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Clustering

Given n points in Rd , group the points into clusters.

Different objectives:

▶ k-Means: minimize
∑k

i=1

∑
x∈Ci

∥x − cm(Ci )∥2.
▶ Squared Euclidean Max Cut: maximize

∑
x∈X

∑
y∈Y ∥x − y∥2.
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Flip Heuristics for Clustering
Simple local search method: reassign single points.

Called Flip for Max Cut and Hartigan–Wong method for k-Means.

Theorem (Etscheid & Röglin, Manthey & R)

There exist instances of both k-Means and Squared Euclidean Max
Cut that require 2Ω(n) iterations of Hartigan–Wong and Flip,
respectively.
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Complexity of Local Search

Class PLS = Polynomial Local Search.

Requires ∃ efficient algorithms A,B,C :

▶ A: computes some feasible solution,

▶ B: evaluates cost of solutions,

▶ C : computes improving neighbor of solution
→ or outputs locally optimal.

Need a notion of reduction between PLS problems.
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PLS-reductions

PLS problems relate via a special type of reduction (f , g):

P Q

s ′s

f

g

Function f maps instance of P to instance of Q.

Function g maps solution of Q to solution of P.

Crucial: if s ′ is locally optimal, then so is s = g(s ′).
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Implications

P is PLS-complete =⇒ P among hardest problems in PLS.

PLS-complete P in polytime =⇒ all Q ∈ PLS in polytime.

Theorem (Schäffer & Yannakakis)

If for some P,Q ∈ PLS we have P ≤PLS Q via a tight reduction,
then Q inherits any lower bounds on the worst-case running time
of P.
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Reduction Path

Max Cut-5/Flip

Odd Half Pos NAE 3-SAT/Flip

Odd Half Pos NAE 2-SAT/Flip

Odd Max Bisection/Flip

Odd Min Bisection/Flip

(Squared) Euclidean Max Cut/Flip

Densest Cut/Flip

2-Means/Hartigan–Wong

k-Means/Hartigan–Wong

Sparsest Cut/Flip

Odd Min Bisection/Flip

(Squared) Euclidean Max Cut/Flip
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Odd Min Bisection ≤PLS Squared Euclidean Max Cut

Odd Bisection is a Cut, but with |V1| = |V2| ± 1.

Adapt NP-hardness proof of Ageev et al.:
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with αv =
√

w(E )/2− w(δ(v))/2

Now we are in a purely combinatorial setting → more freedom.
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Max Cut-5 ≤PLS Odd Half Pos NAE 3-SAT

Instance of Odd Half Pos NAE k-SAT:

▶ boolean variables x1, . . . , xn,

▶ #{false} = #{true} ± 1,

▶ weighted Not-All-Equal clauses Ci = NAE(x1, . . . , xk).

Not-All-Equal clause:

▶ NAE(0, 0) → 0

▶ NAE(1, 1) → 0

▶ NAE(0, 1) → 1

▶ NAE(1, 0) → 1

Goal: maximize weight of satisfied clauses.
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Conclusion

Theorem

Squared Euclidean Max Cut/Flip and k-Means/Hartigan–Wong are
PLS-complete.

Since our reductions are tight, we also get:

Corollary

There exist instances with initial solutions for which both Flip and
Hartigan–Wong require 2Ω(n) iterations, no matter the
implementation.

Other PLS-complete Euclidean optimization problems, e.g.
TSP/k-Opt?
arxiv:2312.14916
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