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'We also thank the correspondent who reported hearing the first edition
described during a talk as “the bible of the subject, and, like the bible,
[it] contains no proofs”. This is of course only half true.



Lattices

b1, ...,b, basis of Euclidean space £

L = Zby + --- + Zb,, lattice
O bg

V(L) = Voronoi cell

b = vol L = volume of V(L)
1

= /| det(b1,...,by,)
6(L) = vol(L)~" point density of L




Some optimization problems with lattices

- lattice sphere packing
- lattice sphere covering

- coloring the Voronoi cells

- potential energy minimization

- max-min polarization

- minimizing Euclidean distortion



Coloring the Voronoi cells

A C R"™ lattice
V(Av)={x e R": |z —v|| < ||z —w| Yw € A}, v € A Voronoi tessellation

Voronoi vectors
v € Vor(A) <= V(A,0) NV (A,v) is (n — 1)-dim. facet

S
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Cayley(A, Vor(A)) graph with vertices V and edges E
vertices: V' = A, edges: {v,w} € F <= v —w € Vor(A)




Coloring the Voronoi cells: Root lattices

A C R" root lattice: Vv,weA:v-weZ
VveA:v-ve2Z
R(A)={veA:v-v =2} generates A

If A is a root lattice, then R(A) = Vor(A).

Classification of Witt (1941):
Every root lattice is orthogonal direct sum of irreducible root lattices.

The irreducible root lattices are A, D,,, E¢, E-, Eg.

Coxeter-Dynkin diagrams of irreducible root lattices:

N R b;, b; connected itf b; - b; = —1

oo oo b;, b; not connected iff b; - b; =0
._.D” ...... ¢_<
oo o5¢ o o o




Coloring the Voronoi cells: Spectral bound |

Hoffman bound: Let G = (V, E) r-regular graph

then, y(G) > 1 m%A).

A€ IR{VXV normalized adjacency operator

=2 3 Fw) V

weV
{v w}€EE

m(A) = ”1}1”11& (Af, f) smallest eigenvalue of A

Bachoc, DeCorte, Oliveira Vallentin (2014): also works for infinite graphs

A:l%(A) — EZ(A)
EZ(A)z{f:A—MC: |f(v)|2<oo}
A= D, fr—w 2
(A)l ueVor(A)




Coloring the Voronoi cells: Spectral bound 2

Dutour Sikiri¢, Madore, Moustrou, Vallentin (2021):

—1
. 1 iU X
Theorem. Y(A)=1— ( inf Z e? ) .

xeR"/A* [Vor(A)| )

irred. root lattice  spectral lower bound exact value

A n+1 n+1

D, n, when n even x(%Hn)
n+ 1, when n odd x(%Hn)

= 9 9

E, 10 14

Eg 16 16

%]—[n = conv{z € {0,1}" : > . x; =0 mod 2} parity polytope

Serre’s Oberwolfach report (12/2004)



Coloring the Voronoi cells: Open questions

- Is there a finite algorithm to determine
the chromatic number?

- Can one define a chromatic “polynomial™?



Potential energy minimization

consider potential function p: (0,00) -+ R

like inverse power laws p(r) = =, s > 0

rs )

or Gaussians p(r) = e ", a > 0

p-potential energy of lattice L

E(p, L) = lim inf : Z p(|lx —yl).
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Gaussian core model

restrict p to be Gaussian p(r) = g o

Theorem (Bernstein, 1928). Exponentials r — e=", a > 0, form extreme
rays of cone of completely monotonic functions

g:(0,00) = R completely monotonic if (—1)*¢*) > 0 for all £ > 0.

If g is completely monotonic, then there is a measure u so that

o) = [ e duta)



Universal optimality - Global results
Cohn, Kumar (2006)

L lattice is universally optimal if L. minimizes £(p, L) among all n-dimensional
lattices with §(L) = 1 and for all p where p(|z|) = g(|z|?) for some completely
monotonic function g.

L = 7 is universally optimal

Cohn-Kumar Conjecture: L = Ay, Fg, Ay4 are universally optimal

Cohn, Kumar, Miller, Radchenko, Viazovska (2019): Resolve L = Eg, Aoy

Bernstein = suffices to consider only Gaussian potential functions



Local methods: Gradients and Hessians
Coulangeon (2006)

Consider Gaussian f,(r) = e a > 0.

oradient
(VE(fa, L) — _qa Z Hlx —allazll?
xeL\{0}
H n-dimensional symmetric matrix, ITr H = 0
Hlzl]=2z'Hx (A,B)=Tr AB
Hessian
1
V2E(fa L)[H=a Y e elel’ ( Hlz]? — §H2[x]) .

reL\{0}



Question
Regev, Stephen-Davidowitz (2020)

Are there lattices which are local maxima for f,-potential energy?

We suspect “Yes”, and one can find them among the Niemeier lattices.

Heimendahl, Marafioti, Thiemeyer, Vallentin, Zimmermann (IMRN, 2023)
oradient

(VE(fo, L), H) = —a Y Hlzle el

Hessian z€L\{0}

et =0 3 o (S )

reL\{0}



Tool from geometry: Spherical designs

X CS"Ir)={x €R":||z| = r} forms a spherical ¢-design

p(z)dr = p(x
/Snl(fr) ’X’ 2 v

re X

for all polynomials p of degree < t.

<= > p(x) =0 for all p with Ap=0,degp=1,...,t¢.
reX

point conf. t

N-gon n- |

simplex

cross polytope

2
3
icosahedron >
240 /

196560 | |



Spherical designs and criticality

If X C S" !(r) forms a spherical 2-design, then

Zm, 2\X\ I

reX \

(VE(fo, L), H) = —a Y Hlz]e eIl "/ /\\\
=—a) e Y H[zl. \__/ ‘
r>0 xeL(r?)

L(r*)={x € L:xz-x=r%} shell of L

Z H[a:]<H, Z x:z:T> 7azr‘nX‘Tlr(lLl):()

xEL(r?) xEL(r?)

—> If every shell of L is spherical 2-design, then L is critical.



Spherical designs and eigenvalues of Hessian
Coulangeon, 2006

Similarly, if every shell of L is spherical 4-design, then

Tr H?

V2E(fu, L)[H] = w2 Z\L )| ar? ( arz—(n/2+1))6_o‘r2.
7°>()

— all eigenvalues of V2&(f,, L) coincide



Tool from analysis: Fourier transform

Fourier transform f / fx)e 2™ dy

Eigenfunctions of Fourier transform

/Sk(w)e—w|m|26_2wiaz.u dr = ikSk(u)e_ﬂulz

Sk (x) homogeneous harmonic polynomial of degree k

Poisson summation formula

> fl@tv) = oy D Fwem

e L UEL*
L*={ueR":x-u€Zfor all ve L} dual lattice




Even unimodular lattices |

Probably the nicest lattices: L* = L and -« € 2Z for all x € L.

Venkov (1980)

Analyse these lattices with theta series with spherical coefficients
01,4(7) = Y- oot = 3 plagdt”
xE L xe L

p harmonic polynomial

7 lies in the upper half plane {z € C : &(z) > 0}

21T

q—=2=¢



Even unimodular lattices 2

Poisson summation formula =
Even unimodular lattices exist only when n is divisible by 8

O , is a modular form of weight n/2 + k, k = degp.

@L,p - C[Ezl, E6]
E4(7) = 1+ 240q + 2160¢> + 6720¢° + - - - ,
Fe(T) = 1 — 504g — 16632¢® — 122976¢° — - - - ,

(normalized) Eisenstein series



Even unimodular lattices 3

For every fixed n there are only finitely many even unimodular lattices.
Completely classified for n = 8,16, 24

n = 8 Mordell (1938) only Eg root lattice.
n =16 Witt (1941) D}, and Eg 1 Ex

n = 24 Niemeier (1973) Apart from the universally optimal Leech lattice Aoy
there are 23 further even unimodular lattices.

(classified by their root sublattices)
n = 32 > 80 million



Knhown results

Theta series with spherical coeflicients —

All shells of even unimodular lattices for n = 8, 16, 24 are spherical 2-designs

All shells of L = Eg, Aoy are spherical 4-designs

Sarnak, Strombergsson (2006): V2E(f,, L)[H] > 0 for all o > 0

Need: Modified VZ-computation when shells are not spherical 4-designs.



Our modification

Theorem. Let L be an even unimodular lattice in dimension n < 32. Let
OL(T) = )  amq™ with an, = |L(2m)]
m=0

be the theta series of L and let Y >~_. b,,,¢™ be the cusp form of weight n/2 + 4
with by = 1. Then all the eigenvalues of the Hessian V2&(f,, L) are given by

n(n1+ 5 Z (bm%(An(n +2) — 8a1)) o—2am
N (1)
1

t gy 2 (@n2am (20m — (/24 1)) e,

m=1

m=1

where A\ is an eigenvalue of the quadratic form

QH]= ) H[z]?

rxeL(2)



Eisenvalues

Theorem 4.1. Let R be an irreducible root system of type A, D, or E. The quadratic
form Q[H] = 3", g HIx]? has the following eigenvalues:

Root system Eigenvalue Multiplicity
4h=4(n+1) 1
Ap, n>1 2n+1) n,forn > 2
4 nn—-1)/2—1,forn > 2
4h=8(n—1) 1
Dy, n>4 4(n — 2) n-—1
8 nn—1)/2
4h = 48 1
Eg
12 20
4h =72 1
E7
16 27
4h =120 1
Eg

24 35




Results forn = |6
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Fig. 1. The eigenvalues of the Hessian for D;LG (two different eigenvalues, left) and Eg 1 Eg (three
different eigenvalues, right) depending on the parameter «.



Results for n = 24

For large values of a: Only the Niemeier lattices with irreducible root sys-
tems, namely Aoy and Doy, are local minima for f,-potential energy. All other
Niemeier lattices are saddle points for f,-potential energy for o large enough.

There are no local maxima among the Niemeier lattices.



Some results for n = 32

King (2002): There are at least ten million even unimodular lattices without
roots (L(2) = () in dimension 32.

They all have the same theta series:

Orn(1) = Ejf (7) — 960E4(7)A(T)
— 1 + 146880¢° + 64757760q> + 4844836800¢* + 137695887360¢°
+ 2121555283200¢° + 21421110804480g"
+ 158757684004800¢° + - - -

All shells of L form spherical 4-designs.



Eigenvalues of the Hessian

le-4 -

-le-4 A

-2e-4

Fig. 2. The eigenvalue of the Hessian for even unimodular lattices in dimension 32 without roots
depending on the parameter «.

— We found local maximal



