

» weighted Not-All-Equal clauses C; = NAE(xy, ...

Max Cut-5 <p;s Odd Half Pos NAE 3-SAT

Instance of Odd Half Pos NAE k-SAT:

» boolean variables xi, ..., x,,

» #{false} = #{true} £+ 1,

» weighted Not-All-Equal clauses C; = NAE(xq, ...

Not-All-Equal clause:

Max Cut-5 <p;s Odd Half Pos NAE 3-SAT

Instance of Odd Half Pos NAE k-SAT:
» boolean variables xi, ..., X,,

» #{false} = #{true} £+ 1,

» weighted Not-All-Equal clauses C; = NAE(xq, ...

Not-All-Equal clause:
» NAE(0,0) — 0
» NAE(1,1) —» 0

Max Cut-5 <p;s Odd Half Pos NAE 3-SAT

Instance of Odd Half Pos NAE k-SAT:

» boolean variables xi, ..., x,,

» #{false} = #{true} £+ 1,

» weighted Not-All-Equal clauses C; = NAE(xq, ...

Not-All-Equal clause:

Max Cut-5 <p;s Odd Half Pos NAE 3-SAT

Instance of Odd Half Pos NAE k-SAT:
» boolean variables xi, ..., X,

» #{false} = #{true} £+ 1,
» weighted Not-All-Equal clauses C; = NAE(xq, ..., xk).

Not-All-Equal clause:
» NAE(0,0) — 0
» NAE(1,1) —» 0
» NAE(0,1) — 1
» NAE(1,0) — 1

)

Goal: maximize weight of satisfied clauses.

Max Cut-5 <p;s Odd Half Pos NAE 3-SAT

Max Cut-5 <p;s Odd Half Pos NAE 3-SAT

NAE(v, uz) weight: M
NAE(v, up) weight: 8M
NAE(v, u3) weight: 3M

T 1977

Max Cut-5 <p;s Odd Half Pos NAE 3-SAT

NAE(v, uz)
NAE(v, up)
NAE(v, u3)

NAE(qy, u1)
NAE(qy, u?)
NAE(qu. 1)

weight:
weight:
weight:

weight:
weight:
weight:

8M
3M

—L
—8L
-3L

T 1977

z pra]

Max Cut-5 <p;s Odd Half Pos NAE 3-SAT

NAE(v, uz)
NAE(v, up)
NAE(v, u3)

NAE(qy, u1)
NAE(qvv u2)
NAE(q,. us)

NAE(v, g, a;)
NAE(v, qv, a;)
NAE(v, g, a;)
NAE(v, g, a;)
NAE(v, gy, a7)
NAE(v, gy, a;)
NAE(v, gy, a;)
NAE(v, g, a;)

{Ul, uz, U3}
{u1, w2}
{uy, us}
{uz, us}
{u1}

{u2}

{us}

0

weight:
weight:
weight:

weight:
weight:
weight:

weight:
weight:
weight:
weight:
weight:
weight:
weight:
weight:

T 1977

z 1A

€ 19897

Max Cut-5 <p;s Odd Half Pos NAE 3-SAT

Max Cut-5/FLip

|

Opp HALF Pos NAE 3-SAT/Frip

OpD HALF Pos NAE 2-SAT/FLip

l

ObpD MAX BISECTION/FLIP

l

ObpD MIN BISECTION/FLIP

|

(SQUARED) EUCLIDEAN Max Cut/FLIp

Max Cut-5 <p;s Odd Half Pos NAE 3-SAT

Max Cut-5/FLip

|

Opp HALF Pos NAE 3-SAT/Frip

OpD HALF Pos NAE 2-SAT/FLip

l

ObpD MAX BISECTION/FLIP

l

ObpD MIN BISECTION/FLIP

|

(SQUARED) EUCLIDEAN Max Cut/FLIp

Conclusion

Theorem

Squared Euclidean Max Cut/Flip and k-Means/Hartigan—-Wong are
PLS-complete.

arxiv:2312.14916

Conclusion

Theorem

Squared Euclidean Max Cut/Flip and k-Means/Hartigan—\Wong are
PLS-complete.

arxiv:2312.14916

arxiv:2312.14916

Conclusion

Theorem

Squared Euclidean Max Cut/Flip and k-Means/Hartigan—-Wong are
PLS-complete.

Since our reductions are tight, we also get:

arxiv:2312.14916

arxiv:2312.14916

Conclusion

Theorem

Squared Euclidean Max Cut/Flip and k-Means/Hartigan—-Wong are
PLS-complete.

Since our reductions are tight, we also get:

Corollary

There exist instances with initial solutions for which both Flip and
Hartigan-Wong require 2" jterations, no matter the
implementation.

arxiv:2312.14916

arxiv:2312.14916

Conclusion

Theorem

Squared Euclidean Max Cut/Flip and k-Means/Hartigan—-Wong are
PLS-complete.

Since our reductions are tight, we also get:

Corollary

There exist instances with initial solutions for which both Flip and
Hartigan-Wong require 2") jterations, no matter the
implementation.

Other PLS-complete Euclidean optimization problems, e.g.
TSP /k-Opt?

arxiv:2312.14916

arxiv:2312.14916

