Extremal lattice problems (not in the bible)

Frank Vallentin

University of Cologne, Germany

Dutch seminar on optimization

January 25, 2024

CWI Amsterdam

SPLAG - The "bible"

¹We also thank the correspondent who reported hearing the first edition described during a talk as "the bible of the subject, and, like the bible, [it] contains no proofs". This is of course only half true.

Lattices

 b_1, \ldots, b_n basis of Euclidean space E

$$L = \mathbb{Z}b_1 + \cdots + \mathbb{Z}b_n$$
 lattice

Some optimization problems with lattices

- lattice sphere packing
- lattice sphere covering

- coloring the Voronoi cells
- potential energy minimization
- max-min polarization
- minimizing Euclidean distortion

Coloring the Voronoi cells

 $\Lambda \subseteq \mathbb{R}^n$ lattice

$$V(\Lambda, v) = \{x \in \mathbb{R}^n : ||x - v|| \le ||x - w|| \ \forall w \in \Lambda\}, v \in \Lambda$$
 Voronoi tessellation

Voronoi vectors

$$v \in \text{Vor}(\Lambda) \iff V(\Lambda, 0) \cap V(\Lambda, v) \text{ is } (n-1)\text{-dim. facet}$$

Cayley(Λ , Vor(Λ)) graph with vertices V and edges E

vertices: $V = \Lambda$, edges: $\{v, w\} \in E \iff v - w \in Vor(\Lambda)$

Determine chromatic number of this infinite graph:

$$\chi(\Lambda) = \chi(\text{Cayley}(\Lambda, \text{Vor}(\Lambda)))$$
?

Coloring the Voronoi cells: Root lattices

 $\Lambda \subseteq \mathbb{R}^n$ root lattice: $\forall v, w \in \Lambda : v \cdot w \in \mathbb{Z}$

 $\forall \nu \in \Lambda : \nu \cdot \nu \in 2\mathbb{Z}$

 $R(\Lambda) = \{ v \in \Lambda : v \cdot v = 2 \}$ generates Λ

If Λ is a root lattice, then $R(\Lambda) = Vor(\Lambda)$.

Classification of Witt (1941):

Every root lattice is orthogonal direct sum of irreducible root lattices.

The irreducible root lattices are A_n , D_n , E_6 , E_7 , E_8 .

Coxeter-Dynkin diagrams of irreducible root lattices:

 b_i , b_j connected iff $b_i \cdot b_j = -1$

 b_i , b_j not connected iff $b_i \cdot b_j = 0$

Coloring the Voronoi cells: Spectral bound I

Hoffman bound: Let G = (V, E) r-regular graph then, $\chi(G) \ge 1 - \frac{1}{m(A)}$.

 $A \in \mathbb{R}^{V \times V}$ normalized adjacency operator

$$Af(v) = \frac{1}{r} \sum_{\substack{w \in V \\ \{v,w\} \in E}} f(w)$$

V

$$m(A) = \min_{\|f\|=1} (Af, f)$$
 smallest eigenvalue of A

Bachoc, DeCorte, Oliveira Vallentin (2014): also works for infinite graphs

$$A: \ell^{2}(\Lambda) \to \ell^{2}(\Lambda)$$

$$Af(\nu) = \frac{1}{|\text{Vor}(\Lambda)|} \sum_{u \in \text{Vor}(\Lambda)} f(\nu - u) \qquad \ell^{2}(\Lambda) = \left\{ f: \Lambda \to \mathbb{C}: \sum_{v \in \Lambda} |f(v)|^{2} < \infty \right\}$$

Coloring the Voronoi cells: Spectral bound 2

Dutour Sikirić, Madore, Moustrou, Vallentin (2021):

Theorem.
$$\chi(\Lambda) \ge 1 - \left(\inf_{x \in \mathbb{R}^n/\Lambda^*} \frac{1}{|\text{Vor}(\Lambda)|} \sum_{u \in \text{Vor}(\Lambda)} e^{2\pi i u \cdot x}\right)^{-1}$$
.

irred. root lattice	spectral lower bound	exact value
A_n	n+1	n+1
D_n	n, when n even	$\chi(\frac{1}{2}H_n) \ \chi(\frac{1}{2}H_n)$
	n+1, when n odd	$\chi(\frac{1}{2}H_n)$
E_6	9	9
E ₇	10	14
E ₆ E ₇ E ₈	16	16

Serre's Oberwolfach report (12/2004)

 $\frac{1}{2}H_n = \text{conv}\{x \in \{0,1\}^n : \sum_i x_i = 0 \mod 2\}$ parity polytope

Coloring the Voronoi cells: Open questions

Is there a finite algorithm to determine the chromatic number?

Can one define a chromatic "polynomial"?

Potential energy minimization

consider **potential function** $p:(0,\infty)\to\mathbb{R}$

like inverse power laws $p(r) = \frac{1}{r^s}, s > 0$

or Gaussians $p(r) = e^{-\alpha r^2}$, $\alpha > 0$

p-potential energy of lattice L

$$\mathcal{E}(p,L) = \liminf_{r \to \infty} \frac{1}{|L \cap rB_n|} \sum_{x,y \in L \cap rB_n, x \neq y} p(|x - y|).$$

$$= \sum_{x \in L \setminus \{0\}} p(|x|)$$

Groundstate lattices

$$\min_{L \text{ } n\text{-dim. lattice, } \delta(L) = 1}$$

Gaussian core model

restrict p to be Gaussian $p(r) = e^{-\alpha r^2}$

Theorem (Bernstein, 1928). Exponentials $r \mapsto e^{-\alpha r}$, $\alpha \ge 0$, form extreme rays of cone of completely monotonic functions

 $g:(0,\infty)\to\mathbb{R}$ completely monotonic if $(-1)^kg^{(k)}\geq 0$ for all $k\geq 0$.

If g is completely monotonic, then there is a measure μ so that

$$g(r) = \int_0^\infty e^{-\alpha r} \, d\mu(\alpha).$$

Universal optimality - Global results Cohn, Kumar (2006)

L lattice is **universally optimal** if L minimizes $\mathcal{E}(p,L)$ among all n-dimensional lattices with $\delta(L) = 1$ and for all p where $p(|x|) = g(|x|^2)$ for some completely monotonic function g.

 $L = \mathbb{Z}$ is universally optimal

Cohn-Kumar Conjecture: $L = A_2, E_8, \Lambda_{24}$ are universally optimal

Cohn, Kumar, Miller, Radchenko, Viazovska (2019): Resolve $L=E_8, \Lambda_{24}$

Bernstein \Longrightarrow suffices to consider only Gaussian potential functions

Local methods: Gradients and Hessians Coulangeon (2006)

Consider Gaussian $f_{\alpha}(r) = e^{-\alpha r^2}, \ \alpha > 0.$

gradient

$$\langle \nabla \mathcal{E}(f_{\alpha}, L), H \rangle = -\alpha \sum_{x \in L \setminus \{0\}} H[x] e^{-\alpha ||x||^2}.$$

H n-dimensional symmetric matrix, Tr H = 0

$$H[x] = x^{\mathsf{T}} H x \qquad \langle A, B \rangle = \operatorname{Tr} A B$$

Hessian

$$\nabla^2 \mathcal{E}(f_{\alpha}, L)[H] = \alpha \sum_{x \in L \setminus \{0\}} e^{-\alpha ||x||^2} \left(\frac{\alpha}{2} H[x]^2 - \frac{1}{2} H^2[x] \right).$$

Question

Regev, Stephen-Davidowitz (2020)

Are there lattices which are **local maxima** for f_{α} -potential energy?

We suspect "Yes", and one can find them among the Niemeier lattices.

$$\langle \nabla \mathcal{E}(f_{\alpha}, L), H \rangle = -\alpha \sum_{x \in L \setminus \{0\}} H[x] e^{-\alpha ||x||^2}.$$

Hessian

$$\nabla^{2} \mathcal{E}(f_{\alpha}, L)[H] = \alpha \sum_{x \in L \setminus \{0\}} e^{-\alpha \|x\|^{2}} \left(\frac{\alpha}{2} H[x]^{2} - \frac{1}{2} H^{2}[x] \right).$$

Tool from geometry: Spherical designs

 $X \subseteq S^{n-1}(r) = \{x \in \mathbb{R}^n : ||x|| = r\}$ forms a spherical t-design

$$\int_{S^{n-1}(r)} p(x) \, dx = \frac{1}{|X|} \sum_{x \in X} p(x)$$

for all polynomials p of degree $\leq t$.

$$\iff \sum_{x \in X} p(x) = 0 \text{ for all } p \text{ with } \Delta p = 0, \deg p = 1, \dots, t.$$

point conf.	t
n-gon	n - I
simplex	2
cross polytope	3
icosahedron	5
240	7
196560	

Spherical designs and criticality

If $X \subseteq S^{n-1}(r)$ forms a spherical 2-design, then

$$\sum_{x \in X} xx^{\mathsf{T}} = \frac{r^2|X|}{n} I_n$$

$$\langle \nabla \mathcal{E}(f_{\alpha}, L), H \rangle = -\alpha \sum_{x \in L \setminus \{0\}} H[x] e^{-\alpha ||x||^2}.$$

$$= -\alpha \sum_{r>0} e^{-\alpha r^2} \sum_{x \in L(r^2)} H[x].$$

$$L(r^2) = \{x \in L : x \cdot x = r^2\}$$
 shell of L

$$\sum_{x \in L(r^2)} H[x] = \left\langle H, \sum_{x \in L(r^2)} xx^{\mathsf{T}} \right\rangle = \frac{r^2|X|}{n} \operatorname{Tr}(H) = 0$$

 \Longrightarrow If every shell of L is spherical 2-design, then L is critical.

Spherical designs and eigenvalues of Hessian Coulangeon, 2006

Similarly, if every shell of L is spherical 4-design, then

$$\nabla^2 \mathcal{E}(f_{\alpha}, L)[H] = \frac{\text{Tr } H^2}{n(n+2)} \sum_{r>0} |L(r^2)| \alpha r^2 \left(\alpha r^2 - (n/2+1)\right) e^{-\alpha r^2}.$$

 \Longrightarrow all eigenvalues of $\nabla^2 \mathcal{E}(f_\alpha, L)$ coincide

Tool from analysis: Fourier transform

Fourier transform
$$\widehat{f}(u) = \int f(x)e^{-2\pi ix \cdot u} dx$$

Eigenfunctions of Fourier transform

$$\int S_k(x)e^{-\pi|x|^2}e^{-2\pi ix\cdot u}\,dx = i^k S_k(u)e^{-\pi|u|^2}$$

 $S_k(x)$ homogeneous harmonic polynomial of degree k

Poisson summation formula

$$\sum_{x \in L} f(x+v) = \frac{1}{\text{vol}(L)} \sum_{u \in L^*} \widehat{f}(u) e^{2\pi i u \cdot y}$$

 $L^* = \{u \in \mathbb{R}^n : x \cdot u \in \mathbb{Z} \text{ for all } v \in L\} \text{ dual lattice}$

Even unimodular lattices I

Probably the nicest lattices: $L^* = L$ and $x \cdot x \in 2\mathbb{Z}$ for all $x \in L$.

Venkov (1980)

Analyse these lattices with theta series with spherical coefficients

$$\Theta_{L,p}(\tau) = \sum_{x \in L} p(x) e^{\pi i \tau ||x||^2} = \sum_{x \in L} p(x) q^{\frac{1}{2} ||x||^2},$$

p harmonic polynomial

 τ lies in the upper half plane $\{z \in \mathbb{C} : \Im(z) > 0\}$

$$q = e^{2\pi i \tau}$$

Even unimodular lattices 2

Poisson summation formula \Longrightarrow

Even unimodular lattices exist only when n is divisible by 8

 $\Theta_{L,p}$ is a modular form of weight n/2 + k, $k = \deg p$.

$$\Theta_{L,p} \in \mathbb{C}[E_4, E_6]$$

$$E_4(\tau) = 1 + 240q + 2160q^2 + 6720q^3 + \cdots,$$

$$E_6(\tau) = 1 - 504q - 16632q^2 - 122976q^3 - \cdots,$$

(normalized) Eisenstein series

Even unimodular lattices 3

For every fixed n there are only finitely many even unimodular lattices.

Completely classified for n = 8, 16, 24

n=8 Mordell (1938) only E_8 root lattice.

n = 16 Witt (1941) D_{16}^+ and $E_8 \perp E_8$

n=24 Niemeier (1973) Apart from the universally optimal Leech lattice Λ_{24} there are 23 further even unimodular lattices.

 $n = 32 \ge 80 \text{ million}$ (classified by their root sublattices)

Known results

Theta series with spherical coefficients \Longrightarrow

All shells of even unimodular lattices for n = 8, 16, 24 are spherical 2-designs

All shells of $L=E_8, \Lambda_{24}$ are spherical 4-designs

Sarnak, Strömbergsson (2006): $\nabla^2 \mathcal{E}(f_\alpha, L)[H] > 0$ for all $\alpha > 0$

Need: Modified ∇^2 -computation when shells are not spherical 4-designs.

Our modification

Theorem. Let L be an even unimodular lattice in dimension $n \leq 32$. Let

$$\Theta_L(\tau) = \sum_{m=0}^{\infty} a_m q^m \quad \text{with } a_m = |L(2m)|$$

be the theta series of L and let $\sum_{m=1}^{\infty} b_m q^m$ be the cusp form of weight n/2+4 with $b_1=1$. Then all the eigenvalues of the Hessian $\nabla^2 \mathcal{E}(f_{\alpha},L)$ are given by

$$\frac{1}{n(n+2)} \sum_{m=1}^{\infty} \left(b_m \frac{\alpha^2}{2} (\lambda n(n+2) - 8a_1) \right) e^{-2\alpha m} + \frac{1}{n(n+2)} \sum_{m=1}^{\infty} \left(a_m 2\alpha m \left(2\alpha m - (n/2+1) \right) \right) e^{-2\alpha m}, \tag{1}$$

where λ is an eigenvalue of the quadratic form

$$Q[H] = \sum_{x \in L(2)} H[x]^2$$

Eigenvalues

Theorem 4.1. Let R be an irreducible root system of type A, D, or E. The quadratic form $Q[H] = \sum_{x \in R} H[x]^2$ has the following eigenvalues:

Root system	Eigenvalue	Multiplicity
	4h = 4(n+1)	1
A_n , $n \ge 1$	2(n+1)	n , for $n \geq 2$
	4	$n(n-1)/2-1$, for $n \ge 2$
D_n , $n \geq 4$	4h = 8(n-1)	1
	4(n-2)	n-1
	8	n(n-1)/2
E_6	4h = 48	1
	12	20
E_7	4h = 72	1
	16	27
<i>E</i> ₈	4h = 120	1
	24	35

Results for n = 16

Fig. 1. The eigenvalues of the Hessian for D_{16}^+ (two different eigenvalues, left) and $E_8 \perp E_8$ (three different eigenvalues, right) depending on the parameter α .

Results for n = 24

For large values of α : Only the Niemeier lattices with irreducible root systems, namely A_{24} and D_{24} , are local minima for f_{α} -potential energy. All other Niemeier lattices are saddle points for f_{α} -potential energy for α large enough.

There are no local maxima among the Niemeier lattices.

Some results for n = 32

King (2002): There are at least ten million even unimodular lattices without roots $(L(2) = \emptyset)$ in dimension 32.

They all have the same theta series:

$$\Theta_L(\tau) = E_4^4(\tau) - 960E_4(\tau)\Delta(\tau)$$

$$= 1 + 146880q^2 + 64757760q^3 + 4844836800q^4 + 137695887360q^5$$

$$+ 2121555283200q^6 + 21421110804480q^7$$

$$+ 158757684004800q^8 + \cdots$$

All shells of L form spherical 4-designs.

Eigenvalues of the Hessian

Fig. 2. The eigenvalue of the Hessian for even unimodular lattices in dimension 32 without roots depending on the parameter α .

⇒ We found local maxima!