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Clustering

Given n points in RY, group the points into clusters.
p group p Clusters

Different objectives:
» k-Means: minimize Zf‘zl > oxec Ix — cm(G)|2.

» Squared Euclidean Max Cut: maximize erx Zer HX—sz.
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Flip Heuristics for Clustering

Simple local search method: reassign single points.

Called Flip for Max Cut and Hartigan-Wong method for k-Means.

Theorem (Etscheid & Roglin, Manthey & R)

There exist instances of both k-Means and Squared Euclidean Max
Cut that require 2°\") jterations of Hartigan—Wong and Flip,
respectively.
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Complexity of Local Search

Class PLS = Polynomial Local Search.

Requires d efficient algorithms A, B, C:

» A: computes some feasible solution,

» B: evaluates cost of solutions,

» (C: computes improving neighbor of solution
— or outputs locally optimal.

Need a notion of reduction between PLS problems.
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PLS-reductions

PLS problems relate via a special type of reduction (f, g):

Function f maps instance of P to instance of Q.
Function g maps solution of @ to solution of P.

Crucial: if s’ is locally optimal, then so is s = g(s').
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Implications

P is PLS-complete = P among hardest problems in PLS.

PLS-complete P in polytime = all @ € PLS in polytime.

Theorem (Schaffer & Yannakakis)

If for some P, @ € PLS we have P <p;s @ via a tight reduction,

then @ inherits any lower bounds on the worst-case running time
of P.
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Odd Min Bisection <p;s Squared Euclidean Max Cut

Odd Bisection is a Cut, but with |V4| = V| £ 1.
Adapt NP-hardness proof of Ageev et al.:

wi /2 0 Vw2 a0 0 0

wy
vi Vwi/2 /w2 0 0 a, 0 0
B> X=
w3 0 wy/2 0 0 0 a, 0
o 0 0 Vw2 0 0 0 ay

with o, = \/w(E)/2 — w(d(v))/2

Now we are in a purely combinatorial setting — more freedom.
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Max Cut-5 <p;s Odd Half Pos NAE 3-SAT

Instance of Odd Half Pos NAE k-SAT:
» boolean variables xi, ..., X,

» #{false} = #{true} £+ 1,
» weighted Not-All-Equal clauses C; = NAE(xq, ..., xk).

Not-All-Equal clause:
» NAE(0,0) — 0
» NAE(1,1) —» 0
» NAE(0,1) — 1
» NAE(1,0) — 1

)

Goal: maximize weight of satisfied clauses.
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Other PLS-complete Euclidean optimization problems, e.g.
TSP /k-Opt?
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