Complexity of Local Search for Euclidean Clustering Problems

Bodo Manthey ${ }^{1}$ Nils Morawietz ${ }^{2}$ Jesse van Rhijn ${ }^{1}$ Frank Sommer ${ }^{2}$
${ }^{1}$ University of Twente
${ }^{2}$ Friedrich-Schiller University Jena

Dutch Optimization Seminar, March 2024

Clustering

Given n points in \mathbb{R}^{d}, group the points into clusters.

Clustering

Given n points in \mathbb{R}^{d}, group the points into clusters.

Clustering

Given n points in \mathbb{R}^{d}, group the points into clusters.

Different objectives:

Clustering

Given n points in \mathbb{R}^{d}, group the points into clusters.

Different objectives:

- k-Means: minimize $\sum_{i=1}^{k} \sum_{x \in C_{i}}\left\|x-\mathrm{cm}\left(C_{i}\right)\right\|^{2}$.

Clustering

Given n points in \mathbb{R}^{d}, group the points into clusters.

Different objectives:

- k-Means: minimize $\sum_{i=1}^{k} \sum_{x \in C_{i}}\left\|x-\mathrm{cm}\left(C_{i}\right)\right\|^{2}$.
- Squared Euclidean Max Cut: maximize $\sum_{x \in X} \sum_{y \in Y}\|x-y\|^{2}$.

Flip Heuristics for Clustering

Simple local search method: reassign single points.

Flip Heuristics for Clustering

Simple local search method: reassign single points.
Called Flip for Max Cut and Hartigan-Wong method for k-Means.

Flip Heuristics for Clustering

Simple local search method: reassign single points.
Called Flip for Max Cut and Hartigan-Wong method for k-Means.

Flip Heuristics for Clustering

Simple local search method: reassign single points.
Called Flip for Max Cut and Hartigan-Wong method for k-Means.

Flip Heuristics for Clustering

Simple local search method: reassign single points.
Called Flip for Max Cut and Hartigan-Wong method for k-Means.

Flip Heuristics for Clustering

Simple local search method: reassign single points.
Called Flip for Max Cut and Hartigan-Wong method for k-Means.

Flip Heuristics for Clustering

Simple local search method: reassign single points.
Called Flip for Max Cut and Hartigan-Wong method for k-Means.

Theorem (Etscheid \& Röglin, Manthey \& R)
There exist instances of both k-Means and Squared Euclidean Max Cut that require $2^{\Omega(n)}$ iterations of Hartigan-Wong and Flip, respectively.

Complexity of Local Search

Class PLS $=$ Polynomial Local Search.

Complexity of Local Search

Class PLS $=$ Polynomial Local Search.
Requires \exists efficient algorithms A, B, C :

Complexity of Local Search

Class PLS $=$ Polynomial Local Search.
Requires \exists efficient algorithms A, B, C :

- A: computes some feasible solution,

Complexity of Local Search

Class PLS $=$ Polynomial Local Search.
Requires \exists efficient algorithms A, B, C :

- A: computes some feasible solution,
- B: evaluates cost of solutions,

Complexity of Local Search

Class PLS $=$ Polynomial Local Search.
Requires \exists efficient algorithms A, B, C :

- A: computes some feasible solution,
- B: evaluates cost of solutions,
- C: computes improving neighbor of solution

Complexity of Local Search

Class PLS $=$ Polynomial Local Search.
Requires \exists efficient algorithms A, B, C :

- A: computes some feasible solution,
- B: evaluates cost of solutions,
- C: computes improving neighbor of solution \rightarrow or outputs locally optimal.

Complexity of Local Search

Class PLS $=$ Polynomial Local Search.
Requires \exists efficient algorithms A, B, C :

- A: computes some feasible solution,
- B: evaluates cost of solutions,
- C: computes improving neighbor of solution \rightarrow or outputs locally optimal.

Need a notion of reduction between PLS problems.

PLS-reductions

PLS problems relate via a special type of reduction (f, g) :

Q

PLS-reductions

PLS problems relate via a special type of reduction (f, g) :

Function f maps instance of P to instance of Q.

PLS-reductions

PLS problems relate via a special type of reduction (f, g) :

Function f maps instance of P to instance of Q.

PLS-reductions

PLS problems relate via a special type of reduction (f, g) :

Function f maps instance of P to instance of Q.
Function g maps solution of Q to solution of P.

PLS-reductions

PLS problems relate via a special type of reduction (f, g) :

Function f maps instance of P to instance of Q.
Function g maps solution of Q to solution of P.
Crucial: if s^{\prime} is locally optimal, then so is $s=g\left(s^{\prime}\right)$.

Implications

P is PLS-complete $\Longrightarrow P$ among hardest problems in PLS.

Implications

P is PLS-complete $\Longrightarrow P$ among hardest problems in PLS.
PLS-complete P in polytime \Longrightarrow all $Q \in$ PLS in polytime.

Implications

P is PLS-complete $\Longrightarrow P$ among hardest problems in PLS.
PLS-complete P in polytime \Longrightarrow all $Q \in$ PLS in polytime.

Theorem (Schäffer \& Yannakakis)
If for some $P, Q \in \mathrm{PLS}$ we have $P \leq_{P L S} Q$ via a tight reduction, then Q inherits any lower bounds on the worst-case running time of P.

Reduction Path

Reduction Path

Reduction Path

Max Cut-5/Flip
 \downarrow

Odd Half Pos NAE 3-SAT/Flip

Odd Half Pos NAE 2-SAT/Flip

Odd Max Bisection/Flip
\downarrow
Odd Min Bisection/Flip
\downarrow
(Squared) Euclidean Max Cut/Flip

Reduction Path

Odd Min Bisection $\leq_{p L S}$ Squared Euclidean Max Cut

Odd Bisection is a Cut, but with $\left|V_{1}\right|=\left|V_{2}\right| \pm 1$.

Odd Min Bisection $\leq_{p L S}$ Squared Euclidean Max Cut

Odd Bisection is a Cut, but with $\left|V_{1}\right|=\left|V_{2}\right| \pm 1$.
Adapt NP-hardness proof of Ageev et al.:

Odd Min Bisection $\leq_{P L S}$ Squared Euclidean Max Cut

Odd Bisection is a Cut, but with $\left|V_{1}\right|=\left|V_{2}\right| \pm 1$.
Adapt NP-hardness proof of Ageev et al.:

with $\alpha_{v}=\sqrt{w(E) / 2-w(\delta(v)) / 2}$

Odd Min Bisection $\leq_{P L S}$ Squared Euclidean Max Cut

Odd Bisection is a Cut, but with $\left|V_{1}\right|=\left|V_{2}\right| \pm 1$.
Adapt NP-hardness proof of Ageev et al.:

with $\alpha_{v}=\sqrt{w(E) / 2-w(\delta(v)) / 2}$

Odd Min Bisection $\leq_{P L S}$ Squared Euclidean Max Cut

Odd Bisection is a Cut, but with $\left|V_{1}\right|=\left|V_{2}\right| \pm 1$.
Adapt NP-hardness proof of Ageev et al.:

with $\alpha_{v}=\sqrt{w(E) / 2-w(\delta(v)) / 2}$

Now we are in a purely combinatorial setting \rightarrow more freedom.

Odd Min Bisection $\leq_{p L S}$ Squared Euclidean Max Cut

Odd Min Bisection $\leq_{p L S}$ Squared Euclidean Max Cut

Max Cut-5 $\leq_{P L S}$ Odd Half Pos NAE 3-SAT

Instance of Odd Half Pos NAE k-SAT:

Max Cut-5 $\leq_{p L S}$ Odd Half Pos NAE 3-SAT

Instance of Odd Half Pos NAE k-SAT:

- boolean variables x_{1}, \ldots, x_{n},

Max Cut-5 $\leq_{p L S}$ Odd Half Pos NAE 3-SAT

Instance of Odd Half Pos NAE k-SAT:

- boolean variables x_{1}, \ldots, x_{n},
- $\#\{$ false $\}=\#\{$ true $\} \pm 1$,

Max Cut-5 $\leq_{P L S}$ Odd Half Pos NAE 3-SAT

Instance of Odd Half Pos NAE k-SAT:

- boolean variables x_{1}, \ldots, x_{n},
- $\#\{$ false $\}=\#\{$ true $\} \pm 1$,
- weighted Not-All-Equal clauses $C_{i}=\operatorname{NAE}\left(x_{1}, \ldots, x_{k}\right)$.

Max Cut-5 $\leq_{P L S}$ Odd Half Pos NAE 3-SAT

Instance of Odd Half Pos NAE k-SAT:

- boolean variables x_{1}, \ldots, x_{n},
- $\#\{$ false $\}=\#\{$ true $\} \pm 1$,
- weighted Not-All-Equal clauses $C_{i}=\operatorname{NAE}\left(x_{1}, \ldots, x_{k}\right)$.

Not-All-Equal clause:

Max Cut-5 $\leq_{P L S}$ Odd Half Pos NAE 3-SAT

Instance of Odd Half Pos NAE k-SAT:

- boolean variables x_{1}, \ldots, x_{n},
- $\#\{$ false $\}=\#\{$ true $\} \pm 1$,
- weighted Not-All-Equal clauses $C_{i}=\operatorname{NAE}\left(x_{1}, \ldots, x_{k}\right)$.

Not-All-Equal clause:

- $\operatorname{NAE}(0,0) \rightarrow 0$
- $\operatorname{NAE}(1,1) \rightarrow 0$

Max Cut-5 $\leq_{P L S}$ Odd Half Pos NAE 3-SAT

Instance of Odd Half Pos NAE k-SAT:

- boolean variables x_{1}, \ldots, x_{n},
- $\#\{$ false $\}=\#\{$ true $\} \pm 1$,
- weighted Not-All-Equal clauses $C_{i}=\operatorname{NAE}\left(x_{1}, \ldots, x_{k}\right)$.

Not-All-Equal clause:

- $\operatorname{NAE}(0,0) \rightarrow 0$
- $\operatorname{NAE}(1,1) \rightarrow 0$
- $\operatorname{NAE}(0,1) \rightarrow 1$
- $\operatorname{NAE}(1,0) \rightarrow 1$

Max Cut-5 $\leq_{P L S}$ Odd Half Pos NAE 3-SAT

Instance of Odd Half Pos NAE k-SAT:

- boolean variables x_{1}, \ldots, x_{n},
- $\#\{$ false $\}=\#\{$ true $\} \pm 1$,
- weighted Not-All-Equal clauses $C_{i}=\operatorname{NAE}\left(x_{1}, \ldots, x_{k}\right)$.

Not-All-Equal clause:

- $\operatorname{NAE}(0,0) \rightarrow 0$
- $\operatorname{NAE}(1,1) \rightarrow 0$
- $\operatorname{NAE}(0,1) \rightarrow 1$
- $\operatorname{NAE}(1,0) \rightarrow 1$

Goal: maximize weight of satisfied clauses.

Max Cut-5 $\leq_{P L S}$ Odd Half Pos NAE 3-SAT

Max Cut-5 $\leq_{P L S}$ Odd Half Pos NAE 3-SAT

$\left.\begin{array}{l}\text { weight: } M \\ \text { weight: } 8 M \\ \text { weight: } 3 M\end{array}\right\} \frac{\stackrel{\rightharpoonup}{\infty}}{\triangleright}$

Max Cut-5 $\leq_{P L S}$ Odd Half Pos NAE 3-SAT

$\left.\begin{array}{l}\text { weight: } M \\ \text { weight: } 8 M \\ \text { weight: } 3 M\end{array}\right] \frac{\stackrel{\Gamma}{\infty}}{\hookleftarrow}$

Max Cut-5 $\leq_{P L S}$ Odd Half Pos NAE 3-SAT

Max Cut-5 $\leq_{p L S}$ Odd Half Pos NAE 3-SAT

Odd Half Pos NAE 3-SAT/Flip

Odd Half Pos NAE 2-SAT/Flip
\square
Odd Max Bisection/Flip
\downarrow
Odd Min Bisection/Flip
\downarrow
(Squared) Euclidean Max Cut/Flip

Max Cut-5 $\leq_{p L S}$ Odd Half Pos NAE 3-SAT

Odd Half Pos NAE 3-SAT/Flip

Odd Half Pos NAE 2-SAT/Flip
\square
Odd Max Bisection/Flip
\downarrow
Odd Min Bisection/Flip
\downarrow
(Squared) Euclidean Max Cut/Flip

Conclusion

Theorem
Squared Euclidean Max Cut/Flip and k-Means/Hartigan-Wong are PLS-complete.

Conclusion

Theorem
Squared Euclidean Max Cut/Flip and k-Means/Hartigan-Wong are PLS-complete.

Conclusion

Theorem
Squared Euclidean Max Cut/Flip and k-Means/Hartigan-Wong are PLS-complete.

Since our reductions are tight, we also get:

Conclusion

Theorem

Squared Euclidean Max Cut/Flip and k-Means/Hartigan-Wong are PLS-complete.

Since our reductions are tight, we also get:
Corollary
There exist instances with initial solutions for which both Flip and Hartigan-Wong require $2^{\Omega(n)}$ iterations, no matter the implementation.

Conclusion

Theorem
Squared Euclidean Max Cut/Flip and k-Means/Hartigan-Wong are PLS-complete.

Since our reductions are tight, we also get:
Corollary
There exist instances with initial solutions for which both Flip and Hartigan-Wong require $2^{\Omega(n)}$ iterations, no matter the implementation.

Other PLS-complete Euclidean optimization problems, e.g. TSP/k-Opt?

